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Computational studies have suggested that stochastic, deterministic, and mixed processes all could be possible determinants of sponta-
neous, synchronous network bursts. In the present study, using multicellular calcium imaging coupled with fast confocal microscopy, we
describe neuronal behavior underlying spontaneous network bursts in developing rat and mouse hippocampal area CA3 networks. Two
primary burst types were studied: giant depolarizing potentials (GDPs) and spontaneous interictal bursts recorded in bicuculline, a
GABAA receptor antagonist. Analysis of the simultaneous behavior of multiple CA3 neurons during synchronous GDPs revealed a
repeatable activation order from burst to burst. This was validated using several statistical methods, including high Kendall’s coefficient
of concordance values for firing order during GDPs, high Pearson’s correlations of cellular activation times between burst pairs, and
latent class analysis, which revealed a population of 5– 6% of CA3 neurons reliably firing very early during GDPs. In contrast, neuronal
firing order during interictal bursts appeared homogeneous, with no particular cells repeatedly leading or lagging during these synchro-
nous events. We conclude that GDPs activate via a deterministic mechanism, with distinct, repeatable roles for subsets of neurons during
burst generation, while interictal bursts appear to be stochastic events with cells assuming interchangeable roles in the generation of
these events.

Introduction
Characterization of the simultaneous spatiotemporal firing pat-
terns of multiple neurons is fundamentally important in the un-
derstanding of both normal and pathological processes within
circuits. Synchronous or near-synchronous firing of populations
of neurons contributes to coding of activation strength as an
input mechanism. Similarly, precise, ordered temporal firing pat-
terns of multiple neurons is important as a delayed input activa-
tion mechanism (Szatmáry and Izhikevich, 2010), encoding
input strength and possibly contributing to induction of long-
term potentiation. The temporal firing pattern itself could be an
additional method of information representation within a neu-
ronal circuit, contributing to rapid temporal coding (VanRullen
et al., 2005). Using multicellular calcium imaging, activation pat-
terns of multiple cells (�100 neurons) can be studied and ana-
lyzed (Mammano et al., 1999; Garaschuk et al., 2000; Stosiek et
al., 2003; Hirase et al., 2004; Ikegaya et al., 2004; Cossart et al.,
2005). This provides information on functional connectivity and
insights into circuit dynamics (Takahashi et al., 2007; Bonifazi et
al., 2009; Sasaki et al., 2009; Rothschild et al., 2010; Hofer et al.,

2011). Most calcium imaging studies reported in the literature
have focused on relatively random, dispersed firing networks as
this technique provides a unique source of information on func-
tional connectivity within neuronal microcircuits.

Less attention has been paid to spontaneous or evoked syn-
chronous bursts within networks. In these studies, because of the
near total activation of the neuronal circuit, all cells appear “con-
nected,” and little insight can be provided in the elucidation of
functional connectivity patterns and input/output mechanisms.
However, scrutinizing the cellular activation patterns within syn-
chronous network bursts is critical in understanding burst gen-
eration mechanisms and network dynamics (Fellin et al., 2004;
Crépel et al., 2007; Allène et al., 2008). Spontaneous synchronous
network bursts occur in immature brain during development,
and in adult brain as a component of sensory responses. They also
are prevalent in pathological conditions such as in epilepsy. In an
epileptic context, there has been a significant focus on the con-
cept of pathological plasticity inducing the development of
“burster” neurons, which drive epileptic activity in focal regions
in a deterministic manner (Jensen and Yaari, 1997; Sanabria et al.,
2001; Becker et al., 2008; Chen et al., 2011). If epileptic network
bursts are initiated by bursters, identifying those cells is critical in
understanding mechanisms of pathologic burst generation. Net-
work bursts could also be generated in a homogeneous popula-
tion through a stochastic process (Miles and Wong, 1983).
Network modeling studies have demonstrated that randomly
connected populations of homogeneous neurons can generate
synchronous network bursts (Izhikevich, 2003; Bogaard et al.,
2009).
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In the present study, we investigated cellular firing patterns
underlying spontaneous synchronous network bursts in the de-
veloping hippocampus by using multicellular calcium imaging
and fast confocal microscopy (up to 350 Hz recording speed).

Two types of synchronous network activity, giant depolariz-
ing potentials (GDPs) and interictal bursts, were investigated. We
found that GDPs exhibited a nonrandom, deterministic burst
structure, with �5% of cells being characterized as an “early
responder” population with high confidence. In contrast, we
found that spontaneous interictal bursts occurring in the pres-
ence of bicuculline did not exhibit strong deterministic structure,
with no early responder population evident. Bicuculline-induced
interictal bursts appeared to be generated in a homogeneous pop-
ulation through a stochastic process.

Materials and Methods
Slice preparation and staining. Brain slices were prepared as described
previously (Carlson and Coulter, 2008). Briefly, the brain of male and
female rats or mice [postnatal day 4 –9 (P4 –P9)] were removed, glued to
an agar block, and sectioned (350 – 400 �m thickness) in ice-cold artifi-
cial CSF (ACSF) containing the following (in mM): 130 sucrose, 3 KCl,
1.25 NaHPO4, 1 MgCl2, 2 CaCl2, 26 NaHCO3, and 10 glucose. A dye
solution of 10 �l of 0.1% Oregon Green BAPTA-1 AM (Invitrogen) in
DMSO, 2 �l of 5% Cremophor EL (Invitrogen) in DMSO, and 2 �l of
10% pluronic acid (Invitrogen) in DMSO in 2 ml of ACSF [containing
the following (in mM): 130 NaCl, 3 KCl, 1.25 NaHPO4, 1 MgCl2, 2 CaCl2,
26 NaHCO3, and 10 glucose] was prepared as described in the litera-
ture (Takahashi et al., 2007). The slices were submerged in a dish
containing 2 ml of a dye solution for 45 min at 37°C in a chamber
under humidified 95% oxygen/5% carbon dioxide. Slices were
washed and incubated in oxygenated ACSF at room temperature for
at least 30 min before imaging.

