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Abstract
Diterpenoid biosynthesis has been extensively studied in plants and fungi, yet cloning and
engineering diterpenoid pathways in these organisms remain challenging. Bacteria are emerging as
prolific producers of diterpenoid natural products, and bacterial diterpene synthases are poised to
make significant contributions to our understanding of terpenoid biosynthesis. Here we will first
survey diterpenoid natural products of bacterial origin and briefly review their biosynthesis with
emphasis on diterpene synthases (DTSs) that channel geranylgeranyl diphosphate to various
diterpenoid scaffolds. We will then highlight differences of DTSs of bacterial and higher organism
origins and discuss the challenges in discovering novel bacterial DTSs. We will conclude by
discussing new opportunities for DTS mechanistic enzymology and applications of bacterial DTS
in biocatalysis and metabolic pathway engineering.

Introduction
Terpenoids comprise the largest, structurally most diverse family of natural products and
play important roles in all living organisms. Among the ~60,000 members known to date,
~12,000 are diterpenoids, most of which are produced in plants and fungi. Diterpenoids of
bacterial origin are known but rare, however recent advances in genomics have revealed that
the biosynthetic potential for terpenoids in bacteria, particularly in the actinimycetes, may be
significantly underestimated [1,2].

Diterpenoid biosynthesis has been extensively studied in plants and fungi [3–6], yet cloning
the respective genes and characterizing and engineering diterpenoid pathways in these
higher organisms remain challenging [7,8]. Scattering of the biosynthetic genes on the
genomic DNA of these higher organisms substantially increases the effort to clone all the
genes encoding the complete biosynthetic machinery for a given diterpenoid natural product.
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In contrast, genes encoding secondary metabolite biosynthesis in actinomycetes are nearly
always arranged on the bacterial chromosome as a cluster. Recent characterization of
terpene synthases (TSs) from several actinomycete species demonstrated that these enzymes
are not membrane-bound and can be overproduced with relative ease as soluble, functional
recombinant proteins in heterologous hosts such as E. coli [9]. Diterpenoid biosynthesis in
bacteria therefore may provide new opportunities to characterize these enzymes and to
engineer their biosynthetic machinery for diterpenoid natural product structural diversity.

Diterpenoids are all derived from (E,E,E)-geranylgeranyl diphosphate (GGDP). Diterpene
synthases (DTSs), also known as diterpene cyclases, catalyze the critical step in diterpenoid
biosynthesis by morphing GGDP into one of the many diterpenoid scaffolds, further
transformations of which by the downstream enzymes afford the enormous structural
diversity known for diterpenoid natural products. TSs in general, DTSs included, can display
incredible fidelity, catalyzing multi-step cyclization reactions with exquisite regiochemical
and stereochemical control [10] or display marked product promiscuity, with a single
enzyme generating over fifty unique products from a single substrate [11]. It is the fidelity
and promiscuity in this chemistry that has inspired a great interest in exploiting TSs for
engineered biosynthesis of novel terpenoid natural products [7,8,12].

Here we will first survey diterpenoid natural products of bacterial origin and briefly review
their biosynthesis with emphasis on DTSs that channel GGDP to various diterpenoid
scaffolds. We will then highlight differences of DTSs of bacterial and higher organism
origins and discuss the challenges in discovering novel bacterial DTSs. We will conclude by
discussing new opportunities for DTS mechanistic enzymology and applications of bacterial
DTS in biocatalysis and metabolic pathway engineering.

