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Self-Organized Cell Motility from Motor-Filament Interactions
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ABSTRACT Cell motility is driven primarily by the dynamics of the cell cytoskeleton, a system of filamentous proteins and
molecular motors. It has been proposed that cell motility is a self-organized process, that is, local short-range interactions deter-
mine much of the dynamics that are required for the whole-cell organization that leads to polarization and directional motion.
Here we present a mesoscopic mean-field description of filaments, motors, and cell boundaries. This description gives rise
to a dynamical system that exhibits multiple self-organized states. We discuss several qualitative aspects of the asymptotic
states and compare them with those of living cells.
INTRODUCTION
Cell migration is critical for many biological processes,
including immune response, wound-healing, and embryonic
development. Migration depends on the cytoskeleton, a
dynamic network of filamentous proteins and molecular
motors that provide the mechanical integrity and active
force required for cell movement (1). The bulk of the cyto-
skeleton is composed of actin filaments. These filaments are
assembled from asymmetric actin monomers that are
oriented the same way, defining an orientation for the entire
filament. Typically, one end of an actin filament (the barbed
end) polymerizes, and the other (the pointed end) depoly-
merizes, leading to effective translation of the filament in
a process known as treadmilling. Another major component
of the cytoskeleton is myosin, a motor protein that binds to
actin filaments. Upon hydrolysis of ATP, myosin changes its
conformation, such that complexes of myosin can move
actin filaments with respect to each other (2).

Investigators have found experimentally that actin
polymerizes at the leading edge of the cell. This is the gener-
ally accepted mechanism for protrusion and advancement
of the cell’s front edge (3). Additionally, it was shown that
myosin is important for cell polarization and motility
(4–6). It was proposed that myosin-mediated contractility
of actin is responsible for retraction of the trailing edge of
the cell (7,8).

It is increasingly recognized that cell motility can be
a self-organized process, in that the large-scale patterns of
cytoskeletal structure, including a cell’s ability to polarize
globally, may arise from simple, local interactions of molec-
ular constituents (9–12). For example, it was observed that
fragments from a single fish keratocyte can move persis-
tently, assuming the shape of an entire, intact keratocyte
cell, which suggests that cell motion is not directed by a
single ‘‘organizing center’’ (13). How local interactions
give rise to cell polarization and motility is poorly under-
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stood. Although experiments have been essential in deter-
mining the cytoskeletal components and interactions
involved in cell movement, physical models may be more
useful for exploring the minimal requirements for self-
organized motility.

Several models of cell motility have been developed. In
some of these models, cell polarity is externally imposed
and does not arise naturally from small-scale mesoscopic
interactions. Although these models have biological rele-
vance (e.g., in describing cells moving toward a chemical
attractant), they do not address the requirements for self-
organized motility (14–18). In other models, cell polarity
arises naturally (e.g., from instabilities in the dynamics of
signaling networks that regulate actin polymerization (19),
or in the mechanical interactions of membranes and cyto-
skeletal constituents (20–22)). However, these models do
not explicitly describe the dynamics of molecular motor
redistribution during the course of polarization. Thus, the
corresponding model predictions may not easily be com-
pared with relevant experimental data on the cytoskeletal
dynamics that accompany cell polarization. A recent model
of cell motility (23) explicitly accounted for the dynamics of
molecular motors, but other aspects of the description were
largely phenomenological. In particular, boundary condi-
tions at the cell edge did not explicitly follow from a micro-
scopic description of the dynamics of the cytoskeletal
filaments. Mesoscopic descriptions exploring self-organized
behaviors in purified actomyosin networks have been pub-
lished, but it is unclear how these descriptions apply to cells
(24–26). In this work, we extend the mesoscopic mean-field
models of actomyosin networks by coupling these networks
to membranes, and explore the emergent behaviors of such
systems.
MATERIALS AND METHODS

We describe a system of polar treadmilling filaments, motor proteins, and

a movable, closed boundary. The filaments and motors are confined to

the region inside the boundary; we term this region the ‘‘cell’’ (Fig. 1).
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FIGURE 1 Cartoon of molecular processes described by our model.