Imaging. Slices were transferred to an imaging chamber and perfused with
modified ACSF containing an elevated level of potassium (6 mM) during
imaging. A Live Scan Swept Field Confocal Microscope (Nikon Instru-
ments) equipped with an Ar/Kr ion laser (Innova 70C; Coherent) was oper-
ated from NIS-Elements software (Nikon). Images were captured with
water-immersion 40� [numerical aperture (NA) � 0.8] or 16� lenses
(NA � 0.80) and one of two EM-CCD cameras (Cascade 512B or Cas-
cade128�; Photometrics). We focused on a region of area CA3 (area CA3b)
that generates more spontaneous synchronized events than other areas
within the slice (e.g., the dentate gyrus or CA1). The Cascade 512B camera
provided acquisition rates of up to 25 Hz with a full frame (512�512 pixels),
and 89 Hz with 4 � 4 binning (128 � 128 pixels). The Cascade128� camera
provided an acquisition rate of 350 Hz with full frame (128 � 128 pixels)
resolution when combined with Swept Field microscopy.

Image analysis. All time-series movies (ND2 file; Nikon Instruments)
were converted into TIF format by an ImageJ plugin (ND2 reader; Nikon
Instruments), and regions of interest (ROIs) corresponding to cell so-
mata were selected manually from a maximum response image using
ImageJ software. The average intensity of ROIs was calculated and ex-
ported as a text file. Since Oregon Green calcium transients are reflected by
an increase in fluorescence intensity, we chose to determine ROIs on a max-
imum response image so as to ensure that the majority of active neurons
were included in our analysis. Custom-written Matlab (MathWorks) codes
were used to calculate background subtracted normalized fluorescence
change (�F/F0). Raster plots were then generated using ImageJ software.
Onset time detection was performed in Matlab as described below. Color-
coded onset time mapping was generated by assigning colored circles in the
center of ROIs by Matlab and ImageJ.

Onset time estimation. The rising phase of synchronous �F/F0 traces was
sigmoidal in shape. To estimate onset time, this was fitted to a four-
parameter sigmoidal equation (Zwietering et al., 1990), where A is the pla-
teau, B is maximum slope, C is a lag time, D is an offset, and e is Euler’s
constant:

f�t� � A exp� � exp�e B

A
(C � t) � 1�� � D (1)

We estimated “onset time” as the time when f(t) reached to 5% of the
plateau. To evaluate the estimation error in this curve-fitting approach,
we conducted a simulation by adding normally distributed noise with
various noise levels. When the noise level (SD of baseline before the
response) was 20% of the response signal amplitude, the SD of onset time
estimation was 13 ms at a sampling rate of 100 Hz (n � 500). The SD of
onset time estimation reduced to 8.8 and 5.4 ms as the noise level was
reduced to 15% and 10%, respectively. Note that the average noise levels
of our data from GDP experiments were �10%, ranging from 5% to
20%. In a subset of experiments in which we combined whole-cell patch-
clamp recordings with imaging of calcium transients at our usual tem-
poral resolution, we found that calcium transients occurred within 1 ms
of action potential (AP) firing on average, with an SD of 7 ms. For the
data obtained at 350 Hz, we used the time frame when �F/F0 exceeded
the 5% threshold.

Statistical analysis. Statistical analyses were performed using R2.13 (R
foundation for Statistical Computing, http://www.R-project.org) and
GraphPad Prism 4. Initial observations suggested that activation time
was a function of image pixel location (i.e., bursts exhibited directional
propagation). To characterize this propagation, the data were processed
by fitting a regression spline with up to 5 df using library (spline) in R. To
characterize the degree of correlation among onset time for repeated
bursts (waves), we estimated Pearson’s correlation coefficient in a pair-
wise fashion using onset time and/or onset time residuals from the spline
fit. We also examined the nonparametric ranking order statistic, Kend-
all’s coefficient of concordance ( W), to compare consistency of activa-
tion order among multiple bursts for cells that are in close spatial
proximity. Kendall’s W value is an indicator of rank consistency in cel-
lular activation time among the bursts, and varies from 0 to 1, where W �
1 signifies totally consistent activation order among repeated bursts, and
W � 0 is completely inconsistent activation ranks.

To explore the clustering of neuronal response times, or to determine
and characterize a group of neurons that represent a cluster of early
responders or “followers,” we conducted latent class (LC) model analy-
sis. LC analysis, is a parametric statistical method for clustering data into
a number of unobserved, or latent, classes (McLachlan et al., 2002). We
know of no formal hypothesis testing procedure in the statistical sciences
that can be used to test for the existence of multiple distributions or
classes against the null hypothesis of a single underlying distribution
(McLachlan and Peel, 2000). However, in the spirit of hypothesis testing,
we wished to ensure with high probability that the LC analysis was un-
likely to declare more than one class when only one was present. Standard
latent class modeling involves choosing the number of classes based on
the minimum of information criteria such as the Bayesian Information
Criteria (BIC), or in our case an adjusted version of BIC (adjBIC). To
characterize the LC analysis procedure, we conducted a simulation ex-
periment based on data, generated with a structure similar to our data,
but from either one or two distributions. Then we determined how fre-
quently we chose models with one, two, or three classes. We were specif-
ically interested in documenting how often we chose more than one class
when the data had one class. This analysis confirmed that the procedure
infrequently (typically no more often than 5% of the time) yielded spu-
rious classes when none existed. The LC model estimates a mean and SD
for the observations for each class and assigns a posterior probability of
membership in each class to each cell. Cells were assigned to class based
on their maximum posterior probability, and we also performed a
sensitivity analysis for these results based on a maximum posterior
probability in excess of 0.90. LC analysis differs from many other
clustering methods in reporting uncertainty of class assignment
through the posterior probability. The LC analysis was implemented
using library (lcmm) in R.

