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Abstract
Recent epigenomic studies have identified significant differences between developmental stages
and cell types. While the importance of epigenetic regulation has been increasingly recognized, it
remains unclear how the global epigenetic patterns are established and maintained. Here I review a
number of recent studies with the emphasis on the role of the genomic sequence in shaping the
epigenetic landscape. These studies strongly suggest that the sequence information is important
not just for controlling target specificity but for orchestrating the diversity of epigenetic patterns
among different cell types. The epigenome is maintained by the complex network of a large
number of interactions. Integrative approaches are needed to gain insights into these networks.

Introduction
The genome provides a blueprint for gene regulation, but this blueprint is interpreted
differently in different cell types. A partial explanation for these differences is the fact that
the DNA sequences are packaged into chromatin, and that only a small portion of the
genome is accessible in any cell type. DNA accessibility in a cell is highly controlled by the
combined effects of multiple epigenetic marks including nucleosome positions, histone
modifications, and DNA methylation [1].

The basic repeating unit of chromatin is the nucleosome, which consists of 147 base pairs of
DNA wrapped around a core histone octamer in nearly two times [2]. The nucleosome is a
formidable barrier for transcription factors (TF) binding, thereby serving as a repressor for
transcription. The N-terminal histone tails can be covalently modified at numerous locations
in different ways. The combinatorial pattern not only serves as a landmark for open or
closed chromatin but recruit specific regulatory proteins [3, 4]. Epigenetic information can
also be carried by the genomic DNA itself, where certain cytosine nucleotides are
methylated at the C-5 position [5]. While promoter DNA methylation has been long
recognized to be associated with gene silencing, genome-wide studies have identified new
functions associated with coding region methylation [6, 7].

During the past decade a large amount of epigenomic data has been generated (recently
reviewed by [8-10]), providing high-resolution maps of the entire epigenome which can be
compared to gain functional insights. Significant differences have been identified between
cells under different growth conditions or at developmental stages. What is more clinically
relevant is the identification of global epigenetic aberrations in cancer and a number of other
diseases [11, 12], suggesting dysfunctional epigenetic regulation may be an important step
to these diseases.

§Corresponding author gcyuan@jimmy.harvard.edu.

NIH Public Access
Author Manuscript
Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2013 May 01.

Published in final edited form as:
Wiley Interdiscip Rev Syst Biol Med. 2012 May ; 4(3): 297–309. doi:10.1002/wsbm.1165.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Despite these exciting discoveries, we are still far from understanding the mechanisms that
regulate the genome-wide epigenetic patterns. A number of fundamental questions remain
unresolved. How are the chromatin regulators and DNA methytransferases recruited to the
chromatin? How is the global epigenetic pattern stably maintained after initial
establishment? What are the factors that cause epigenetic aberrations during the
development of a certain disease? Is it possible to restore normal epigenetic patterns by
clinical intervention? Answers to these questions are needed both for understanding the
function of epigenetic mechanisms and for developing effective approaches for disease
treatment.

It has been increasingly recognized that epigenomic patterns are regulated by the complex,
dynamic interactions among multiple classes of factors, including chromatin modifiers,
DNA binding proteins, noncoding RNAs (ncRNA), and signaling molecules. In this review,
I will focus on the role of DNA sequence in mediating these interactions. This is a central
question that has been extensively investigated yet remains incompletely understood. More
comprehensive discussions can be found in several recent reviews [13-16].

Computation methods for predictions of epigenomic patterns
Sequence analysis has traditionally been used to predict TF binding sites, which often target
specific short DNA sequence patterns called motifs (reviewed by [17]). However, most
chromatin regulators either do not or weakly interact with DNA. While interactions with
certain TFs may play an important role in recruitment, such interactions often involve many
TFs. As a result, an epigenetic pattern is often associated with many sequence features each
only making a minor contribution. A recent trend in computational biology is to develop
effective predictive models by integrating multiple weak features, as described below.