Polar filaments oriented along q add subunits at one end and subtract

subunits from the other end in the process of treadmilling. Consequently,

the filaments push against the membrane, exerting force Fmem on it while

experiencing the opposite force from the membrane. Motors attached to

filaments generate force dipoles applied to filament pairs.
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Filaments and motor proteins are described by their respective densities

c and m. The dynamics of these densities are determined by the continuity

equations

vtcðr; q; tÞ ¼ DV2c� V$J þ nðrÞ � ndc;
vtmðr; tÞ ¼ DmV

2m� V$Jm:
(1)

Here cðr; q; tÞ is the density of filaments with center of mass r, oriented

along q, and m is the density of molecular motors. Filaments are assumed

to nucleate at a constant rate n0 only within the boundary, denoted by the

function nðrÞ, and degrade at a constant rate nd . D and Dm are diffusion

coefficients that capture the effect of random fluctuations. The filament

current J consists of three contributions:

J ¼ jt þ ja þ jB; (2)

where jt describes treadmilling dynamics, ja describes molecular-motor-

mediated filament interactions, and jB captures the effects of confining

boundaries as specified below. For simplicity, we assume all filaments to

be of length ‘. This is justified provided that a newly nucleated filament

reaches some terminal length on a timescale much shorter than the time-

scale of the evolution of the density fields (27). Subsequently, subunits

are added at the growing end of the filament at the same rate as they are

removed from the shrinking end, leading to translation of the filament

with effective speed y; thus

jtðr; qÞ ¼ ybuc; (3)

where bu ¼ ðcosq; sinqÞ is a unit vector along q. The active current ja
captures the effects of motor mediated interfilament interactions (28,29).

Explicitly,

jaðr; qÞ ¼
Z

dr0dq0aðq; q0Þfðr0 � rÞ� ðmoðr0; q0Þcðr; qÞ
þ cðr0; q0Þmoðr; qÞÞ:

(4)

Here moðr; qÞ is the density of motors bound to filaments with center of

mass r and orientation q. It is assumed that locally, motors switch quickly

enough among filaments such that the distribution of motors bound

to filaments of different orientations will always be at equilibrium and
therefore proportional to the angular filament density distribution:

moðr; qÞ ¼ mðrÞcðr; qÞ= R dq0cðr; q0Þ. This assumption is valid provided

that motors do not travel very far after unbinding from a filament and before

rebinding to another. The function aðq; q0Þfðr0 � rÞ is the velocity of a fila-

ment at r0 due to interactions, via a motor, with a filament at r. Here,

a ¼ ah, where a is interpreted as the strength with which myosin pulls

on a pair of filaments, and h is the effective filament mobility. In experi-

mental systems, changes in a could correspond to any changes in myosin

activity, for example, due to the phosphorylation state of myosin. The pro-

portionality between the velocity of a filament and the active force applied

to it is derived from force balance equations applied to a single filament in

the low Reynolds number limit, in which active forces are exactly canceled

by viscous forces from the ambient fluid. The expressions for the currents of

the density fields follow from the equations of motion for single filaments

using a mean-field approximation; overall force balance is therefore natu-

rally satisfied. For center-of-mass attractive interactions between filaments,

we put

f ðr0 � rÞ ¼ r0 � r

jr0 � rjQð‘� jr0 � rjÞ; (5)

where filament length ‘ serves as a cutoff for the range of attractive inter-

actions, and Q is the Heaviside function. This choice of f naturally ensures

that the total active force in the system is zero. The parameter aðq; q0Þ
encodes the magnitude of the interaction between a motor-filament pair

and has units of velocity. The local velocity of filaments resulting from in-

terfilament attractive forces is fhðja þ jBÞ=c. Motors are assumed to move

with the filaments to which they are attached. Thus the velocity of a motor

at a point is given by the average filament velocity at that point:

JmðrÞ ¼ mðrÞ
R
dqfðr; qÞcðr; qÞR

dq cðr; qÞ : (6)