Results
Calcium imaging and neuronal firing
We performed multicellular calcium imaging of hippocampal
CA3 pyramidal neurons with a 40� objective lens, followed by
off-line image analysis. With the 40� lens, the image size was
204 � 204 �m, typically containing 50 –100 pyramidal neurons
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within the focal plane of an image. The increase in fluorescence
signal in neuronal cell bodies in multicellular calcium imaging is
a result of calcium influx accompanying AP firing (Stosiek et al.,
2003; Ikegaya et al., 2004; Cossart et al., 2005; Sasaki et al., 2008;
Vogelstein et al., 2009). To ensure the correlation between fluo-
rescence signal change and neuronal firing, a patch pipette elec-
trode was positioned in close proximity to a cell and loose-patch
recording was performed during calcium imaging. Figure 1A
shows a trace of fluorescence change measured from a cell that
exhibited spontaneous activity. Figure 1B shows a simultane-
ously recorded trace of loose patch recording measured in the
same cell as Figure 1A. By comparing Figure 1A and Figure 1B, it
is evident that the fluorescence and current changes were concur-
rent, suggesting that fluorescence changes were directly related to
AP firing. In additional combined whole-cell patch-clamp re-
cording and cellular imaging experiments at 100 Hz temporal
resolution, and estimating calcium signal onset using the curve-
fitting approach described in Materials and Methods, we found
that the onset of the calcium signal relative to the occurrence of
the AP was nearly simultaneous under our imaging conditions
(mean difference � 1 ms, SD � 7.4 ms) (Fig. 1C). In addition,
loose patch recording reported the number of APs elicited during
a burst-firing event. Figure 1D plots the correlation between peak
fluorescence response (�F/F0) and the number of APs observed
in the loose patch recording. The peak fluorescence amplitude
was proportional to the number of APs that were counted simul-
taneously from a loose patch recording (Fig. 1D). This analysis
further demonstrated that even a single AP could be detected, as
�5% fluorescence signal change, well above the background
noise of the imaging recording. Because the calcium indicator
used in this study has a low dissociation constant (Kd �300 nM),
calcium ions bound to the indicator molecules took a long time to
dissociate; thus, calcium traces did not code multiple APs as mul-
tiple sigmoidal responses. Instead, calcium signals showed an
integrated, smooth increase in peak value as the number of APs
increased. Note that in the following experiments, since we ex-
clusively focus on onset time of the fluorescence change, only the
timing of the first spike is taken into account even if there are
multiple APs within a burst.

Spontaneous synchronous
network bursts
In most slices prepared from animals aged
P4 –P6 (15 slices from 11 animals), we ob-
served spontaneous synchronous activity
in area CA3. A representative recording
from a slice prepared from a P5 rat is
shown in Figure 2. Figure 2B shows nor-
malized fluorescence traces (�F/F0) for 10
cells, along with a raster plot for 64 of 87
cells that participated in synchronous net-
work activity. Based on the response of
these bursts to application of GABA re-
ceptor antagonist (described in Effects of
blockade of GABAergic inhibition), the
frequency of events, and the animal age
dependence of occurrence of these events,
these network bursts fit the experimental
definition of a GDP (Khazipov et al., 1997;
Sipilä et al., 2005; Ben-Ari et al., 2007). As
is evident in Figure 2, the GDP events oc-
curred repeatedly, i.e., five times in 1
min. There was also occasional, inter-
mittent, nonsynchronous activity inde-

pendent from the synchronous events in a proportion of
neurons. In this particular dataset, 58 of 76 cells (76%) had no
activity between synchronous events, and 16 of 76 cells (21%)
exhibited isolated firing between synchronous events. The ampli-
tude, or peak fluorescence value, of these nonsynchronous events
was often smaller than that seen during the synchronous events.
Together with the fact that the �F/F0 peak values of most cells during
the synchronous events were �40% (�F/F0), and the fact that the
40% fluorescence response corresponds to multiple number of
spikes in Figure 1D, this suggests that neurons fired a burst of APs,
i.e., multiple spikes, during synchronous spontaneous network
events.

Sufficiently fast acquisition speeds were necessary to measure
biologically relevant differences in individual cellular burst onset
times during GDP events. To determine the minimal required
temporal resolution to capture salient differences in cellular burst
onset times, we imaged spontaneous GDPs at two different ac-
quisition speeds; 70 ms per frame, a typical scanning speed for
calcium imaging with high spatial resolution (Sasaki et al., 2006,
2008; Allène et al., 2008; Allene and Cossart, 2010) and 11 ms per
frame, the maximum speed that could be obtained through 4 � 4
binning of the 512 � 512 pixel EM-CCD camera. Figure 2C shows
temporal raster plots of several ROIs from two movies of spontane-
ous bursts recorded from a slice. The raster plot was zoomed and
focused on the rising phase of signal change for a single network
burst at both temporal resolutions. Although the two bursts may not
be identical, the raster plot in Figure 2C2 resolves differences in cel-
lular burst onset timing to a much greater extent than the recording
in Figure 2C1. This demonstrated the requirement for higher tem-
poral resolution recordings to resolve differences in cellular burst
latencies underlying spontaneous GDPs.

Onset time distribution
For a series of images taken from the slice, the onset time of synchro-
nous activity was estimated for each ROI (i.e., cell body) by fitting a
sigmoidal curve to the rising phase of fluorescence change (see Ma-
terials and Methods section). Figure 2D shows an example of onset
time estimation for three different cells during a synchronous net-
work event. The sigmoid curves fit the data well. Among 87 cells

Figure 1. Calcium Imaging and simultaneous extracellular recording. A, Simultaneous loose patch recording (top) and �F/F0

(bottom recorded from a spontaneously firing neuron. B, Loose patch and calcium indicator fluorescence traces at higher temporal
resolution. Note the close linkage between action potential firing (downward deflections in loose patch recording) and onset of
calcium indicator response. C, Plot of calcium indicator response relative to action potential firing (vertical line) derived from
simultaneous whole-cell patch and calcium indictor imaging. Note the tight relationship between the indicator response and cell
firing. D, Correlation between peak �F/F0 value and the number of action potentials in neuronal activity recorded from multiple
neurons. (n � 3; Pearson r � 0.956, p 	 0.0001).
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marked on the image, 15 cells had no synchronous responses and
were excluded from the analysis. In addition, several cells had very
small responses (	5% �F/F0), and the rising phase of these re-
sponses was poorly fit (R2 	 0.6). These cells were also excluded
from further analysis. After determining the onset time for cells that
resulted in a good fit (typically 63–65 cells), as a temporal reference
point, the median onset time for the cell population was defined as
zero. Cells activating earlier than the median were assigned negative
onset time values, while cells that activated later than the median
were assigned positive onset times.