A commonly used approach is supervised learning [18]. The availability of genome-wide
data makes it possible to select sample sequences from either positive or negative regions. In
order to build a predictive model, it is important to convert these sequences to numerical
values. If the relevant sequence features are known, their occurring frequencies can be used
as numerical predictors. However, in most cases discriminative sequence features are not
known a priori. To address this problem, various classes of sequence features have been
explored, including TF motifs [19-21], word counts [22], repetitive elements [19, 21, 23],
DNA structural parameters [24], and periodic patterns [25]. Table 1 shows an incomplete list
of DNA sequence features and their associated factors.

Due to the large number of potentially useful sequence features (it is not uncommon to have
more than 100 features), one important concern is overfitting – failure of a complex model
that is trained based on a small sample to generate useful predictions. This risk can be
reduced by using variable selection techniques. This can be done either in the traditional
linear regression framework, by using principal component analysis, stepwise regression,
penalized regression [26], or through machine learning approaches such as decision trees
[27] and support vector machines [28]. Finally, prediction accuracy can be improved by
ensemble-based prediction models such as boosting [29] and Bayesian additive regression
trees (BART) [30]. These methods have been applied to prediction of nucleosome
positioning [22, 24, 25], histone modifications [20, 31, 32], and DNA methylation [19-21,
33]. The performance of different methods in predicting protein-DNA interactions has been
compared, with the results in favor of boosting and BART [34].

An alternative approach is to estimate the position specific sequence pattern directly as an
extension of traditional motif analysis methods [35]. In this approach, the input sequences
are first aligned, and then the probability of observing a certain nucleotide at a specific

Yuan Page 2

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2013 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



position is empirically estimated and further normalized. This approach has been applied to
predict nucleosome positioning. Accurate predictions can be achieved when complemented
by word frequency features [36, 37].

Another approach for nucleosome positioning prediction is based on biophysical properties
[38-40]. Viewing DNA as a flexible polymer, the sequence dependent, free energy
associated with a specific geometric configuration can be calculated. Since the nucleosome
crystal structure has been experimentally identified [41], the most favorable sequence
composition can be identified by minimizing the free energy [38-40]. While these models do
not require genome-wide data for model training, the prediction accuracy is surprisingly
competitive. However, the utility of this approach to other epigenetic marks is limited due to
the lack of of high-resolution protein structure information.

The basic output of each method is a propensity score for an input sequence fragment; this
can be extended to predict genome-wide epigenetic patterns by scanning with sliding
windows. Additional constraints, such as the steric hindrance effect of neighboring
nucleosomes, can be further incorporated, for example, by using a hidden Markov model
[35, 42]. An extension of this approach has been applied to predict multiple factor binding
profiles [43, 44].

Quantitative evaluation of the role of DNA sequences in regulating
epigenomic patterns

The computational methods described above have been applied to quantitatively evaluate the
association between DNA and epigenomic patterns. As discussed below, while each
epigenetic mark involves a distinct set of sequence features and recruiting factors, the
underlying principle is strikingly similar.

Nucleosome positioning
The nucleosome is the fundamental unit for packaging DNA. Its highly conserved three
dimensional structure was identified by Richmond and colleagues [41], showing more than
120 direct histone-DNA interactions unevenly distributed across the nucleosome surface.
Each individual interaction is rather weak, allowing the flexibility to package almost the
entire genome. A long-standing question is to what extent the genome-wide nucleosome
positioning is dictated by such variations.

The development of genomic technologies and computational methodologies has greatly
advanced our understanding of the role of DNA sequence in global regulation of
nucleosome positioning. The best studied model system is S. cerevisiae. Here high-
resolution, genome-wide mapping of nucleosome positions has been obtained by
crosslinking nucleosome with DNA, followed by MNase digestion and microarray
hybridization or high-throughput sequencing [24, 42, 45-47]. A number of computational
methods have been developed to predict nucleosome positions from the genomic sequence
[22, 24, 25, 35-39, 48, 49]. While the prediction accuracy is significantly better than random
guess, it is highly variable across the genome (see [50] for a review). While the nucleosome-
free region (NFR) and +1 nucleosome position at the 5′ end of genes can be well predicted,
the accuracy in other regions is poorer. One significant limitation is that while the in vivo
nucleosome positions display regular phasing surrounding NFRs, predicted nucleosome
positions do not have this pattern.