Filaments are confined to an evolving domain whose boundary G evolves

according to

_G ¼ zf ; (7)

where z denotes an effective mobility determined by the Stokesian

drag from the ambient fluid. The force density on the boundary

f ¼ �dðF þ F IÞ=dG is determined from the Helfrich free energy

F ¼ sLþ k
R
dGH2 þ PðA� A0Þ2 and from the filament-boundary inter-

action term F I ¼
R
dr dq cðr; qÞVðG; rÞ, where s is surface tension, k is

the bending modulus, L is the length of G, H is the local mean curvature,

A is the area of the domain constrained to remain approximately equal to

A0 for large values of P, and the function V describes a repulsive potential

between filaments and G (30). According to Newton’s third law, the

boundary and filaments exert equal and opposite forces on each other, hence

jB ¼ �hVrVðG; rÞcðr; qÞ: (8)

We explicitly show that the above expression for filament-boundary in-

teractions conforms to force balance in Appendix A.

Note that this description of the boundary neglects nonlocal hydrody-

namic interactions. This simplifying assumption is admissible when the

motion of the membrane in the vicinity of a substrate surface, where adhe-

sive, friction-like forces are dominant, is being described (20,31). Details of

the boundary-filament interactions are provided in Appendix A. Further

comments on model assumptions and boundary treatments are included

in the Supporting Material. Equations 1–8 fully specify the time evolution

of the system. Of importance, Eqs. 1–8 conform to local force balance. In

particular, filament-substrate interactions are captured by an effective fric-

tion, such that the force on a filament from the substrate cancels the force on

the substrate due to that filament. Likewise, the total force on a filament pair
Biophysical Journal 102(8) 1738–1745
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due to motors, as well as the sum of forces acting between filaments and the

boundary, vanishes.
RESULTS AND DISCUSSION

Analysis of the two-dimensional model

In this section, we present numerical solutions to Eqs. 1–8.
The details of the integration scheme are outlined in
Appendix B. We find that the system exhibits two asymp-
totic states. In the stationary state, the boundaries and
density profiles remain constant over time. The total fila-
ment density is rotationally symmetric and relatively flat
throughout the cell, although with some accumulation
near the boundaries. This accumulation is due to the arrest
of filament treadmilling by the confining boundary poten-
tial. The motor densities are slightly elevated at the center,
but fairly evenly distributed throughout the cell. In the
moving state, boundaries and density profiles translate at a
constant velocity (Fig. 2). The cell lacks rotational sym-
metry, but has reflection symmetry about an axis parallel
to its direction of translation. In this case, motor and fila-
ment densities are peaked at the back of the cell. At the front
of moving cells, the motor density is vanishingly small,
whereas the filament distribution is flat, with accumulation
near the boundaries, again due to treadmilling. Filament
velocities are shown in Fig. 2 b; forward filament velocities
are larger at the back of the cell due to the presence of
motors.

Aggregation of motors is essential for the cell to commit
to an asymmetric, moving state. Orientation-independent
filament nucleation and degradation result in equal popula-
tions of filaments treadmilling in each direction. In the
absence of motors, this drives the cell into a symmetric,
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FIGURE 2 Moving-state solution to Eqs. 1–8. The cell moves to the

left. The boundary is indicated by the green solid line. Parameters:

D ¼ Dm ¼ 0:1‘2nd ; a ¼ 2:5‘nd ; y ¼ 1‘nd ; h ¼ 0:02z; s ¼ 15nd‘=z; k ¼
94nd‘

3=z; P ¼ 200nd=z and A0 ¼ 20‘2. As noted in Appendix B and the

Supporting Material, we choose nondimensional scaling such that nd ¼ 1,

‘ ¼ 1, and z ¼ 1. (a) The average density of filaments is represented by

the heat map. The average polarization of filaments is indicated by arrows.