Bacterial diterpenoids
The discovery of gibberellins (GAs) from Rhizobium phaseoli in 1988, originally only
known to fungi and plants, may represent the first report of bacterial diterpenoids [13,14]. It
was followed by the discovery of verrucosan-2β-ol from Chloroflexus aurantiacus in 1993
[15] and isoagathenediol from Rhodospirillum rubrum in 1995 [16]. Since then, the list of
bacterial diterpenoids has grown steadily, and Figure 1 summarizes the bacterial
diterpenoids known to date. These include terpentecin from Streptomyces griseolosporeus
MF730-N6 [17,18,19], the phenalinolactones from Streptomyces sp. Tu6071 [20], the
brasilicardins from Nocardia brasiliensis IFM 0406 [21], viguiepinol and the oxaloterpins
from Streptomyces sp. KO-3988 [22,23], cyclooctatin from Streptomyces
melanosporofaciens MI614-43F2 [24], tuberculosinol and the isotuberculosinols from
Mycobacterium tuberculosis H37Rv [25–29], platensimycin from Streptomyces platensis
MA7327 [30–32], platencin from Streptomyces platensis MA7339 [33,34,35], the
neoverrucosanes from Saprospira grandis [36,37], cyslabdan from Streptomyces sp.
K04-0144 [38], the gifhornenolones from Verrucosispora gifhornesis YM28-088 [39], and
JBIR-65 from Actinomadura sp. SpB081030SC-15 [40]. The actinomycetes have emerged
as prolific producers of bacterial diterpenoids [1,2]. Bacterial producers of paclitaxel have
also been reported, many of which were actinomycetes, however definitive evidence
supporting their paclitaxel production remains elusive [41].

Bacterial DTSs
DTS classification follows other TSs. Type I TSs initiate a cyclization reaction via a
heterolytic cleavage of the polyprenyl diphosphate, while type II TSs initiate the cyclization
reaction via protonation of a double bond or an epoxide ring. In both cases, the resulting
carbocation undergoes a cascade of cyclization, the fate of which is determined by a
combination of steric and electrostatic forces within the active site cavity. The cyclization
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cascade is ultimately terminated by abstraction of a proton or electrophilic attack by water
(Figure 2A) [4,5]. Because type II TSs leave the diphosphate group intact, their products can
serve as substrates for further cyclization by type I TSs. The high frequency with which such
two-step cyclizations are employed differentiates diterpenoid biosynthesis from that of
smaller terpenoids, which rarely implement a type II mechanism.

Terpentedienyl diphosphate synthase and terpentetriene synthase were the first two
characterized bacterial DTSs, reported in 2001 for terpentecin biosynthesis from S.
griseolosporeus MF730-N6 [18,19]. Since then, a total of 16 bacterial DTSs have been
identified from various organisms, with genome sequencing efforts unveiling many more
candidates whose functions as DTSs require experimental confirmation. Figure 2B
summarizes the individual transformations catalyzed by these DTSs en route to their
respective diterpenoid natural products, highlighting the remarkable catalytic landscape
covered by bacterial DTSs.

Bacterial type II DTSs
Terpentedienyl diphosphate synthase (Cyc1) from S. griseolosporeus MF730-N6, the first
bacterial type II DTS reported, converts GGDP to terpentedienyl diphosphate en route to
terpentecin (Figure 2B). Although it displays only a moderate sequence similarity (<30%) to
the N-terminal halves of characterized eukaryotic DTSs, the presence of a DXDD motif
solidified its bioinformatics-based functional assignment [17,18], which was subsequently
confirmed experimentally in vitro [17,19]. Other bacterial type II DTSs identified since
include halimadienyl diphosphate synthase (Rv3377c) from M. tuberculosis [25,26,29] and
ent-copalyl diphosphate (ent-CPP) synthases from S. sp. KO-3988 (ORF2) [22], B.
japonicum (BjCPS) [42], S. platensis MA7327 (PtmT2) [43], and S. platensis MA7339
(PtnT2) [43], respectively (Figure 2B), all of which share the characteristic DXDD motif.
The type II DTSs, reported for brasilicardin A (Bra4) and phenalinolactone A (Plat2) from
N. brasiliensis IFM 0406 [21] and S. sp. Tu6071 [20], respectively, are atypical, with their
signature DXDD motif replaced with a (E/D)SA(E/N) motif. Intriguingly, both clusters
contain a separate gene homologous to eukaryotic squalene epoxidase, which is thought to
convert GGDP to epoxy-GGDP. The latter would support a sterol-like cyclization reaction,
where the non-canonical type II DTS Bra4 or PlaT2 would initiate the cyclization reaction
by protonating an epoxy group rather than a double bond [20] (Figure 2B).