To test whether the DNA sequences indeed play a causal role, several groups have carried
out experimental validations by deleting certain sequences that are predicted to be associated
with nucleosome positions followed by comparison of the nucleosome positions in wild-type
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and mutants [51, 52]. The nucleosome positions in the mutants are indeed altered, but the
degree of alteration gradually increases with respect to the deletion size [51], suggesting that
nucleosome positions are mediated by the cumulative effect of many weak histone-DNA
interactions.

Two independent studies have used a similar approach to investigate the direct role of DNA
sequences in nucleosome positioning [37, 53]. In both studies, the yeast genome was
extracted from the nucleus and reassembled into nucleosomes in a cell-free media. The in
vitro assembled nuclesome positioning pattern was then detected by using next generation
sequencing. Both studies have found that the in vitro and in vivo nucleosome occupancy
patterns are highly correlated; notably, the DNA sequence of most yeast promoters
intrinsically disfavor nucleosome assembly. On the other hand, the center positions of the
nucleosomes vary significantly between the two conditions. The nucleosomes assembled in
vitro are more delocalized [53], suggesting that the DNA sequence plays an important but
insufficient role for genome-wide nucleosome positioning.

One striking feature of in vivo nucleosome positioning pattern is the regular phasing of
nucleosomes around NFR [42], but such a pattern cannot be reproduced by in vitro
nucleosome assembly. This difference can be explained by a simple model, called statistical
positioning, proposed by Kornberg and Stryer more than twenty years ago [54]. This model
assumes that nucleosome positions are bounded by a fixed barrier but distributed at random
elsewhere. If averaged over all possible configurations, similar to averaging over a large cell
population, the resulting pattern appears to be regular. Despite the elegance of the above
model, recent experimental studies have uncovered important additional complexity [55]. In
one study [56], the investigators reconstituted nucleosomes in a whole-cell-extract media
supplemented by ATP and were able to recapitulate the in vivo-like nucleosome positioning
pattern. Notably, the spacing between neighboring nucleosomes is not strongly dependent
upon the local nucleosome density, as predicted by the statistical positioning model. These
findings strongly suggest that in vivo nucleosome positions are not simply formed by
statistical positioning but result from active packing by ATP-dependent remodeling
complexes.

There is a great interest in to what extent the DNA sequence is conserved across different
species. Genome-wide nucleosome positions have been mapped in a number of organisms,
including S. pombe [57], C. elegans [58], D. melanogaster [59], A. thaliana [60], and human
[61]. All these species share a similar pattern, that is, most promoters contain an NFR
flanked by regular nucleosome arrays on each side. This is striking, considering that the
promoter sequences have diverged significantly during evolution. For example, while the
GC-content is typically low for a yeast promoter, it is significantly higher in mammalian
promoters, which often harbor a CpG island. Indeed, computational studies have predicted
human promoters to be encoded for high nucleosome occupancy [62]. One explanation of
this counter-intuitive result is that most human genes are tissue-specific therefore are
silenced by default and overridden by transcriptional regulators in a cell type specific
manner [62]. This view is supported by in vitro nucleosome positioning data, which show no
depletion of nucleosomes at CpG islands [63]. Similar to yeast, the in vitro data do not show
regular phasing. In addition, the CpG islands seem to affect the function of the SWI/SNF
remodeling complexes, which are required for induction of only those genes harboring CpG
island promoters [64].

Histone modification
Investigations of the regulatory mechanisms for histone modification patterns are
complicated by the fact that there are a large number of modifications each having its own
global distributions [65]. Furthermore, genome-wide studies have been limited to those
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histone marks for which high-quality antibodies are available [66]. An important role of the
DNA sequence has been recognized [16], but it is also possible that certain modifications are
regulated mainly through sequence independent mechanisms.

