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Abstract
We hypothesize that normal aging implies neuronal durability, reflected by age-independent
concentrations of their marker - the amino acid derivative N-acetylaspartate (NAA). To test this
we obtained the whole-brain and whole-head NAA concentration (WBNAA and WHNAA), with
proton MR spectroscopy; and the fractional brain parenchyma volume (fBPV) – a metric of
atrophy, by segmenting the MRI from 42 (18 male) healthy young (31.9±5.8 years-old) and 100
(64 male, 72.6±7.3 years-old) cognitively-normal elderly. The 12.8±1.9 mM WBNAA of the
young was not significantly different from the 13.1±3.1 mM in the elderly (p>0.05). In contrast,
both fBPV (87.3±4.7% versus 74.8±4.8%) and WHNAA (11.1±1.7 mM versus 9.8±2.4 mM) were
significantly higher in the young (~14%, p<.0001 for both). The similarity in mean WBNAA
between two cohorts 4 decades of normal aging apart suggests that neuronal integrity is
maintained across the lifespan. Clinically, WBNAA could be used as a marker for normal (hence,
also abnormal) brain aging. In contrast, WHNAA and fBPV seem age-related suggesting that
brain atrophy may occur without compromising the remaining tissue.

Keywords
Aging; Brain volumetry; Elderly; Healthy human brain; MRI; N-acetylaspartate (NAA); Proton
MR Spectroscopy; Whole-brain

1. Introduction
The estimated 40 million Americans currently 65 or older comprise the fastest growing
segment of the US population; expected to increase to 70 million by 2030 (Hoyert et al.,
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2005). They will also live longer, given that the average life expectancy at birth increased
from 65.6 years for men and 71.4 for women in 1950, to 74.8 and 80.1 in 2003 (Hoyert et
al., 2005). This demographic is susceptible to several chronic neurological disorders, e.g., 5
– 40% to Alzheimer’s and 0.5% to Parkinson's Diseases (Hebert et al., 2003; NIH, 2000)
and 3 – 6% to a spectrum of vascular dementias (Bowler, 2005). Brain imaging in up to 50%
of them also reveals white matter (WM) hyperintensities reflecting ischemic damage (Meyer
et al., 1992); microbleeds in about 25% (Vernooij et al., 2008); and lacunar and silent
infarcts in approximately 9% (Vernooij et al., 2008) and 15% (Das et al., 2008). The size of
this population underscores a need for markers and metrics of normal aging in order to
facilitate early detection when preemptive treatment may be most effective and to
monitoring its progress.

Among the candidate markers of neuronal health none so far has yielded more diagnostic
information than the amino-acid derivative N-acetyl-L-aspartate (NAA) (Baslow, 2003;
Benarroch, 2008). Even though its exact role(s) are still unknown (Moffett et al., 2007),
since in the mature brain NAA is almost exclusive to neurons and their processes (Baslow,
2003), it is considered a putative marker of their integrity (Benarroch, 2008). Yielding the
most intense peak in non-invasive proton MR spectroscopy (1H-MRS), regional (or global)
NAA concentration declines have been shown in disorders of the central nervous system
e.g., in multiple sclerosis, HIV, cancer, brain trauma and Alzheimer’s disease (Mountford et
al., 2010; Schuff et al., 2006).

Unfortunately, most studies employ either single-voxel or 2D multi-voxel 1H-MRS that
cover relatively small (0.1–10%) fractions of the brain. Their volumes-of-interest (VOI),
therefore, must be image-guided, introducing two implicit assumptions that: i) metabolic
changes occur only at MRI-visible abnormalities; and ii) for diffuse disorders these small
VOIs represent the entire brain (De Stefano et al., 2002). In addition, these methods also
require: iii) long acquisition time to yield sufficient sensitivity; iv) VOIs placed distal to the
skull in order to prevent contamination with lipids signals from the bone marrow and
subcutaneous adipose tissue, thereby missing most of the cortex; and v) knowledge of the T1
and T2 relaxation times (that are often unknown, especially in pathologies) for absolute
quantification. These may explain the conflicting reports of NAA in healthy aging, showing
both decreasing (Charles et al., 1994; Christiansen et al., 1993; Fukuzako et al., 1997; Lim
and Spielman, 1997) and stable levels (Chang et al., 1996; Meyerhoff et al., 1994; Saunders
et al., 1999; Soher et al., 1996).