Bacterial type I DTSs
The staggering sequence diversity present in bacterial type I DTSs hinders sequence-gazing
efforts but heightens our understanding of the minimal requirements for catalysis.
Terpentetriene synthase (Cyc2) from S. griseolosporeus MF730-N6, the first bacterial type I
DTS reported, was readily identified on the basis of its sequence homology to known
bacterial type I TSs, and presence of the characteristic DDXXD and NSE/DTE motifs
[18,19]. The other bacterial type I DTSs characterized since - including the tuberculosinol/
isotuberculosinol synthase (Rv3378c) from M. tuberculosis [26,27,29], the cyclooctatenol
synthase (CotB2) from S. melanosporofaciens [24], the pimaradiene synthase (ORF3) from
S. sp. KO-3988 [22], and two ent-kaurene synthases (BjKS and PtmT3) from B. japonicum
[42] and S. platensis MA7327 [43], respectively - however, have an average of just 13%
sequence identity. No pairwise alignment displays greater than 20% sequence identity,
despite the fact that the latter four enzymes act on a same substrate ent-CPP, and this is in
contrast to plant and fungal type I DTSs that display an average of 28% and 25% pairwise
identity, respectively. This sequence diversity is evident by the deep branching of bacterial
type I DTSs, compared to plant and fungal enzymes, on a minimum-evolution phylogenetic
tree (Figure 3A). Moreover, the canonical active site motifs have even been called into
question with recent studies of bacterial type I DTSs. For example, the tuberculosinol/

Smanski et al. Page 3

Curr Opin Chem Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



isotuberculosinol synthase Rv3378c retains the DDXXD motif but lacks the conserved NSE/
DTE motif [26,29]. The two ent-atiserene synthases (PtmT1 and PtnT1) from S. platensis
MA7327 and MA7339, respectively, lack both the DDXXD and NSE/DTE motifs, and
contain instead two atypical DXXXD motifs [43]. These findings expand our understanding
of the structural elements required for catalysis and will guide future mechanistic
investigations and DTS discovery efforts.

Evolutionary relationship of bacterial and eukaryotic DTSs
Structures for a number of type I and type II TSs of bacterial, fungal, or plant origin are
available [4,5], but no structure of a bacterial DTS is currently known. Nonetheless,
structures of various known TSs coupled with detailed bioinformatic analyses of the
bacterial variants now provide a clearer picture of DTS evolution. Bacterial type II DTSs are
homologous to bacterial triterpene synthases for which the three-dimensional structure is
known, including squalene hopene cyclase [44], and primary sequence alignments suggest a
conservation of overall topology and active site location [45]. Thus, bacterial type II DTSs
are hypothesized to contain the same βγ-didomain structure deriving from an ancient
duplication of two (α/α)6 barrels. On the contrary, bacterial type I DTSs are predicted to
have a single α-domain “isoprenoid fold” based on their homology and overall primary
sequence alignments to the bacterial type I sesquiterpene synthases, pentalenene synthase
[9,46] and epi-isozizaene synthase [47]. Plant DTSs likely evolved from an early fusion of
the bacterial type I and II enzymes to form bifunctional αβγ-tridomain DTSs that can
catalyze both types of cyclization but in separate active sites. Such tridomain DTSs are still
seen today, for example, in the bifunctional ent-kaurene synthase from the moss
Physcomitrella patens [48] and the bifunctional abietadiene synthase from Abies grandis
[49]. Monofunctional type I or type II DTSs found in plants commonly retain vestigial
domains from ancestral enzymes that, while lacking active site motifs, likely remain for
structural support [50–52]. The relevance of these evolutionary roots to current studies in
DTS biochemistry and enzymology is many-fold. For example, bacterial DTSs, in particular
type I DTSs, tend to be significantly smaller than their eukaryotic counterparts, perhaps to a
degree that makes the bacterial enzymes inherently easier to manipulate for biochemical
studies. The ancient roots of DTSs in prokaryotes also explain the greater sequence diversity
observed in these enzymes (Figure 3). Further examination and utilization of bacterial DTSs
in future studies could facilitate interrogating how sequence divergence in core catalytic
motifs affects enzyme mechanism and product diversity in TSs.