There are three histone marks whose recruiting mechanisms have been systematically
investigated: H3K4me3, H3K27me3, and H3K9me3. While H3K4me3 is an active mark
that is typically present at the transcription start sites of active genes, both H3K27me3 and
H3K9me3 marks are associated with gene silencing. Despite their opposite functions,
H3K4me3 and H3K27me3 colocalize at certain genomic regions called bivalent domains
[67], which play an important role in development by marking genes that are poised for
activation during cell differentiation. The H3K9me3 mark is a typically associated with
heterochromatin but can also be found at certain euchromatic regions.

The genome-wide distribution of H3K4me3 can be predicted with high accuracy from the
DNA sequence in different cell types [31]. There is a high degree of overlap between
H3K4me3 targets and CpG islands [67], which is at least in part due to selective binding of
the Setd1/MLL complex member Cfp1, which is a CXXC domain containing protein, to
non-methylated CpG [68]. Depletion of Cfp1 substantially reduces H3K4me3 recruitment at
the CpG islands. Furthermore, H3K4me3 recruitment in ES cells is also mediated by
interaction between Wdr5, another component in Setd1/MLL complex and Oct4 [69].

While the H3K4me3 distribution is mainly characterized by sharp peaks (<1kb), the
distribution of H3K27me3 is more complex. It not only has peaks at selected promoters but
also spans over broad domains. The global distribution of H3K27me3 highly colocalizes
with PcG complexes, which contain the catalytic unit for H3K27 methylation. The core PcG
complexes are highly evolutionarily conserved. Sequence-based models have been
developed to predict PcG target genes in mammalian ES cells [32, 70], and many of target
genes can be predicted based on the CpG density alone. An intriguing hypothesis is that PcG
complexes target high CpG density regions by default [71]. A direct relationship between
high CpG density and PcG recruitment has been experimentally verified by transgenic
assays [71]. On the other hand, it is likely that the recruitment can be further modulated by
TFs and ncRNAs. Incorporating TF motifs, such as Myc and E2F, in a computational model
can substantially improve the accuracy for PcG target predictions [32, 70].

An important question is what DNA elements are required for PcG recruitment [72, 73], and
this question cannot be simply answered by genome-wide location studies. Such DNA
elements are referred to as Polycomb response elements (PRE). The PREs are well-
characterized in Drosophila, containing binding sites for a number of TFs, such as Pho and
the GAGA factor. Sequence-based computational models can predict PREs locations with
high accuracy [74, 75]. Importantly, in one study the investigators followed up by
experimentally validation using transgenic assays and found that 29 out of 43 predicted
PREs can be experimentally validated [74]. In contrast, only few PREs have been
experimentally identified in mammals [71, 76, 77]. There is growing evidence that the
recruiting mechanism for mammals is fundamentally different; in particular, ncRNAs seem
to play an important role in genome-wide recruitment of PcG complexes [78, 79].

Genome-wide analysis of the H3K9me3 is more difficult compared to the two marks
discussed above, in part due to its strong association with regions which cannot be uniquely
mapped to the reference genome. The distribution over mappable regions is much more
diffusive compared to the two marks discussed above. The prediction accuracy for the
H3K9me3 distribution is also lower [31], suggesting that the role of DNA sequence
information is weaker. However, these observations cannot exclude the possibility that the
DNA sequence still plays an important role at the recruitment step, and once recruited, the
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histone mark spreads along the chromosome in a sequence independent manner. Supporting
this hypothesis, it has been shown that the RNA transcribed from repetitive DNA elements
can promote heterochromatin formation through an RNAi dependent pathway [80, 81].
Deletion of these repetitive elements can abandon both heterochromatin formation and
H3K9me3 recruitment [80]. While these experiments were done in S. pombe, such a
mechanism seems to be conserved among eukaryotes [82]. In mammals, H3K9me3 appears
to be more enriched in satellites than other classes of repetitive sequences [83].