Figure 2E1 shows the distribution of onset times for four
spontaneous network events recorded from the same slice. As a
control experiment, using the same slice, a stimulating electrode
was placed in the Schaffer collateral pathway, away from the im-
aged area, and a burst stimulus (four pulses, 10 �s, 100 Hz, 500
�A) was applied. The electrical stimulus evoked a synchronous
network event, and Figure 2E2 shows the onset time distribution
of this response. For the spontaneous bursts, onset times ranged
from 
190 to �286 ms, with an SD of 54 ms. In contrast, for the
evoked bursts, the onset time ranged from 
207 to �85 ms, with

a SD of 35 ms. This suggests that electrical stimulation triggered a
different type of network activity, distinct from spontaneous
events.

Burst propagation
Since the CA3 layer was tilted slightly to the CCD camera field of
view, we rotated the image during analysis to visually align the
hippocampal axis, and new image axes were defined as x� and y�,
as shown in Figure 3. Figure 3A shows onset latency as a color-
coded two-dimensional map of cell location and cellular burst
onset time for a spontaneous network burst. Warmer colors (red)
indicate that cells activated earlier than the population median,
and cooler colors (blue) indicate that cells activated later. In Fig-
ure 3A, red circles (corresponding to cellular ROIs) predominate
on the right side of the field, while blue ROIs are located mainly to
the left, indicating that cellular activation propagated from right
to left, or from CA3b to CA3c, as illustrated in the inset. This can
be more clearly visualized by plotting the onset time relative to
the cellular x� location in a scatter graph (Fig. 2, bottom plots).
Regression analysis of the cell location versus onset time plot

Figure 2. Spontaneous network bursts and onset time analysis. A, An area CA3 steady-state fluorescence (F0) image obtained by fast confocal microscopy of an immature hippocampal slice
stained with the calcium indicator OGB-1 AM. B, Synchronous network activity recorded from area CA3. �F/F0 traces for 10 cells (top) and raster plot of color-coded fluorescence versus time (bottom)
for 64 cells that exhibited synchronous network activity. The synchronous spontaneous network events occurred repeatedly. Note that there is nonsynchronous isolated activity between the
synchronous events. C, Comparison of the utility of various image acquisition speeds in capturing neuronal activation onset times during spontaneous network bursts. �F/F0 raster plots of
grayscale-coded fluorescence change versus time for eight neurons that exhibited spontaneous synchronous activity. Images were captured at 70 ms per frame (C1), a typical speed with full-frame
(512 � 512 pixel) resolution, and 11.2 ms per frame (C2), the maximum speed that can be achieved by 4 � 4 binning with our EM-CCD camera. The faster acquisition speed was required to resolve
differences in onset times among cells (compare cells with *). D, �F/F0 traces (dots) for three different cells within a synchronous network event, together with an onset time estimation by sigmoid
curve fitting (line). Dotted vertical lines depict differences in calculated cell onset times for the three neurons. E1, Cellular onset latency distribution of spontaneous network bursts (four bursts).
Median onset time within a network burst was defined as zero. If a cell activated earlier than the median value, negative values were assigned to the cell, while positive onset value was assigned to
the cells that activated later than median timing. The majority of cells distributed within �200 ms, with an SD of 54 ms. E2, Cellular onset latency distribution of evoked synchronous events for the
same cells shown in E1. The distribution became narrower, with the majority of cells responding within �150 ms, with an SD of 35 ms.
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facilitated determination of the direction of burst propagation
within the network. In the example in Figure 3A, the fitted latency
curve had a minimum on the right side of the image, and the
burst took �140 ms to travel across the image, thus the propa-
gation speed was estimated to be �1.4 mm/s. Note that the
burst propagation appeared nonlinear, and that the larger slope
in the fitted curve indicates slower traveling speed.

Figure 3B depicts the same analysis method applied to another
spontaneous network burst in the same slice. For this burst, red
ROIs are concentrated on the left side of the image, while the right
side is dominated by blue ROIs, indicating that the burst propa-
gated from left to right, the opposite direction of the burst de-
picted in Figure 3A. Here the burst traveled in an approximately

linear fashion, with a slope of 50 ms per
128 pixels, translating to a speed of �4
mm per second. Pearson’s correlation
analysis between y� location and onset
time resulted in no significant correlation.

In multiple recordings from the slice,
we observed a total of 17 spontaneous and
12 evoked network bursts. Based on their
characteristics of propagation, we as-
signed these events to several categories
(Table 1). Spontaneous bursts with a slow
propagation from right to left (CA3b to
CA3c), as depicted in Figure 3A, were seen
in the majority of cases (14/17 events) and
were defined as a type I burst. A spontane-
ous burst with faster propagation from
left to right (CA3c to CA3b), shown in
Figure 3B, was seen only once and was de-
fined as a type II burst. A third burst pat-
tern started in the center of the image and
spread laterally in both directions (one
event, type III), and last we also observed a
disorganized widely distributed onset
(one event, type IV). Evoked bursts prop-
agated too quickly to resolve directional-
ity and were classified as type V bursts.