(b) Average local velocity fields of filaments. Filament velocities are larger

at the back of the cell due to the presence of motors. (Color online.)
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stationary state. When interfilament interactions are weak,
motors are diffuse, and local attractive forces are approxi-
mately uniform throughout the cell; therefore, they are not
enough to destabilize the stationary state. However, when
interfilament interactions are too large to be counteracted
by treadmilling and turnover, motors and filaments become
aggregated. If the initial filament and motor distributions are
not exactly radially symmetric, this heterogeneity exerts an
asymmetric force on the surrounding boundary, leading to
an asymmetric state of the cell.

The system’s transition between stationary and moving
states is presented in a phase diagram (Fig. 3 a), determined
as a function of the treadmilling speed y and the interaction
strength a, taken to be isotropic for simplicity. Below some
critical value of a, moving states of the cell do not exist.
Above some other critical value of a, only moving states
exist. Between these two critical values, solutions to the
system are bistable between moving and stationary states.
Treadmilling appears to counteract the effects of attractive
interactions in that larger values of a are needed for moving
states to emerge when y is increased. An intuitive explana-
tion for this phenomenon is as follows: When treadmilling
speed increases, filaments of different orientations move
away from each other; to aggregate them, the attractive
interaction must also be increased. For very large values
of a and y, the back and front of the cell collapse together
due to the strengths of the interactions, and the cell stops
moving (upper right corner of Fig. 3 a).

In the preceding analysis we examined whether the cell
could move in different parameter regimes, but it is also
interesting to examine resulting cell velocities and shapes
as functions of the parameters. Fig. 3, b and c, indicate
cell velocities and aspect ratios in parameter regimes where
the cell exhibits a moving state, again, as functions of the
treadmilling velocity y and the strength of interfilament
attraction a. We define the cell aspect ratio as the length
of the cell measured perpendicular to its velocity divided
by that parallel to its velocity; as cells go from round to cres-
cent shaped, this number increases from one. The results
show that cell velocities are greatest for intermediate values
of y and large values of a. In addition, cell aspect ratios are
large (i.e., the cells are most elongated) for a neighboring
regime of values. Although the maximum of cell aspect
ratios does not exactly coincide with the maximum of cell
speeds, the trend indicates that larger cell aspect ratios
correlates with larger cell velocities in most regions of
parameter space. Cells collapse when their aspect ratios
surpass a critical value.

Because h represents the mobility of filaments in our
system, 1=h is the parameter that corresponds most closely
to the adhesion strength between the filaments and the
substrate. Thus, it is interesting to examine the cell velocity
and aspect ratio also as a function of 1=h (Fig. 3, d and e).
Cell velocities are largest for small values of 1=h and large
values of y; of interest, velocities are nonmonotonic as
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stationary states exist; to the right of the dashed
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Other parameters are as in Fig. 2. Dashed lines

correspond to boundaries with nonmoving states,
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collapsed states. (b) Cell speed as a function of

a and y. (c) Cell aspect ratio as a function of

a and y. (d) Cell speed as a function of 1=h and
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(Color online.)

Self-Organized Cell Motility 1741
functions of 1=h for small values of y. Cell aspect ratios are
also nonmonotonic, with a maximum for intermediate
values of both 1=h and y.
Intuition from one dimension

To intuitively explain some features of our model, we
discuss a one-dimensional (1D) version of the equations
of motion. In this case, the continuous orientation variable
q is replaced by a two-valued discrete variable s ¼ 51 indi-
cating whether filaments are oriented along positive or nega-
tive x. In Eqs. 1–8, we make the modification

R
dq/Ss, and

for the treadmilling current, we put
jtðx; sÞ ¼ sycðx; sÞ: (9)

The boundaries in one dimension are parametrized by two
points: xLðtÞ and xRðtÞ. The forces on the boundary consist
of repulsive interactions with the filaments, as before,
whereas forces due to variations of the Helfrich free energy
are replaced by a spring force fS ¼ kðxR � xL � L0Þ pre-
scribing a preferred distance L0 between the two boundary
points with spring constant k.