In addition to the three histone marks discussed above, the DNA sequence is likely to play
an important role in regulating chromatin states in a general sense. Recently, computational
models have been developed to identify chromatin states from combinatorial histone
modification patterns [84-87]. One study has investigated the link between chromatin states
and DNA sequence patterns and found that a number of TF motifs are enriched with the
enhancer chromatin state [88]. Furthermore, computational methods have been developed to
predict p300 binding sites from DNA sequence patterns with good accuracy [89].
Interestingly, the role of DNA sequence for regulating the pattern of H3K4me1, a mark for
enhancer regions, seems to be highly cell-type specific, and is strongest in ES cells [90].

DNA methylation
In vertebrate animals, DNA methylation almost exclusively occurs in the context of CpG
dinucleotides [6]. Genome-wide DNA methylation level is highly associated with the CpG
density and can be predicted with high-accuracy [19, 20]. While CpG islands are normally
unmethylated, a subset may become hypermethylated in cancer, which may silence tumor
suppressor genes thereby playing an important role in tumorgenesis [11]. Several groups
have developed algorithms to predict hypermethylated CpG islands with moderate accuracy
despite being statistically significant [19-21, 23]. In addition to CpG density, several TF
motifs, including Sp1, NRF1, and YY1, have also been found to be methylation resistant,
and motifs such as GAGA have been found to be methylation prone [91]. Most of these
motifs are also associated with PcG targets [32, 70], which is not surprising since
hypermethylated genes in cancer significantly overlap with PcG targets in ES cells [92]. In
general, DNA methylation and chromatin state patterns are closely related, but a detailed
discussion is beyond the scope of this review. Also, repetitive sequences, such as the Alu
elements, have been found to be enriched with DNA methylation [19, 93]. In addition, a
motif sequence associated with the G-quadruplex structure has been shown to be associated
with hypomethylation [94]. In this study, the investigators also found that hypomethylated
G-quadruplex sequence motif is enriched at the DNA breakpoints in many cancer types [94],
suggesting a link between epigenetic pattern and genome stability.

With the rapid technological development, recent studies have been able to profile DNA
methylome genome-wide [6, 95-97]. As a result, a more dynamic picture has emerged:
hyper- and hypo-methylation are no longer viewed as isolated events but likely the results of
dynamic boundary shift near CpG island shores [95, 96]. While it is clear that such
transitions are mediated by the CpG density, it will be interesting to investigate whether
there are additional DNA elements that are involved in the regulation.

A causal role of DNA elements in regulating DNA methylation pattern has been recently
experimentally validated by using a transgenic approach [98]. These authors inserted
selected promoter DNA sequences into the beta-globin locus in mouse embryonic stem cells
and measured the DNA methylation level by using bisulfite sequencing. They found that the
DNA methylation pattern at the inserted sites is quite similar to the endogenous sites,
suggesting that the DNA sequence is sufficient for maintenance of DNA methylation
pattern. Furthermore, they found that CpG density alone is not sufficient for maintenance of
DNA methylation pattern, but it also requires combination of TF motifs.
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Insights into recruitment factors
Computational sequence analyses are useful not only to predict regions targeted by a
specific epigenetic factor but also to generate hypotheses regarding the recruiting factors,
which can be validated in the laboratory. Here we briefly discuss the role of three general
classes of recruiting factors.

Transcription factors
Since chromatin regulators often cannot directly bind DNA, it has been long speculated that
their recruitment may be mediated by interactions with TFs. The sequence analysis results
discussed above strongly support this hypothesis. In addition, recent proteomic studies have
identified extensive interactions between TFs and chromatin modifiers [99, 100]. The impact
of TF activities on epigenome organization is probably best illustrated by cell-state
reprogramming. An adult cell can be reprogrammed to an induced pluripotent stem (iPS)
cell by ectopic expression of four TFs: Oct4, Nanog, Klf4, and Myc [101]. The
reprogramming process is accompanied by dramatic epigenetic changes. Most significantly,
the DNA methylation marks at the pluripotent regulators are erased and bivalent domains
are reestablished. All four reprogramming factors interact with chromatin modifiers.
Specifically, Oct4 interacts with the SWI/SNF complex member Wdr5 [69]; Nanog interacts
with the histone deacetylase NuRD and SWI/SNF complex [102], Klf4 can interact with the
histone acetyltransferase p300 [103]; and most strikingly, Myc, can interact with many
chromatin factors such as histone acetylases (GCN5, p300), chromatin-remodeling
complexes, histone deacetylases, and histone demethylases. It remains unclear to what
extent the global epigenetic changes are directly caused by these TF-chromatin interactions.