Temporal patterns independent
of propagation
To begin to resolve additional sources of
burst latency variation, we minimized
contributions of burst propagation to on-
set times by restricting our examination to
10 closely neighboring neurons, compar-
ing cellular burst latencies within this CA3
microcompartment. Figure 4A depicts
the 10 sampled neurons analyzed, and
Figure 4B plots fluorescence traces for
two representative network bursts in these
cells. Table 2 lists onset time and ranks

within these 10 cells for each burst. Based on analysis of burst
onset latencies in this anatomically restricted area, cellular acti-
vation did not appear to be random. Instead, cells retained a
consistent order of activation from burst to burst. Cell 4 repeat-
edly activated earlier than other cells, while cells 5, 6, and 7 con-
sistently activated later than the majority of cells. To analyze this
further, we ranked cells based on relative activation order (shown
in Table 2) and the nonparametric ranking order statistic, Kend-
all’s W value, was calculated. Kendall’s W is an indicator of rank-
ing order consistency. For these 10 cells and 9 network bursts,
Kendall’s W was calculated to be 0.63, consistent with a highly
repeatable activation order, which was extremely unlikely to
occur by chance if activation was based on purely random order-
ing (p 	 0.0001). Based on their activation latencies, we termed
cell 4 as an early responder and cells 5, 6, and 7 as followers.

Based on the above microcompartment analysis, we hypoth-
esized that burst firing order was nonrandom regardless of cellu-
lar location (i.e., burst propagation effects), and that individual
neurons played distinct roles in defining burst structure (e.g.,
early responders and followers). To test this hypothesis further,
we re-examined our data derived from larger fields, and mini-
mized contributions of burst propagation to assess whether de-
terministic burst structures were evident in this larger area of the

Figure 3. Cellular activation onset analysis of propagation of spontaneous network bursts. A, Top, Color-coded cellular onset
time mapping for a spontaneous GDP. Red color indicates that cells are activated earlier than the median timing and blue color
indicates cells which activated later. Note that, for this burst, red ROIs are located more to the right side while blue ROIs are located
mainly to the left, consistent with propagation from right to left (arrow in lower plot), or from CA3b to CA3c as illustrated in the
inset. Note that since the CA3 layer was tilted slightly to the CCD camera field of view, the image was rotated to visually align the
hippocampal axis, and new image axes were defined as x� and y� as shown in the inset. Bottom, Propagation effect can be seen
more clearly by plotting x� pixel location and onset time in a scatter graph, together with a regression line. B, Top, Onset time plot
for a different spontaneous event in the same region. Note that red ROIs are located more to the left side for this burst, consistent
with event propagation from left to right (arrow in bottom plot). Bottom, The x� pixel location/onset time scatter plot for this
second burst. Note the opposite propagation direction. See Table 1 for different types of network burst patterns observed in the
same slice.

Table 1. Network burst patterns observed in a slice

Burst patterns Quantity Comments

I Propagation from right to left (CA3b to CA3c) 14 of 17 bursts
II Propagation from left to right (CA3c to CA3b) 1 of 17 bursts
III Propagation starts from the center 1 of 17 bursts
IV Disorganized 1 of 17 bursts Ranges �900 ms
V Evoked 12 observations No directionality

Network bursts observed in a slice were categorized into several groups based on their onset time distributions and
propagation characteristics.
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CA3 circuit. We first reanalyzed scatter
plots (Fig. 3) for multiple bursts and de-
termined whether individual cells ap-
peared consistently above or below the
best fit regression line. If there was a con-
sistent trend that a particular cell fired
earlier or later than the timing expected
from the propagating characteristic (re-
gression line), this would support the hy-
pothesis that burst structures are
deterministic. We minimized the effect of
cell location by examining residuals from
the spline fit. We then calculated a corre-
lation matrix of these residuals for nine
bursts. The median of Pearson’s r for all
possible 36 pairs was 0.466, and ranged
from 0.197 to 0.651 (all but one pair had a
significant correlation). This suggested
that a consistent cellular activation order
was retained, even after location factors
were minimized.

Further evidence of deterministic
burst structure was observed when com-
paring the waves that propagated in op-
posite directions as described in Figure 3, A and B. Pearson’s
correlation of onset times between two bursts that propagated
in opposite directions (Fig. 3 A, B) was not significant. How-
ever, the correlation of residuals from the spline curves between the
two bursts was 0.328 (p � 0.013). This emergence of a correlation
between distinct burst types may be additional evidence of a tempo-
ral structure of bursts independent of burst propagation
contributions.

Latent class analysis
Correlation analysis of residuals from the spline fittings provides
support for the existence of a deterministic spontaneous network
burst structure. However, correlation by itself does not address
the question of whether there are individual cells that are early
responders or followers, nor does this type of analysis evaluate the
existence of such groups. To begin to identify contributions of
individual neurons to burst structure, and establish a statistical
framework with which to evaluate the existence of classes
(groups) of neurons with differing roles in burst firing order, we
applied an LC model, or finite mixture analysis, to explore the
clustering of onset time (or onset time residuals) with the specific
goal of determining whether there appeared to be a group (class)
of neurons that represent early and/or late responders. Details of
the LC analysis are discussed in Materials and Methods. Briefly,
we fit LC models to the onset times by adjusting the effects of
location using a spline. These models allow different numbers of
underlying classes (groups) in the data where the membership of
each observation to a particular class is unknown and estimated
by the procedure. Each model fit to the data differed in the num-
ber of classes of cells it assumed. The best fit model or the best
number of classes was chosen based on the minimum of an
adjBIC.

Figure 5A shows a schematic illustration of the LC model
analysis conducted on our dataset. Specifically, onset time was fit
to a spline curve in a class-specific manner by only shifting the
offset, but not changing the spline function among the classes. By
varying the number of classes (from one to seven) and the degrees
of freedom for the spline fit (from one to five), adjBIC values were
calculated for each scenario, and the scenario expressing the min-

imum adjBIC value was selected as the optimum model. For our
dataset, this procedure identified three classes with a spline of 5 df
as the best-fitting latent class model: adjBIC for df � 5: 3187.5
(one class) � 3182.2 (two classes) � 3178.4 (three classes) 	
3183.4 (four classes) 	 3183.4 (five classes). The three classes
were arbitrarily defined as “early,” “middle,” and “late,” referring
to the offset of the curve fitting. LC model analysis not only
determines the number of latent classes but estimates the poste-
rior probability for each cell belonging to each of the classes.
Figure 5B shows the posterior probability of 10 cells as mem-
bers of three classes shown in bar graphs. For example, cell 1 in
Figure 5B had �80% chance of being a member of the early
class, and �20% chance of being a member of the middle class.
Cell 3 had a high chance of belonging to the middle class. Cell
4 had chances of being a member of the early (60%) or middle
(40%) classes. Thus, class assignment was made based on max-
imum posterior probability for a cell, with the magnitude of
the probability indicating the confidence with which cells were
assigned to a class.