All these issues can be addressed by obtaining the global NAA signal from the entire brain.
In this study we used non-localizing 1H-MRS (Gonen et al., 1998) to compare the whole-
brain NAA concentration (WBNAA) in healthy young (under 45 years old) and cognitively
normal elderly (60 years and older) in order to test the hypothesis that the hallmark of
normal brain aging is neuronal health and density preservation, reflected by unchanged
NAA concentration.

2. Methods
2.1. Human subjects

Forty-two young: 18 men, 24 women, 20 – 44 (31.9±5.8) years old; and 118 cognitively
normal elderly: 74 men, 44 women, 58 – 89 (72.3±7.7) years old, were prospectively
enrolled. “Healthy” in the young was established based on a questionnaire to exclude 20
medical and neurological conditions before the scan and an “unremarkable” MRI
afterwards. In the elderly major depression was ruled out by an interview assessing the
criteria according to the International Statistical Classification of Diseases and Related
Health Problems, 10th Revision (ICD-10) (WHO, 1992). Cognitive abilities were assessed
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with a comprehensive neuropsychological assessment, including the Mini Mental State
Examination [MMSE (Folstein et al., 1983)], the California Verbal Learning Test (Delis et
al., 1987), the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD)-
Neuropsychological Assessment Battery (Morris et al., 1989); the Rey-Osterrieth Complex
Figure (Schreiber et al., 1999), Digit Span and Corsi Blocks (Wechsler, 1987), a
computerized test of attention (Zimmermann and Fimm, 1992), the Stroop Color-Word
Interference Test, (Perret, 1974), the Trail Making Test, part A & B (Army, 1944), a
phonemic fluency test (S-words) (Thurstone, 1938), the Clock Drawing Test (Thalmann et
al., 2002), and the Five-Point Test for measuring design fluency (Regard et al., 1982). To
confirm subjects’ preserved cognitive status in daily activities a knowledgeable informant
was questioned using the 16- item version of the modified Informant Questionnaire on
Cognitive Decline in the Elderly (IQ-CODE) (Ehrensperger et al., 2010). For inclusion in
the study, subjects’ demographically adjusted standard scores had to be within normal
limits. In addition, all elderly subjects were visually rated for vascular WM lesions using the
Wahlund (0 – 15) scores (Wahlund et al., 2001). Few of the elderly participants were taking
medications that could potentially influence NAA levels: Two were on stable small doses of
antidepressants: one was taking citalopram 10 mg, the other trimipramine 25 mg for sleep
problems. Four others were taking benzodiazepines for sleep problems on “as need basis.”
None was taking cognition enhancing drugs, although herbal preparations and vitamins were
allowed. Given the frequency and dosage of the aforementioned drugs and small number of
patients taking them, we do not believe that they could bias or alter our results. The study
was approved by the Institutional Review Boards of both the New York University School
of Medicine and University Hospital Basel and all participants gave written informed
consent.

2.2. MRI
All experiments were done in a 3 T head-only MR scanner (Allegra, Siemens AG, Erlangen,
Germany) using its circularly-polarized transmit-receive head-coil. After placing a subject
into the scanner, its magnetic field homogeneity was adjusted over the head using our proton
chemical shift imaging automatic shim procedure, for a consistent 27±4 Hz water linewidth
in under 5 minutes (Hu et al., 1995). For brain segmentation we acquired sagittal T1-
weighted Magnetization Prepared RApid Gradient Echo (MP-RAGE) MRI: TE/TR/TI:
3.5/2150/1000 ms, 7° flip angle, 144 slices 1.1 mm thick, 256×224 matrix and 256×256
mm2 field-of-view (FOV). For vascular WM lesion scoring in the elderly we also obtained
FLuid Attenuated by Inversion Recovery (FLAIR) T2- and proton density-weighted MRI:
TE/TI/TR=103/2300/9000 ms; same FOV, 384×384 matrix, 28 slices 5 mm thick, aligned
with the inferior border of the corpus callosum. The proton-density FLAIR used the same
parameters except for TE/TR=37/2700 ms.