Computational studies of various epigenomic datasets have suggested that, in general, the
contribution of each individual TF in maintenance of the epigenetic patterns is typically not
significant. For example, for nucleosome positioning, there are at least three TF motifs that
are enriched in nucleosomal sequences: ABF1, REB1, and STB2 [24]. For DNA
methylation, a number of TF motifs such as SP1, NRF1, and YY1, are enriched with
unmethylated regions [91]. However, in both cases the identified motifs alone can only
explain a small fraction of the variation observed in the experimental data.

General factors
A surprising result from computational studies is that the genome-wide association between
DNA sequences and epigenetic patterns is mainly contributed by a few features that are
traditionally viewed as degenerative, whereas the sophisticated models described above
often lead to quantitative but not qualitative improvement. For example, while many
methods have been developed to predict nucleosome positions, it seems that the overall
accuracy is only moderately higher than a simple model using the G+C density as the single
predictor [62]. Similarly, for DNA methylation, the genome-wide pattern is most strongly
correlated with the CpG density, whereas including other features such as TF motifs and
repetitive sequences, only adds moderate prediction power [19-21]. As discussed above, the
CpG density is also strongly associated with histone modifications such as H3K4me3 and
H3K27me3.

Interestingly, eukaryotic cells have developed various mechanisms to recognize these
general features. For nucleosome positioning, the G+C content can directly affect the
nucleosome-DNA binding affinity. For different histone modifications, the sequence signals
seem to be mediated by different factors. The recruitment of H3K4me3 is mediated by the
CXXC domain-containing protein Cfp1 [68], which recognizes unmethylated CpG. The
association between PcG complexes and CpG islands may be mediated by interaction with
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Jarid2 [104-107], which binds DNA with bias toward G+C rich sequences [104]. It has been
proposed that the PcG complexes target CpG islands by default, and this default recruitment
is antagonized by the simultaneous recruitment of activators by specific TF motifs [60].
Furthermore, cross-talk between these machineries is likely to play an important role in
establishing the overall epigenetic pattern. For example, for DNA methylation, the
preference seems to be dictated by interaction with histone modifying complexes such as
G9a and PcG proteins [14, 108].

Noncoding RNA
NcRNAs are an emerging class of potentially important regulators [109, 110]. Two types of
ncRNAs, long noncoding RNAs (lincRNA) and short RNAs, have been implicated in
chromatin recruitment. Many short RNAs are involved in the RNAi pathway, which plays
an important role in heterochromatin formation. An unrelated class of short RNAs have been
found to be transcribed from the 5′ end of PcG target genes [111], and these short RNAs
form a stem-loop structure that is able to physically interact with PRC2. In addition,
thousands of lincRNAs have been detected in mammalian cells [112]. About 20% of these
transcripts can physically interact with PRC2 [113]. While the function of most lincRNAs
remains uncharacterized, a few examples, such as Xist and HOTAIR, have been investigated
intensively. Xist is the major regulator for X-inactivation and able to recruit PcG complexes
to the parent locus, to which it remains tethered [79]. The 5′ end of Xist contains a RepA
domain which can interact with PRC2 [79]. The ability to interact with both PRC2 and DNA
makes Xist act as a linker between them. HOTAIR also physically associates with PRC2
[78], but its target region is located on a different chromosome, and the underlying
mechanism remains unclear.