Table 3 shows a summary of the LC model analysis and class
assignments, with the mean response time indicating the differ-
ence between the classes. Of 76 cells analyzed, 10 cells (13%) were
assigned to the early class, of which 5 cells were assigned with high
probability (�90%, 6.5% of total cells). Six cells were assigned to
the late class, with the majority of the cells (60 cells) assigned to
the middle class. Figure 5C depicts a color-coded class assign-
ment superimposed on the fluorescence image, together with the
labeling for 10 cells shown in Figure 5B. Comparing this to
Figure 4, the early responders cell 3 and cell 4 in Figure 4 belong to
the early group (Fig. 5C, cells 4 and 6), and, similarly, the follow-
ers (cells 5, 6, and 7) belong to the late group in LC analysis.
Finally, Figure 5D shows scatter plots of onset time for all cells for
all nine bursts, with color indicating class assignment. This plot
clearly demonstrates that LC analysis is a powerful method for
assigning cell classes, considering location factor. The data pre-
sented here and above is a representative dataset, containing cells
in the early responder group. We have applied a similar LC anal-
ysis to spontaneous GDPs from four other slices and found a
comparable distribution of early responder cells to that depicted

Figure 4. Temporal activation patterns independent of propagation characteristics. Onset time analysis for 10 closely localized
neurons, for 9 spontaneous GDPs that exhibited similar propagation patterns (type I in Table 1). A, Fluorescence image with cell id
number. B, Fluorescence traces (�F/F0) for 10 specified cells for two type I bursts. The traces were ordered, earliest to latest, by the
average latency of firing onset during the nine bursts.
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in Figure 5 and Table 3. In total, 5.5 � 1%
of cells (11/199 cells from four animals)
were recognized as early responders
with high posterior probability (�90%)
of class membership by LC analysis.

Temporal patterns of evoked bursts
We also conducted an LC analysis on the
network bursts evoked by electrical stim-
ulation (Fig. 2E2; Table 1, type V). The
onset time distribution of evoked bursts
was narrower than that seen for spontane-
ous events, as shown in Figure 2E2, and
the scatter plots for onset time versus
x-pixel location had a best fitting spline
(df � 1) with a slope that was not different
from 0. This suggested that the propaga-
tion speed of these evoked bursts was too
fast to be captured and/or the propagation
effect was swamped by large variance in
the onset times. The correlation between
repeated evoked burst measurements
(nine bursts) on the same cells from dif-
ferent events ranged from 0.306 and
0.789, with a mean Pearson’s r value for all
pairs of 0.55 (all significant correlations).
Thus, the correlation among repeated
measurements collected for the same cell
was substantial, which suggests that there
is a consistent neuronal firing order, i.e.,
deterministic burst structure, even in the
evoked bursts. The LC model analysis for
these evoked bursts (N � 9) generated
two classes as the best fit model. The
means and SDs of onset times for the two
classes are shown in Table 3. We termed
the two classes as “early” and “major.” All
but seven of the cells were assigned to the
major class. Seven cells were assigned to
the early class, and, of these, three were
assigned with high probability (�90%,
Table 3). Figure 5F shows the scatter plot
for each cell for nine evoked bursts with
class assignment in color. As with the first
dataset (spontaneous bursts), the minor-
ity class appeared to represent a distinct

group based on the difference in the mean values, consistent with
the notion of a distinct group of early bursters. Figure 5E depicts

Figure 5. Latent class model analysis of cell activation latencies during bursts. A, Schematic illustration of LC analysis
with a class-specific linear mixed model. Onset time was fit to class-specific spline curves without changing the shape but
shifting intercept in a class-specific manner. Vertical bell-shaped distributions at the right end of each line are class-specific
Gaussian distributions. LC analysis was conducted for different number of classes (from one to six); adjBIC values were
calculated for each scenario, and the scenario expressing the minimum adjBIC was selected as the optimum number of
classes. LC analysis found three classes as the best-fitting model for GDPs. B, Bar graphs of posterior probability of class
membership for 10 representative cells (location shown in C) for the three class model, with E (early group), M (middle
group), and L (late group). Cells were then assigned to a particular class based on their maximum posterior probability. C,
Color-coded class assignment (early, red; middle, green; late, blue) superimposed on the image with the label for 10 cells
shown in B. D, Scatter plots of onset time versus x� location for all cells for nine type I burst responses with the class
assignment in color (codes as in C). E, LC analysis of evoked bursts. Note that different groups of cells comprise the early
group for evoked bursts compared with spontaneous GDP bursts (C). F, Scatter plots of onset times versus x� location for all
cells for nine evoked bursts with class assignment in color (early, red; major, green).

Table 2. Onset Time (and Rank) for 10 closely located cells during GDPs

Cell id Burst 1 Burst 2 Burst 3 Burst 4 Burst 5 Burst 6 Burst 7 Burst 8 Burst 9 Rank

1 18.5 (7) 
13.3 (6) 11.2 (7) 
11.2 (4) 
10.0 (6) 
10.1 (5) 13.4 (7) 
0.6 (5) 5.6 (7) 6
2 44.0 (8) 0.0 (7) 
15.7 (6) 
3.4 (6) 10.3 (8) 
7.8 (7) 7.8 (6) 0.6 (6) 
51.5 (2) 7
3 
14.1 (5) 
18.1 (4) 
19.0 (5) 
31.4 (2) 
42.9 (2) 
28.0 (4) 
21.3 (3) 
26.3 (1) 
50.4 (3) 2
4 
56.9 (3) 
87.0 (1) 
105.3 (1) 
53.8 (1) 
101.5 (1) 
100.8 (1) 
35.8 (1) 1.7 (7) 
93.0 (1) 1
5 65.3 (10) 45.7 (9) 84.0 (10) 77.3 (10) 76.2 (10) 66.1 (9) 49.3 (9) 45.4 (9) 54.9 (9) 10
6 15.1 (6) 63.8 (10) 29.1 (9) 29.1 (8) 4.7 (7) 86.2 (10) 97.4 (10) 86.8 (10) 38.1 (8) 9
7 47.6 (9) 20.2 (8) 25.8 (8) 71.7 (9) 23.4 (9) 62.7 (8) 17.9 (8) 30.8 (8) 57.1 (10) 8
8 
56.8 (4) 
22.5 (3) 
39.2 (2) 
11.2 (5) 
26.4 (3) 
9.0 (6) 
29.1 (2) 
25.2 (2) 
32.5 (6) 4
9 
87.9 (1) 
15.9 (5) 
31.4 (3) 2.2 (7) 
18.1 (4) 
30.2 (3) 
10.1 (4) 
3.9 (3) 
50.4 (4) 5