The 1D system, like the 2D system, exhibits both a
stationary and a moving asymptotic state. The density
profiles of these states are qualitatively similar to the density
Biophysical Journal 102(8) 1738–1745
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profiles along the axis of symmetry of the cell in the 2D
case. In the stationary state, the total filament density is
flat, with some accumulation near the boundaries, and motor
density is predominantly flat as well. In the moving state,
boundaries and density profiles translate at a constant
velocity, with an aggregation of motors and filaments at
the back of the cell (see Fig. 4).

A phase diagram for the 1D model is presented again as
a function of the treadmilling velocity y and the strength
of attractive interactions a, taken to be isotropic. As in the
2D case, it is shown that a nonzero minimum critical value
of a is required for moving states to exist. Similarly, a must
be below some critical value for stationary states to exist.
There is an intermediate region in parameter space of coex-
istence, in which the asymptotic solutions are bistable.

The 1D problem provides insight into how the system is
able to achieve a motile state. Where motor density is low,
pressure on the nearby boundary is primarily due to the
treadmilling of filaments. However, when motors are local-
ized near one of the boundaries, attractive interactions pull
filaments toward each other and therefore away from the
boundary, counteracting the effects of treadmilling on fila-
ment current and resulting in reduced net pressure on the
boundary. The difference between forces on the two bound-
aries leads to a net velocity of the cell. The boundary closer
to the aggregate of motors consequently becomes the back
of the cell, and the boundary farther from the motors
becomes the front.

We can test this intuitive argument by making an ‘‘infinite
cell approximation’’, in which we solve for the force-
velocity relation for single boundaries of two types, ‘‘front’’
and ‘‘back’’, with motor densities approximating those seen
in the front and back of the motile 1D cell. For the front
boundary at position x ¼ xR, the density of the motors is
set identically to zero. For the rear boundary at x ¼ xL, we
do not require the motor density to vanish. We consider an
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FIGURE 4 Phase diagram for a 1D system determined as a function of

a and y. To the left of the solid line, stationary states exist. To the right

of the dotted line, moving states exist. In the overlapping region, moving

and stationary states coexist. Insets depict concentration profiles: motors

(black, solid line), right-oriented filaments (blue, dotted line), and left-

oriented filaments (red, dashed line). The cell is moving to the right; the

length of the cell is L0 ¼ 6‘, and k ¼ 1000nd=z. Other parameter values

are the same as in Fig. 2. (Color online.)
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infinite domain with filaments nucleating to the left of
the boundaries x<xR for the front, and x<xL for the back.
We impose the following boundary conditions on the
density fields: cð�N;51Þ ¼ n0=nd, and cðN;51Þ ¼ 0.
Prescribing some boundary velocity V, we solve for the
corresponding filament density profiles and obtain the
resultant forces fRðVÞ, acting on the front boundary, and
fLðVÞ, acting on the back boundary. To derive the force-
velocity relation for a moving cell, we require that
2ycell=z ¼ fRðycellÞ � fLð�ycellÞ. This amounts to assuming
that the front and the back of the cell interact exclusively
through the spring force that holds the boundaries together.
Fig. 5 presents a comparison of cell velocity calculated in
the infinite cell limit with that obtained from simulations
of cells of length 10‘. These are in close agreement. There-
fore, the difference in net pressures on the boundaries
caused by different motor concentrations appears to be suffi-
cient to drive forward motion.
Biological implications

The system we have defined consisting of filaments,
motors, and boundaries exhibits characteristic features re-
miniscent of live cells. Of importance, the system is self-
organized: cell polarization and motility arise naturally
out of local interactions assigned to filaments and motors.
Furthermore, the mechanism that drives polarization and
motility in our model is an attractive, motor-mediated in-
teraction between filaments, which leads to contractile
behaviors of the filament network. In fact, it has been
proposed that network contractility at the rear of the cell
drives motility (7,8). In addition, our system exhibits both
stationary and moving states; within the moving states,
motors are localized to the back of the cell, and the front
edge is driven by treadmilling filaments, as observed in
experiments (13).