WM hyperintensive lesions were scored (only in the elderly, since in the young presence of
such lesions would constitute an exclusion) according to Wahlund et al. (Wahlund et al.,
2001). Specifically, they were rated from 0 – 3 in each of the following five regions: frontal,
temporal, parieto-occipital, infratentorial and basal ganglia for a total vascular lesion score
range of 0 – 15.

2.2.1 Brain parenchyma volume - VB—Subjects’ brain parenchyma volume, VB, was
segmented semi-automatically from the MP-RAGE images using our FireVoxel package
(Mikheev et al., 2008). The process starts by placing a seed region in periventricular WM to
obtain its average signal intensity, IWM. Following selection of all pixels at or above 0.55
(but below 135% to exclude fat) of IWM, a brain mask is formed for each slice in three steps:
(i) morphological erosion; (ii) recursive region growth retaining pixels connected to the
seed; (iii) morphological inflation to reverse the effect of erosion. Pixels of intensity below
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0.55 of IWM were defined as cerebrospinal fluid (CSF). The masks were truncated at the
foramen magnum to include the brain stem and cerebellum but not the cord (Fig. 1). The
masks are each visually inspected to ensure proper inclusion of brain and exclusion of “non
brain,” e.g., skull, air-spaces and dura. Finally, VB is the pixel volume × their number in the
masks. The precision of this approach was recently established at 3.4% (Mikheev et al.,
2008).

2.2.2 Intracranial volume - VIC—Intracranial volumes, VIC, were obtained semi-
automatically from the MP-RAGE images using MRIcro, a free downloadable software
package: http://www.mricro.com (Rorden and Brett, 2000). It employs the brain extraction
tool to skull-strip the intracranial surface using a deformable model (Smith, 2002). The
process estimates the threshold between the brain and CSF, determines the head’s center of
gravity C, constructs a small tessellated surface F (initially a sphere) centered at C and
incrementally adjusts the vertices of F to balance its smoothness and the desired signal
intensity criteria. A volume-of-interest masking the extracted brain (Fig. 1) was then used to
calculate the intracranial volume, VIC. These brain masks are also each visually inspected to
ensure complete skull stripping and proper inclusion of all intracranial volume. The
fractional brain parenchyma volume, fBPV (in %), was the defined as VB /VIC × 100.

2.2.3 MR spectroscopy - global NAA quantification—The global amount of brain
NAA, QNAA, was obtained with a non-localizing. TE/TI/TR=0/940/104 ms 1H-MRS
sequence (Gonen et al., 1998), that relies on the implicit localization of the NAA by its
biochemistry to neurons, i.e., to just the brain (Gonen et al., 1998). Its long, TR≫T1 and
short TE≈0 ensure insensitivity to possible T1 and T2 variations , that are typically
unknown, especially in the elderly (Hovener et al., 2008).

Absolute quantification was done against a reference 3 L sphere of 1.5×10−2 mole NAA in
water. Subject and reference NAA peak areas, SS and SR, were obtained by manual phasing
and selection of the NAA peak limits of integration (Fig. 1) by four blinded operators. A
result more than two standard deviations (average for the four readers’ over all the subjects,
~8%) from the mean for that patient, was rejected. If more than one was rejected the set was

excluded. The results were then averaged into  and  and QNAA estimated as (Gonen et
al., 1998),

[1]

where  are the transmitter voltages for non-selective 1 ms 180° inversion
pulses on the reference and subject, reflecting relative coil sensitivity.