10 
73.7 (2) 
39.4 (2) 
26.9 (4) 
22.4 (3) 
11.8 (5) 
34.7 (2) 
10.1 (5) 
2.8 (4) 
41.4 (5) 3

Onset time in milliseconds for 10 cells for the nine GDP bursts shown in Figure 4. Ranks were defined as the earliest being first, and the latest 10th. Overall ranks were calculated by sum of ranks across nine bursts and smallest being defined
as the first. Note that cell 4 is repeatedly ranked first and cells 5, 6, and 7 were always among the bottom three.
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a color-coded mapping of class assignment. When compared
with the assignment in Figure 5C for spontaneous bursts, it is
evident that electrical stimulation triggers network bursts
through a different activation pathway, and also that different
groups of cells made up the early responder cohort of neurons for
these two different bursts, even though they occurred in the same
network of cells.

Effects of blockade of GABAergic inhibition
GABAergic neurons play a crucial role in generation of network
bursts in immature, early postnatal brains. To investigate the role
of GABAergic neurons in generating and shaping the temporal
characteristics of spontaneous synchronous bursts, the GABAA

receptor antagonist, bicuculline, was applied. There were distinct
effects of bicuculline on spontaneous bursts recorded in rats and
mice. In rats, application of bicuculline (10 �M) blocked the oc-
currence of spontaneous synchronous network events as shown
in the raster scan in Figure 6A, top (same slice prepared from a P5
rat was recorded in Figs. 2–5). Note that
the spontaneous isolated nonsynchro-
nous activity remained intact. The overall
occurrence of nonsynchronous activity
remained similar before and after apply-
ing bicuculline (compare Figs. 2B, 6A,
top). Synchronous network bursts could
still be evoked by electrical stimulation in
the presence of bicuculline, as shown in
Figure 6A (bottom), with Figure 6B
showing a cumulative distribution of on-
set times in individual neurons. Interest-
ingly, the onset time distribution for
evoked events in bicuculline became
wider (Fig. 6B, red) compared with the
results obtained for spontaneous GDPs
without bicuculline (Fig. 6B, green) (see
also Fig. 2E). This suggests that GABAer-
gic inhibition plays a role not only in the
initiation, but also in the shaping of syn-
chronous network burst structure. In ad-
dition, the number of neurons that were
activated by electrical stimulation was re-
duced in the presence of bicuculline (only
�50% cells responded to all four electrical
stimuli). However, the phenomenon of de-
terministic activation order was maintained
among the responding cells in bicuculline,
as the average Pearson’s r value for four
bursts (six pairs) was 0.613 (range 0.509 to
0.771, all significant correlations).

Interictal bursts
We observed synchronous network bursts
that were completely blocked by bicucul-
line in many slices, particularly those pre-
pared from rats. However, bicuculline did
not always block spontaneous synchro-
nous bursts. In 11 slices prepared from 7
mice, aged between P4 and P6, bicuculline
application decreased the frequency of oc-
currence of spontaneous synchronous
events, and increased the amplitude and
intensity of these responses. This observa-

Figure 6. Effect of blockade of GABAergic inhibition on burst characteristics—two distinct effects. A, Raster plots of color-
coded fluorescence intensity (�F/F0) versus time for 50 cells, in the presence of bicuculline (top) and during stimulation in the
presence of bicuculline (bottom, 15 s intervals). Addition of bicuculline (10 �M) completely blocked GDP bursts, recorded from the
same slice as shown in Figure 1–3, prepared from P5 rat. Note that bicuculline did not block nonsynchronous activity and that
synchronous bursts could still be induced by electrical stimulation. B, Plot of onset time distribution for GDPs (green), evoked
responses in the absence of bicuculline (blue), and evoked responses in the presence of bicuculline (red). Note that evoked
responses without bicuculline exhibited a tighter temporal distribution and bursts evoked in the presence of bicuculline a wider
temporal distribution than GDPs. C, Bicuculline did not block spontaneous network bursts in every preparation. Top, Raster plots of
color-coded �F/F0 versus time for 75 cells for spontaneous synchronous network bursts (P5 mouse). Bottom, 10 �M bicuculline did
not block spontaneous network bursts but induced extremely synchronous and intense events. These network bursts were termed
interictal bursts in the presence of bicuculline. D, Plot of cellular activity onset time distribution of interictal bursts (purple dots)
revealed that cellular activation times were much tighter (30 – 40 ms window) than spontaneous bursts without bicuculline
(green; 200 –250 ms window). E, Fluorescence traces (�F/F0) from three representative cells in C. Spontaneous bursts
(GDPs) on the left and spontaneous bursts under bicuculline (interictal bursts) on the right. Note that right traces in each
panel are at an enhanced time scale. The intense interictal activity resulted in higher peak �F/F0 values in individual
neurons, which decayed more slowly than that seen during GDPs. The rising phase of �F/F0 traces during interictal activity
was also faster than that of GDPs.