Discovery of new bacterial DTSs
Challenges in discovering bacterial DTSs

The lack of sequence conservation in bacterial DTSs makes sequence-based approaches for
their discovery difficult, albeit still possible [53]. Many of the bacterial DTSs characterized
to date were identified by their clustering with more readily identifiable terpene biosynthetic
genes. For example, screening genomic DNA of S. griseolosporeus MF730-N6 for
mevalonate pathway genes led to the identification of terpentedienyl diphosphate synthase
(Cyc1) and terpentetriene synthase (Cyc2) for terpentecin biosynthesis [18]. A similar
strategy yielded the pimaradiene synthase (ORF3) for viguiepinol biosynthesis in S. sp.
KO-3988 [54]. Other bacterial diterpene gene clusters have been identified only by
screening for genes required for the biosynthesis of separate chemical moieties [20,43] or
those involved in tailoring reactions [55]. The requirement for the common substrate GGDP
can be exploited to identify bacterial DTSs. Previous studies have attempted to determine
the chain-length determining factors that distinguish GGDP synthase from shorter- and
longer-chain polyprenyl diphosphate synthases [56–59] and several key amino acid residues
have been identified and verified in vitro. From these data, predictive algorithms could be
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designed to selectively scan genomes for GGDP synthases, and such a strategy was used
recently to clone the brasilicardin A gene cluster from N. brasiliensis [60].

Atypical DTSs in the platensimycin and platencin biosynthetic gene clusters
Platensimycin (PTM) and platencin (PTN) are composed of a substituted aminobenzoic acid
and a diterpenoid-derived carboxylic acid, linked by an amide bond (Figure 1) [30–35]. The
terpenoid moieties of PTM and PTN bear ent-kaurene and ent-atiserene scaffolds,
respectively [61,62]. While ent-kaurene production has been studied in great detail in plants
[63], fungi [64], and, more recently, bacteria [42], little is known about ent-atiserene
production. Following the cloning of a PTM-PTN dual producing gene cluster from S.
platensis MA7327, putative ent-CPP (Ptm2) and ent-kaurene synthases (Ptm3) were
identified by sequence comparison with known DTSs. Comparison of the PTM-PTN gene
cluster to a PTN-only producing gene cluster from S. platensis MA7339 ruled out the
possibility that a promiscuous ent-kaurene synthase could provide both scaffolds. This led to
the search and eventual discovery of PtmT1 and PtnT1 as the ent-atiserene synthases, novel
type I DTSs that lack canonical active site motifs, for PTN biosynthesis [43]. A preliminary
analysis of sequence databases has revealed other misannotated homologues, suggesting that
the ent-atiserene synthase belongs to a previously unrecognized family of bacterial type I
DTSs [43].

New opportunities for mechanistic enzymology and engineered
biosynthesis
Mechanistic enzymology

Much work has been done in higher plants and fungi to attempt to fully understand the
catalytic landscape of DTSs. Structural data point to the importance of precisely positioned
amino acid side chains in the active site cavity that guide the folding of intermediates and
stabilize carbocation intermediates. Mechanistic enzymology and structural biology of
known bacterial DTSs, and of those yet to be discovered, will complement previous studies
by providing a wealth of new and diverse sequences to populate the catalytic landscape
(Figures 2 and 3). These studies will hopefully answer important questions such as how ent-
kaurene synthases from B. japonicum and S. platensis can produce the same diterpene
scaffold with such divergent primary sequences. Additionally, continued discovery and full
characterization of non-canonical bacterial type I and type II DTSs will surely broaden our
understanding of the mechanistic requirements for DTS reaction initiation.

Exploiting bacterial DTSs to generate structural diversity
Since all diterpenoids derive from a common origin, GGDP, a degree of modularity exists
among DTSs from different biosynthetic pathways. There is little evidence for protein-
protein interactions between enzymes in a terpenoid biosynthetic pathway. This enables
various type I and type II DTS to be mixed and matched to produce a variety of carbon
scaffolds. For example, the PTN-producing strain, S. platensis MA7339, can be converted
into a PTM-PTN dual producer by heterologously expressing the ent-kaurene synthase and
other genes involved in PTM ether-ring formation, and this suggests that alternative ent-
copalyl-derived diterpene scaffolds could be accepted into the PTM and PTN pathways
(Figure 4A) [43]. The extent to which diverse diterpene scaffolds can replace native
scaffolds in extant biosynthetic pathways depends on the ability of the downstream tailoring
enzymes to accept the new scaffold. Structural similarities among different diterpene
scaffolds may therefore dictate compatibility, as exemplified in the PTM and PTN
biosynthesis. In order to fully explore the potential of diterpenoid biosynthetic pathways, we
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must increase the number of characterized DTSs to begin to approximate the number of
diterpenoid scaffolds found in Nature.