It is noteworthy that although other metabolites, e.g., macromolecules and other N-acetyl
bearing species also resonate about 2.01 ppm, their contribution to the peak area is estimated
at less than 10% (Baslow, 2003). Furthermore, although several other metabolites are also
visible in the whole-head spectrum (see Fig. 1A”), since the sequence is non-localizing, only
the NAA is implicitly localized to just the brain.

To normalize for differences in brain size among subjects, QNAA was divided by the brain
parenchyma volume, VB, to yield the whole-brain NAA concentration:

[2]
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a specific, brain size-independent metric. Its inter- and intra-subject variability in younger
healthy individuals has been shown at better than ±8% (Benedetti et al., 2007).

The whole head NAA (WHNAA) concentration, a marker of NAA atrophy since unlike the
brain, the intracranial cavity volume does not change throughout adult life, was estimated as,

[3]

which is sensitive to the fBPV as well as the NAA concentration in the remaining tissue.

2.3. Statistical analyses
Analysis of covariance (ANCOVA) was used to compare the two groups in terms of the
mean of each measure (fBPV, WBNAA, and WHNAA) adjusting for gender. The groups
(young, elderly) are characterized in terms of each measure as the mean ± standard
deviation. Between-group percentage difference was computed relative to the mean of the
young. In the elderly, the relationships between the WBNAA, WHNAA, fBPV and total
vascular lesion score were examined using Spearman correlation coefficients. Relationships
between cognitive tests and brain metric were checked with Spearman correlation
coefficient.

3. Results
Eighteen of the 118 elderly subjects’ data sets had to be excluded from the analysis due to
data quality criteria described above but none from the young. The mean ± standard
deviation of their fBPV, WBNAA and WHNAA defined by age and gender are given in
Table 1. The WBNAA concentration of the young was not significantly different from the
elderly (p>0.05), as shown in Table 2 and Fig. 2A. Their difference was only 2.6% on
average and the 95% confidence interval implies it is no greater than 10%, supporting our
hypothesis that the two groups are bioequivalent in terms of their WBNAA. Gender
accounted for less than 1% of the variation in WBNAA both with and without accounting
for the association of age with WBNAA.

The mean WHNAA in the young, however, was significantly higher (13%, p=3×10−4) than
in the elderly, as shown in Table 2 and Fig. 2B. fBPV in the young were also significantly
higher (14%, p<10−4) than in the elderly, as shown in Fig. 2C.

Although the mean WBNAA concentrations between the two age groups were not
statistically different, its variance was significantly (±1.2 mM, 61%, p<10−4) greater in
elderly than in young, as shown in Fig. 2A. Similarly, the elderly WHNAA distribution was
significantly (±0.7 mM, 38%) broader (p=3×10−4). No significant difference was found
between the fBPV distributions of the young and elderly. The median WM MRI
hyperintensities lesion score was 3 (interquartile range 2) in our elderly cohort. Its minimum
value was 0, and the maximum 8 out of a possible 15. There was no significant correlation
between the total vascular lesion score and WBNAA (R=−0.03, p=0.8), WHNAA (R=−0.05,
p=0.7), or fBPV (R=−0.04, p=0.7). Consequently, total vascular lesion score was not
included as a covariate into the ANCOVA. No correlations were found between
neuropsychological measures and NAA metrics.

4. Discussion
An unequivocal connection between NAA deficit and axonal injury/loss has been
established by immunopathology and immunocytochemistry on post mortem spinal cord
samples from chronic multiple sclerosis (MS) patients and matched deceased controls,
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showing that the former had lower axonal density and proportionally lower NAA than the
latter as well as lower NAA/axonal-volume in demyelinated axons and myelinated axons of
normal-appearing white matter (Bjartmar et al., 2000). Two previous studies have also
shown that axonal loss in acute and chronic cerebral MS lesions correlated with NAA
reduction (Bitsch et al., 1999; Trapp et al., 1998). In addition, WBNAA reduction has also
been reported in elderly subjects with suspected Alzheimer’s disease (AD), a condition
known to target and destroy neurons (Gomez-Isla et al., 1997; Price et al., 2001), compared
with their cognitively normal contemporaries (Falini et al., 2005). Given this established
NAA – neuron connection, our WBNAA observation in two relatively large cohorts, is
consistent with the hypothesis that normal aging is characterized by the preservation of
neuronal health and density in the intact brain parenchyma from adolescence throughout old
age.