A major challenge to further investigate the role of ncRNAs is to understand their targeting
mechanism. As discussed above, while some ncRNAs act in cis, others target distant regions
that may be located on a different chromosome. Several intriguing models for trans-action
have been recently proposed [113], including 1) forming a RNA-DNA triplex; 2) serving as
a link by interaction with both chromatin complexes and TFs; 3) inducing specificity of a
chromatin remodeling protein through allosteric modification; and 4) mediating long-range
chromatin interactions.

DNA sequence associated with overall epigenetic variability
While epigenetic patterns are cell type specific, the variability is not uniform across the
genome. A growing body of literature suggests that the genome-wide distribution of
epigenetic variability is closely associated with the underlying DNA sequence. In the
following I briefly review some recent results.

Nucleosome positioning
In yeast, most promoters are associated with NFRs independent of the transcription status.
These promoters are typically TATA-less [36, 47, 114]. In contrast, the nucleosome
positions in the TATA-box containing promoters are dynamic depending on the growth
conditions. Under an inducible condition, nucleosomes can be evicted by SWI/SNF, thereby
making the DNA regulatory elements accessible for TF binding followed by gene activation
[115]. In human and mouse, it has been shown that eviction of nucleosomes containing the
H3K4me2 marks are generally associated with active enhancers [61, 116]. This relationship
is likely to be valid in a wide range of species rather than mammal specific. Interestingly,
the insulator protein CTCF targets DNA sequences with intrinsically high nucleosome
occupancy [25, 117]. Once bound, CTCF displaces neighboring nucleosomes, thereby
creating a regular nucleosome array [117, 118].
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Experimental techniques have also been developed to measure the histone turnover rate
[119, 120]. These investigators labeled ancestral and newly synthesized histones with
different tags and then measured the enrichment ratio of two tags on a genome-scale. They
found that, in cells that are arrested in the G1 stage of the cell-cycle, the histone turnover
rate is higher in promoter regions and chromatin boundary elements [119]. In dividing cells,
the ancestral histones are redistributed as a result of DNA replication. Surprisingly, the
ancestral histones are not reincorporated at the same location but can be displaced within a
window of ~400bp which results in accumulation of ancestral histones at 5′ end of genes
[120].

Histone modification
Changes of the histone modification pattern in promoter regions are directly related to gene
regulation. For both H3K4me3 and H3K27me3, the degree of cell type specific variability is
highly associated with its CpG density. In particular, High CpG promoters (HCP) are highly
associated with H3K4me3, regardless the transcription activities [68, 121]. Dynamic
changes are mostly associated with low CpG promoters (LCP). The variability of
H3K27me3 is also associated with CpG content [32, 70]. During cell differentiation, the loss
of focal peaks is compensated by expansion of large-scale domains. As a result, the overall
occupancy is nearly preserved [9, 122]. In addition to the CpG density, a handful of TF
motifs (such as E2F, ZF5, SP1, and MYC) can also contribute to the overall variability [32].

The overall variability of promoter histone modification patterns is surprisingly low [9, 88,
118]. Many genes that are expressed only in certain cell types are already associated with
open chromatin at the promoter regions. On the other hand, the patterns are much more
dynamic at enhancers, and such variation is highly correlated with gene activities. Enhancers
are often enriched with highly conserved noncoding elements and contain clusters of TF
motif sites [123].

DNA methylation
The variability of DNA methylation is also highly associated with the CpG density. During
normal cell differentiation, dynamic changes are most concentrated on LCPs, while most
HCPs are unmethylated across different cell types [124]. Indeed, the hypermethylated HCPs
also tend to have lower CpG content than the unmethylated ones. Recent studies have shown
that this relationship also holds on the genome-scale [6, 7, 68, 125-127]. Large-scale
aberrant DNA methylation patterns have been long recognized in cancer and may play an
important step toward tumorgenesis [11, 128]. A recent study has identified significant
overlap between regions that are differentially methylated among tumors and those among
different normal tissues, suggesting a developmental origin of these aberrations [126, 129].
Interestingly, these studies have also observed large-scale domains of high variability [6,
95]. While it is unclear how these domains are established, it is possible that certain
sequence features, such as the CTCF motif sites, may play an important role in maintenance
of the boundaries.