Engineered production of diterpenoid natural products in bacteria
Bacteria provide convenient hosts for engineered production of terpenoid natural products
with important commercial value. This strategy has received considerable attention [7,8] and
led to recent success when principles from the emerging field of synthetic biology were
applied to produce precursors of the sesquiterpene antimalarial drug, artemisinin, in a
bacterial host [65]. All indications suggest that diterpenoid pathways are equally amenable
to such metabolic engineering efforts. This was recently demonstrated through construction
of a modular DTS expression system in E. coli. Three different type II DTSs, affording ent-,
syn-, and normal-CPPs, were first introduced into a recombinant E. coli strain that was
engineered to produce GGDP. Several product-specific type I DTS were then added to
afford recombinant strains that produce nine diterpenoids representing eight distinct
scaffolds (Figure 4B) [66]. These diterpenoid scaffolds, alone, provide an entry point to the
engineered production of over 2,000 known diterpenoid natural products.

Conclusions and prospective
Bacteria are emerging as prolific producers of diterpenoids, and bacterial DTSs are poised to
make significant contributions to our current understanding of terpenoid biosynthesis.
Advantages of studying diterpenoid biosynthesis in bacteria include (i) access to mechanistic
and structural studies as facilitated by the technical feasibility of working with bacterial
enzymes, (ii) expansion of mechanistic understanding through the characterization of novel
enzymes with non-canonical catalytic motifs, and (iii) opportunities for whole pathway
engineering to produce complex diterpenoid natural products. Recent findings have already
challenged the paradigm of TS biochemistry and mechanistic enzymology from studies in
higher organisms and promise to expand the boundaries of DTS catalytic landscape. Each
new DTS characterized will either extend these boundaries further or fill in the gaps
between existing sequences. The number of possible natural or unnatural diterpenoid
scaffolds, accessible from the common substrate GGDP by DTSs, is staggering, and gaining
access to these structures by engineered biosynthesis will greatly aid both drug discovery
efforts and development of biotechnology applications.
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Highlights

• Cloning and engineering diterpenoid pathways in plants and fungi remain
challenging.

• Bacteria are emerging as prolific producers of diterpenoid natural products.

• Bacterial diterpene synthases are poised to make significant contributions to our
understanding of terpenoid biosynthesis.