It is important to note that this absence of difference between the young and cognitively
normal elderly does not represent a lack of sensitivity of the WBNAA method. Specifically,
given that significant WBNAA differences between mild cognitively impaired individuals
and their matched controls have already been reported in much smaller cohorts (Falini et al.,
2005), our finding of no WBNAA difference between large cohorts of young and
cognitively intact elderly, is consistent with the premise that such changes with normal
aging are smaller than encountered even in early dementia. This premise is also supported
by a post mortem studies of cognitively normal deceased elderly that show no significant
changes in neuronal density between the sixth and ninth decade (Gomez-Isla et al., 1997;
Price et al., 2001).

The similar declines in tissue volume (fBPV; ~13%) and in whole-head NAA (WHNAA;
~14%) are consistent with our hypothesis that NAA loss results almost exclusively from
physiological brain atrophy during aging and that its concentration in the remaining intact
parenchyma (reflected by WBNAA) remains unchanged. These (interrelated) fBPV and
WHNAA declines coincide with the main hypothesis, given that the intra-cranial volume,
VIC, does not change throughout life whereas the global NAA amount, QNAA, and brain-
parenchymal volume (VB) both do, apparently by equal amount. Furthermore, the ~13%
fBPV difference between the cohorts corresponds to a mean annual atrophy rate of 0.33%,
consistent with 0.32% reported in a recent longitudinal whole-brain volumetric study and
cross-sectional data showing a steady 0.33% decline from the fourth through the seventh
decades (Scahill et al., 2003).

It is noteworthy that although the means of the WBNAA distributions of the two cohorts are
within 3%, the variance for both, WBNAA and WHNAA is ~60% larger in the elderly (Fig.
2). This may be due to age-associated changes, e.g., axonal thinning (or loss) as well as
brain water content decline (Chang et al., 1996). Indeed, stereological analyses have shown
total myelinated fiber length decreases of up to 45% in the white matter of elderly compared
with the young (Marner et al., 2003; Tang et al., 1997). Both age-associated changes in fiber
length and decline in water content may lower brain volume in elderly while their neurons
are preserved, leading to higher packing (density) reflected by increased WBNAA levels in
some elderly and to the variance in their cohort’s upper WBNAA scores. On the other
(lower) extreme of the WBNAA distribution, subclinical pathology such as periventricular
WM MRI hyperintensities may decrease the NAA in some elderly; likely the ones with
cerebrovascular risk factors. Yet that assumption was not confirmed in our study. The
overall WM hyperintensity lesion burden in our normal elderly cohort, which was
(expectedly) low: median score of 3 from a range of 0 – 15, did not correlate with WBNAA.
Some other subclinical abnormalities that are T1 and FLAIR MRI-occult could, therefore, be
responsible for the observed increased WBNAA variance. It is noteworthy that due to its
long TR and very-short TE the WBNAA sequence is insensitive to (possible) changes in T1
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or T2 relaxation times that may occur with aging and that could otherwise affect other, echo-
based, 1H-MRS methods (Kirov et al., 2008; Rigotti et al., 2007).

Finally, we did not find significant relationships between the neuropsychological measures
in these normal elderly and their NAA metrics. We believe that this can be attributed to the
ordinal nature of the scores of most of these tests and the fact that our subjects all had
normal cognition. Consequently, the range of their tests scores was both (i) narrow, and (ii)
congested at the top of the full range of the possible scores for these tests. The relationships
we did find disappeared upon a correction for multiple comparisons that is necessary given
the number tests conducted.