It has been observed that keratocyte fragments may some-
times be switched between motile and nonmotile behaviors
by mechanical stimulation (13). Our model exhibits bistabil-
ity between these states, but only in intermediate parameter
FIGURE 5 Solid diamonds indicate the velocities of a cell of length 10‘

in a 1D system as a function of a. The open circles connected by lines indi-

cate the velocities of an ‘‘infinite cell’’, calculated by treating ‘‘front’’ and

‘‘back’’ boundaries separately. Other parameters are as in Fig. 4.
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regimes. From our 2D phase diagram (Fig. 3 a), we predict
that with increasing myosin activity, cells would go from a
completely immobile state, to a bistable regime, to a com-
pletely mobile state. One could test this prediction ex-
perimentally by pharmacologically varying the myosin
activity, such as by using blebbistatin to lower activity, or
calyculin A to raise it. The fraction of cells that are moving
in an environment that is noisy enough to toggle cells
between moving and nonmoving states could then be
measured for different drug concentrations.

Recent work has begun to describe the effects of experi-
mental conditions on cell shape and speed of moving kerato-
cytes. Experiments in which substrate adhesivity was
changed showed that cell aspect ratios and velocities vary
nonmonotonically as functions of adhesion strength, with
maxima at moderate adhesion levels (32). In agreement
with these experiments, our model shows cell aspect ratios
to be nonmonotonic functions of adhesion strength (Fig. 3 e),
and we additionally find that cell velocities are nonmono-
tonic functions of adhesion strength for small and interme-
diate values of the treadmilling speed (Fig. 3 d). Using
calyculin A and blebbistatin to modulate myosin activity,
investigators have shown experimentally that increased
myosin activity results in increased cell velocities. This
result is also predicted by our model, as shown in Fig. 3,
b and c. However, our model disagrees with some previous
results from experiments, in that in those experiments, cells
became rounder when myosin activity was increased (32),
whereas in the model, increasing myosin activity causes
the cell to become more elongated (Fig. 3 c). This difference
may be explained by a more lateral distribution of myosin
in vivo due to the position of the nucleus, or by changes in
the 3D shape of the cell that cannot be captured in our 2D
model.

In addition to the above comparisons with previous exper-
iments, our model suggests other experiments that may be
conducted in the future. Relatively little work has been
done to examine how cell velocities and shapes respond to
changes in the rate of actin polymerization. From Fig. 3,
b–e, we expect that in response to changing actin polymer-
ization rates, cell velocity and aspect ratio would change
nonmonotonically, with maxima at intermediate values of
polymerization rates. Furthermore, for higher myosin activ-
ities, the peak of cell velocity or aspect ratio should occur
at higher polymerization rates. Another prediction is that
increasing myosin activity beyond a critical value would
collapse the cell and stop movement. These predictions
could all be tested in experiments in which actin polymeri-
zation or myosin activity is modified pharmacologically.

Further theoretical and numerical work may offer addi-
tional insight into other mechanisms of cell motility.
Although myosin aggregation is central to our model, other
mechanisms of motility, described in models and experi-
ments (4,31), do not include myosin aggregation. In partic-
ular, Doubrovinski and Kruse (31) proposed a model in
which motility arises through a combination of filament
treadmilling and cooperatively binding nucleators. The
dynamics predicted by this system differs from the
dynamics predicted here. For example, the nucleator-based
system admits traveling-wave solutions when the bounding
domain is stationary, whereas the myosin-based model
described here does not. Also, the myosin-based model
exhibits ‘‘retrograde flow’’, that is, filaments are transported
by motors toward regions of high motor density; this
behavior is absent in the nucleator-based model. In live
cells, motility is most likely due to both myosin and nucle-
ator dynamics. The contributions of these mechanisms
could be determined pharmacologically or genetically;
alternatively, filament dynamics under different conditions
could be examined by speckle microscopy and compared
with model predictions.
CONCLUSIONS

We have presented a mathematical description of filaments,
motors, and membranes in an effort to elucidate the self-
organized mechanisms involving cytoskeletal networks
that drive cell polarization and motility. In the system
defined here, motors mediate attractive interactions between
filaments. These interactions destabilize the stationary state
and give rise to spontaneous polarization of the system. Our
system exhibits both stationary and moving asymptotic
states, in qualitative agreement with living cells. The re-
sulting localization of molecular components is also in
qualitative agreement with experimental observations. Our
analysis suggests that motor-mediated contractility of fila-
ment networks may drive cell motility. More generally,
our description shows that local interactions of molecular
components may be sufficient to determine cell-level
organization.