• Diterpenoid biosynthesis in bacteria provides new opportunities for pathway
engineering to produce complex diterpenoid natural products.
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Figure 1.
Bacterial diterpenoid natural products with their diterpenoid carbon scaffolds highlighted in
red: (A) the biosynthetic gene clusters for these natural products have been cloned and
partially characterized and (B) biosynthesis for these natural products has not been studied.
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Figure 2.
Bacterial diterpene synthases (DTSs): (A) Mechanisms of type I and type II DTSs and (B)
pathways for bacterial diterpenoid natural product biosynthesis, highlighting known
bacterial type I (blue) and type II DTSs (red) that convert GGDP to diverse diterpenoid
scaffolds en route to the final natural products. See Figure 1 legend for structures of the
diterpenoid natural products. See Figure 3 legend for accession numbers of the type I and
type II DTSs. DTSs, diterpene synthases; ent-CPP, ent-copalyl diphosphate; GGDP,
geranylgeranyl diphosphate.
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Figure 3.
Minimum evolution trees of primary amino acid sequences from plant (green), fungal (red),
and bacterial (blue) type I (A) and type II DTSs (B). The branch lengths illustrate the extent
of sequence diversity found in bacterial DTSs compared with plant or fungal enzymes. The
trees were constructed in Mega5.0 with a ClustalW-generated primary sequence alignment.
Shown in parentheses are accession numbers. Bacterial type I DTSs: Cyc2 (BAB39207),
ORF3 (BAD86798), BjKS (BAC47415), PtmT3 (ACO31279), CotB2 (BAI44338), PtmT1
(ACO31274), PtnT1 (ADD83014), Rv3378 (P_217895). Fungal type I DTSs: PaDC1
(BAG30961), ACS (BAB62102), Smcps/ks (CAP07655), Gfcps/ks (Q9UVY5), FCPS/KS
(BAA22426), Orf8 (bsc8) (BAI44849), PaFS (BAF45925). Plant type I DTSs: OsKSL6
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(ABH10733), OsKSL5 (ABH10732), OsKSL11 (AAZ76733), OsKSL8 (BAD34478),
OsKSL10 (ABH10735), OsKSL7 (ABH10734), OsKS1 (AAQ72559), OsKSL4
(AAU05906), CmKSB (AAB39482), AtKS (AAC39443), LsKS (BAB12441), SrKS1-1
(AF097310_1), PgKS (ADB55708), PpCPS/KS (BAF61135), TPS04/GES (NP_564772),
RcCS (XP_002513340), SmCPSKSL1 (AEK75338), TDC1 (AAC49310), GbLPS
(AAL09965), PaTPS-Iso (AAS47690), AgAS (Q38710), PaTPS-LAS (AAS47691), PtTPS
(AAX07435). Bacterial type II DTSs: Rv3377c (NP_217894), BjCPS (BAC47414), PtmT2
(ACO31276), PtnT2 (ADD83015), Orf2 (BAD86797), Cyc1 (BAB39206), Bra4
(BAG16278), PlaT2 (ABB69743). Fungal type II DTSs: FCPS/KS (BAA22426), SmCPS/
KS (CAP07655), GfCPS/KS (Q9UVY5). Plant type II DTSs: OsCPS1ent (BAD42449),
OsCPS2ent (Q6ET36), ZmCPS1 (AAT49065), ZmCPS2 (ADB55709), HvCPS
(BAH56560), TaCPS3 (AAT70083), OsCPS4syn (NP_0010521), TaCPS1 (BAH56558),
CcCLS (ADJ93862), CmCPS1 (AAD04292), CmCPS2 (AAD04923), LsCPS (BAB12440),
SrCPS (AAB87091), PsCPS (AAB58822), GA1 (AAA53632), PpCPS/KS (BAF61135),
PsCPSb (ADB55709), PgCPS (ADB55707), GbLPS (AAL09965), AgAS (Q38710), PtTPS-
LAS (AAX07435), PaTPS-ISO (AAS47690), PaTPS-LAS (AAS47691), SmCPSKSL1
(AEK75338), TPS04/GES (NP_564772). DTSs, diterpene synthases.
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Figure 4.
(A) Modularity of DTS biochemistry demonstrated by conversion of the platencin-
producing strain, S. platensis MA7339, into a platensimycin and platencin dual-producing
strain, S. platensis SB12604, by genetic engineering [43], and a proposal of producing new
analogues by heterologous expression of additional type I DTSs in S. platensis MA7339. (B)
Utility of DTS modularity demonstrated through expression of various type I and type II
DTSs in a recombinant E. coli strain that has been engineered to produce GGDP to yield
eight different diterpene scaffolds, which provide an entry point to engineered production of
thousands of diterpenoid natural products. DTSs, diterpene synthases; ent-CPP, ent-copalyl
diphosphate; n-CPP, normal-copalyl diphosphate; syn-CPP, syn-copalyl diphosphate;
GGDP, geranylgeranyl diphosphate; pGGeC, pGGnC, and pGGsC, three engineered type II
DTSs that convert GGDP to ent-CPP, n-CPP, and syn-CPP, respectively; AtKS,
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rAgAS:D404A, OsKSL4, OsKSL5j, OsKSL6, OsKSL7, OsKSL8, OsKSL10, and
OsKSL11, 11 engineered type II DTSs that convert ent-CPP, n-CPP, or syn-CPP to the nine
diterpenoid scaffolds, respectively [66].
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