We investigated two rather large groups of individuals in order to obtain statistically robust
data and to compensate for inherent methodological measurement noise: First, the 6–8%
sensitivity of WBNAA that precludes detection of smaller changes, e.g., early, focal or
regional pathology (Benedetti et al., 2007). Non-localizing, WBNAA and WHNAA
therefore yield no information on potential regional variability (such as between gray and
white matter) or whether the larger variances of the global NAA in the elderly represent
specific regional or global phenomena (e.g. individual differences between gray than white
matter atrophy). Finally, this is a cross-sectional study with consequent inter-individual
variations. Although a longitudinal study would yield more precise information on normal
individual variations, in the manner of one that was done in healthy young subjects [showing
WBNAA to be stable over 4 years (Rigotti et al., 2007)], none to our knowledge has been
undertaken so far in cognitively intact elderly.

5. Conclusions
In conclusion, we found no significant difference in the global tissue concentration of the
MR marker of neuronal integrity, between young adults and the elderly. When accounting
for normal (age appropriate) brain atrophy, the decrease of NAA and brain parenchyma in
aging are closely related, indicating that the concentration of NAA (and presumably of the
numbers and integrity of the neuronal cells this metabolite reflects) in the remaining brain
tissue of the elderly is similar to that metric in much younger subjects. These results
characterize for the first time the WBNAA and WHNAA metrics associated with healthy
brain aging to provide a baseline for future normative studies as well as a surrogate non-
invasive instrumental marker for normal versus pathological aging.
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Fig. 1.
Left: Sample T1-weighted MP-RAGE images from 41 (A) and 86 (B) year old males
overlaid with their brain parenchyma masks (red). Note the mask correspondence with the
underlying anatomy and, for the elderly brain, the relative atrophy incurred in 4 decades of
normal aging.
Center, A’, B’: Intracranial volume segmentation of A and B with MRIcro.
Right, A’’, B”: Whole-head 1H-MRS spectra from these subjects (not normalized for VB).
Note the NAA peak at 2 ppm, effective lipids suppression performance and that of the other
metabolites peaks [most notably the glutamate (Glu), creatine (Cr) and choline (Cho)] only
NAA is implicitly localized by its biochemistry to just the brain. Subject NAA peak area, SS
(cross-hatched), for Eq. [1] was obtained by integration.
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Fig. 2.
Box plots showing the first, second (median) and third quartiles (box) and ±95% (whiskers)
and outliers (*) of the WBNAA (top, A), WHNAA (center, B) and fBPV (bottom, C)
distributions in healthy young and elderly. Note the WBNAA similar medians as opposed to
the significantly lower WHNAA and fBPV in elderly (denoted by the arrows).
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Table 1

Mean ± standard deviation of each metric within each subject group defined by age (Elderly versus Young)
and gender.

Metric

Female Male

Elderly (n=36) Young (n=24) Elderly (n=64) Young (n=18)

fBPV (%) 76.9±3.6 87.4±4.0 73.6±4.9 87.3±5.6

WBNAA (mM) 13.3±3.2 12.7±1.3 13.0±3.0 12.9±2.5

WHNAA (mM) 10.2±2.4 11.1±1.2 9.6±2.4 11.2±2.3
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Table 2

Estimate ± standard error of the mean estimate of each metric adjusted for gender among subjects in each age
group.

Metric
Elderly Young p*, a 95% CI: as % of

Control Meanb

fBPV (%) 75.1±0.5 87.2±0.8 <0.0001 −15.87% to −11.83%

WBNAA (mM) 13.1±0.3 12.8±0.3 0.4405 −4.15% to 9.47%

WHNAA (mM) 9.8±0.2 11.1±0.3 0.0008 −18.02% to −4.86%

*
Significance level set at p<0.001 and is indicated in bold.

a
Each p value is from analysis of covariance (ANCOVA) to compare age groups in terms of the mean of each measure adjusted for gender.

b
95% confidence interval (CI) is provided for the mean difference between age groups in terms of each measure adjusted for gender. The limits of

the intervals are expressed as a percentage of the gender-adjusted mean for the young subjects.
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