Our model predicts the dependence of cell speeds and
shapes on parameters that physically correspond to myosin
motor activity, actin polymerization rate, and adhesive prop-
erties of the substrate. Some of the trends indicated in the
model’s results have been revealed in previous experiments,
but the model also makes predictions that remain to be
tested by experiment. We have proposed a few such exper-
iments in the text.

In this work we explored, using a simple model, how
whole-cell behavior may arise through local cytoskeletal
interactions, but we did not thoroughly examine cellular
interactions with the surrounding environment. In the future,
it would be interesting to see whether extensions of our
physical description can help explain the response of cells
to their environment.
APPENDIX A: TREATMENT OF THE BOUNDARY

The force density on the boundary f ¼ fH þ f I has two contributions. The

Helfrich free energy FðGÞ ¼ sLþ k
R
dGH2 þ PðA� A0Þ2 depends only
Biophysical Journal 102(8) 1738–1745
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on the positions of the boundary and physical parameters. The forces on the

boundary due to surface tension, bending stiffness, and area constraint are

then derived from variation of the Helfrich energy with respect to the shape

of the boundary G (30). We parametrize G as xðsÞhðxðsÞ; yðsÞÞ. The Hel-

frich energy is then written as

F ¼ s

Z
dsjx0j þ k

Z
dsjx0jH2þ P

�
1

2

Z
dsjx0jx$bn � A0

�2

;

(10)

where the local curvature is denoted by the function H ¼
ðx0y00 � y0x00Þ=ðx02 þ y02Þ3=2, which is a function of only x0 and x00, and the

vector bn ¼ ð�y0; x0Þ=jx0j, which denotes the outward unit normal. Here,

we used the divergence theorem to calculate the area A:

A¼ 1

2

Z
cell

drðV$rÞ ¼ 1

2

Z
G

dsjx0j�x$bn�: (11)

The force density on the boundary at point x is obtained by taking the vari-

ation of F with respect to the parametrization x and dividing by the line

element dsjx0j. Let fH denote the force per unit length on the boundary

due to the Helfrich energy:

fHðxÞ¼
1

dsjx0j
�
�dF
dx

�
¼ s

jx0j
d

ds
ðVx0 jx0jÞ

þ k

jx0j
�
d

ds
Vx0

�jx0jH2
� � d2

ds2
Vx00

�jx0jH2
��

þ 2PðA� A0Þ
jx0j

�
� Vx

�jx0jx$bn�þ d

ds
Vx0

�jx0jx$bn���:
(12)

This computes to

fHðxÞ ¼ �sHbn � kgðxÞbn � 2PðA� A0Þbn; (13)

where

gðxÞ ¼
�
� 1

y0
;
1

x0

�
$
d

ds

�
� H

jx0jbn0 þ 2
H0

jx0jbn
�
; (14)

and primes again denote derivative with respect to the parametrizing vari-

able s. In the implementation of the numerics, the curve xðsÞ is given by

a set of discrete points fxig, so that the boundary looks like a many-sided

polygon with vertices fxig. The expression for force density on the right-

hand side of Eq. 12 is explicitly evaluated at points xi and multiplied by

the length element ðjxiþ1 � xij þ jxi � xi�1jÞ=2 to obtain the total force

applied to a boundary point at each time step. Evaluation of the right-

hand side of Eq. 12 can be computed by taking x0 ¼ ðxxiþ1 � xxi�1Þ=2, and
so forth.