Discussions
What has emerged from these studies is a consensus that the overall epigenetic pattern is not
independent of, but closely associated with the genomic sequence (Figure 1). The DNA
sequence seems to play at least three important roles: 1) Generic features, such as the G+C
content and CpG density, may be used to shape the skeleton of the epigenomic patterns, by
facilitating various protein-DNA interactions mostly involving a small set of general factors;
2) Specific features, such as TF motifs, can recruit TFs, ncRNAs, and other factors in a cell
type specific manner, but the immediate impact of each factor may be limited to a specific
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biological pathway or cell type; and 3) the DNA sequence information may also be used
orchestrate the overall epigenetic variability, such that certain regions are more plastic than
others. One likely scenario is that, while the general factors described above may play a
major role in initializing the epigenetic patterns at an early developmental stage, cell type
specific factors, such as TFs and ncRNAs, may play a more important role later on by
mediating the divergence of epigenomic patterns across different cell types.

While I have mainly focused on the DNA sequence, it is important to recognize that this is
only one component of the complex network of diverse interactions that regulates global
epigenetic patterns. For example, once initialized, the epigenetic marks may serve as a
platform that can be used to recruit additional marks, thereby serving as a self-enhancing
feedback loop, which may also lead to significant spatial expansion, resulting large-scale
domains spanning hundreds of kilobases [6, 9, 67, 130]. On the other hand, different
epigenetic marks compete through cross-talk between chromatin readers, effectors, and
erasers, and between these machineries and DNA sequence binding factors [131]. Long-
range chromatin interactions may play an important role in maintenance of domain
boundaries [132]. All in all, the genome-wide epigenetic pattern should not be viewed as a
simple equilibrium but a steady state resulting from the delicate balance of these complex
interactions. An important gap in our current knowledge is how distinct combinatorial
epigenetic patterns are established, which is not clear even for promoter regions [133-135].
We are just beginning to understand this complex network of these interactions (see [13-15]
for more comprehensive reviews). Future investigations will benefit from integration of
diverse data-types [9].

Systems biology studies have shown the expression level of many genes are not precisely
controlled but undergo significant stochastic fluctuation [136]. It has been theorized that
phenotypic diversity is evolutionarily beneficial for robustness against environmental
perturbations [129, 137-139]. It has been increasingly recognized that epigenetic regulation
plays an important role in the maintenance of gene expression diversity. It is very interesting
that the degree of epigenetic variability is associated with certain DNA sequence signatures,
providing a simple mechanism for inheritance. As suggested by several recent studies [139,
140], elucidating the connection between DNA sequence in epigenetic variability will
provide mechanistic insights into the evolutionary history of phenotypic diversity.
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Figure 1.
A model for the role of the genomic sequence in guiding genome-wide epigenetic patterns.
(A) The intrinsic association between an epigenetic mark and a genome locus is sequence-
dependent and can be quantified by a propensity score. (B) An epigenetic mark (represented
by the stars) is constitutively recruited to regions with high propensity scores, mediated by
interaction with general factors (represented by the ovals) that target distinct sequence
features. These features are usually degenerative and are the main determinants of the
propensity scores. On the opposite end, this mark is excluded from regions with low
propensity score. In the middle range, the epigenetic pattern is highly variable among
different cell type. Occupancy can be enhanced or inhibited due to interactions with many
cell type specific factors (represented by other shapes).
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Table 1

A list of common sequence features and known associated recruiting factors.

Sequence Features Binding Factors

CpG CXXC domain containing factors;
transcription factors; core histone;
methylation sensitive binding factors

Poly A:T core histone

TF motifs transcription factors

repetitive elements RNAi machineries

boundary elements insulator proteins; transcription
factors

uncharacterized
sequences

noncoding RNA
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