The second contribution to forces on the boundary comes from interac-

tions with the filaments. If the curve G again has coordinates defined para-

metrically by the function xðsÞ, then the filament-boundary interaction

energy can be written as

F I ¼
Z

dr cTðrÞVðdðxðsÞ; rÞÞ; (15)

where the function V is a sigmoidal function describing the rise of the repul-

sive potential between filaments and the boundary in the vicinity of the cell
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boundary. The function d is the signed distance between point r and the

boundary of the cell at x, where d is negative for r inside the cell boundary

and positive outside of the cell boundary. The density cTðrÞ denotes the total
filament density at r, so cT ¼ R

dqcðr; qÞ.
The force Fxi ;r

I applied to a boundary element at point xi on the curve

x(s) due to interactions with filaments in a small volume dr is determined

by varying Eq. 15 with respect to x and evaluating at the point xi. This eval-

uation will be zero unless xi is the closest point on x to r, so assuming that xi
is the closest point on the curve to r, then d ¼ jr� xij and

Fxi ;r
I ¼ �dr cTðrÞVxiVðdðx; rÞÞ ¼ �dr cTðrÞ vV

vd
Vxi jr�xij:

(16)

The total force FðrÞ on filaments in a volume dr due to the boundary

is minus the gradient of the potential multiplied by the number of filaments

drcTðrÞ:

FðrÞ ¼ �dr cTðrÞVrVðdðx; rÞÞ: (17)

The contribution to the total force due to an element of the boundary at xi is

zero if xi is not the closest point on the boundary to r, and is equal to the

following if it is:

Fr;xi
I ¼ �drcTðrÞ vV

vd
Vrjr� xij: (18)

From Eqs. 16 and 18, it follows that

Fxi;r
I ¼ �Fr;xi

I ; (19)

implying that the force on the filaments at r due to the boundary element at

xi is equal to the force on the boundary element at xi due to filaments at r.
APPENDIX B: NUMERICAL METHODS

The numerical solutions to Eqs. 1–8 are obtained from simulations on a

128 � 128 grid. Periodic boundary conditions in both dimensions are

imposed. The angular spacing for numerical simulations is discretized

into eight angles. The cell boundary is parametrized by 40 points, and

boundary-filament interactions are treated numerically via a repulsive

potential as described above. More details can be found in Doubrovinski

and Kruse (31). We put

�VVðjdjÞ ¼ F0e
�ðjdjÞ=d0Þ4bd: (20)

The vector dhdðG; rÞ refers to the shortest vector from the boundary G to

a point r in the simulation domain. In the case where the boundary is param-

etrized by points fxig, the vector d may be either the normal vector from

a line segment joining adjacent points on the boundary to the point r, or

the vector from a point xi on the boundary to r. The numerical parameters

F0 and d0 are chosen to make the boundary approximately reflecting within

the practical requirements of numerical stability, that is, we choose F0[1

and d0 � 1.

We nondimensionalize the parameters by expressing length in units of ‘,

expressing time in units of 1=nd , and expressing forces in units of ‘nd=z. In

the simulations, filaments nucleate at a rate n0 only within the boundary and

at least a distance d0 from the boundary; this is to ensure that no forces are

introduced on the boundary due to nucleation effects. The integrals over r0

in Eq. 4 are computed with the use of Fourier transforms. For simplicity, we

take a to be isotropic in the simulations. In this case, the q0 integral in Eq. 4
becomes trivial. However, the r0 integral remains a convolution, which we
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rewrite in terms of Fourier transforms; for example, if we put

cTðrÞh
R
dq0 cðr; q0Þ, then the second term in Eq. 4 contains the factorZ

dr0f ðr0 � rÞcTðr0Þ ¼ F�1½F ½f ðrÞ� �F½cTðrÞ��; (21)

which we can numerically compute more efficiently using the Fourier trans-

form and the FFTW subroutine library. 2D transforms are formulated as

a set of 1D transforms. All numerical work is performed in Cþþ.
SUPPORTING MATERIAL

Dimensionless parameters, model assumptions, biological comparisons,

boundary treatment, boundary treatments in related models, and references,

including (33), are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(12)00393-1.
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