Table 3. Class assignment by LC analysis—GDPs and evoked bursts

Group Mean (SE)a (ms)
Number of cells assigned
to classb

Number assigned with
high probabilityc

GDPs
Early 
45.0 (11.1) 10 (13%) 5 (50%)
Middle 0 (11.2) 60 (79%) 56 (93%)
Late �116 (13.3) 6 (8%) 5 (83%)

Evoked bursts
Early 
80.9 (28.5) 7 (9%) 3 (43%)
Majority 0 (5.15) 68 (91%) 62 (91%)

LC model analysis found three classes as the best fit model for GDPs. Mean values were obtained from the intercept
of the class-specific spline curve, with the SD indicating the distribution (variability) of each class. We arbitrarily
named these three classes as early, middle, and late, based on the mean value. Class assignment was conducted
based on maximum posterior probability for membership of each cell to each class (examples of posterior probability
are presented in Fig. 5B). Of 76 cells analyzed, 10 cells were assigned to the early class, of which 5 cells were assigned
with high probability. Six cells were assigned to the late class, with the majority of the cells (60 cells) assigned to the
middle class. For evoked bursts, LC model analysis found two classes as the best fit model. We arbitrarily named the
two classes early and majority, based on the mean value. Among 75 cells, 7 cells were assigned to the early class (3
cells with high probability).
aOffset in middle class was defined as 0.
bBased on maximum posterior probability across all classes.
cBased on maximum posterior probability of at least 0.90.
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tion was also described by Le Magueresse et al. (2006), who at-
tributed this phenomenon to the emergence of epileptiform
interictal discharges upon GABA blockade. Figure 6C illustrates
this effect of bicuculline, depicting time raster plots of cellular
fluorescence responses during spontaneous network bursts be-
fore (Fig. 6C, top) and after (Fig. 6C, bottom) the addition of 10
�M bicuculline to a slice prepared from a P5 mouse. Interestingly,
and in contrast to the evoked burst responses in bicuculline de-
picted in Fig. 6A, the onset time distribution of bicuculline-
transformed interictal activity was much tighter than that seen
for spontaneous events before treatment (Fig. 6D), with all acti-
vation latencies falling within a range of three frames (33 ms),
compared with �200 ms for control slices. The intense inter-
ictal activity resulted in higher peak �F/F0 values in individual
neurons (peak �F/F0 up to 80%), which decayed more slowly
(�5 s) than that seen during GDPs (which exhibited a peak
�F/F0 up to 40% with a decay in �2 s). The rising phase of
�F/F0 traces during interictal activity was also faster than that
of GDPs (Fig. 6 E).

To better resolve differences in cellular activation latency dur-
ing this very tightly distributed interictal activity, we enhanced
our imaging speed through the use of a faster CCD camera, which
allowed us to increase our image acquisition rate to 350 Hz. The
onset time for interictal events varied within a range of 45 ms (16
frames at enhanced resolution) as shown in Figure 7A. About
one-third of cells had spontaneous nonsynchronous runs of re-
sponses (data not shown), which on occasion could occur imme-
diately before a synchronous interictal burst, skewing the onset
time analysis. In these datasets from six interictal bursts, four
responses from four cells had responses up to 100 ms earlier than
the majority of responses. Because this was not a repeatable oc-
currence in individual cells, and spontaneous responses could

also occur not in association with network
bursts, these four data points were dis-
carded as outliers. This left responses
from a total of 37 cells that had responses
during all six waves. Correlations between
repeated measures on the same cell from
different bursts ranged from 
0.26 to
0.55, with a median correlation of 0.06 (p
value not significant). Thus, the correla-
tions were substantially weaker than for
the first dataset (Fig. 5). This indicates
that interictal bursts exhibited a less deter-
ministic burst structure than that seen
during GDPs, associated with a more ran-
dom neuronal activation order in re-
peated bursts.

To further examine this issue, we applied
the latent class model to interictal burst dis-
charges, using data from all 49 cells with a

response to one or more of the six bursts, including the outliers. The
latent class analysis identified two classes as the best fit model. Means
and SDs for the two classes from the best-fitting latent class model
are shown in Table 4. We termed the classes as “minor” and “major”.
All but three of the cells were assigned to the major class. Three cells
were assigned to the minor class. Of these, two cells were assigned to
the minor class with high posterior probability (�90%). In contrast
to the data in Figure 5 derived for GDPs, the three cells in the minor
class did not represent a distinct group, as the median onset time for
these cells was not different from that in cells in the major class (Fig.
7B). Rather, each cell in the minor group had three of the four most
extreme negative outcomes in the multiburst dataset, i.e., outliers.
These outliers appear to be highly influential in forcing the latent
class model to have two groups. Thus, while our analysis found two
groups in these data, the results are much less consistent with the
notion of a group of early responders. Our conclusion from this
analysis is that interictal bursts exhibit little in the way of robust class
structure, and therefore are composed of a population of neurons
exhibiting stochastic (nonordered) firing latencies during synchro-
nous network activation.

Discussion
GDP network bursts in CA3 are deterministic
In the present study, derived from a detailed microcircuit analy-
sis, we found that there is a consistent, deterministic neuronal
activation order underlying GDPs, which is distinct from the
effects of cellular location or the propagation characteristics of
these events. Statistical approaches demonstrating this phenom-
enon included a high correlation coefficient in neuronal firing
latency from burst to burst after minimizing the cellular location
factor, and distinct classes representing both early and late firing
neuron populations in LC analysis. This contrasted with cell fir-
ing orders resolved during spontaneous interictal bursts, which
appeared stochastic, with no cells repeatedly leading or lagging in
firing latency during these events.

The spontaneous synchronous network bursts shown in Fig-
ures 2–5 fit the characteristics of GDPs reported in the literature:
they are observed in early postnatal ages, recur at repeated inter-
vals, are sensitive to GABAA receptor antagonists (bicuculline),
and exhibit a broad temporal spread of neuronal activation tim-
ing (Ben-Ari et al., 2007). GABA operates primarily via chloride-
permeable GABAA receptor channels. During early development,
neurons have a higher intracellular chloride concentration due to
immature expression of transmembrane chloride transporters.

Figure 7. Interictal bursts. A, Onset time distribution of interictal network bursts (imaged at 350 Hz). The cell activity latency
clustered tightly (within �40 ms), with four outlier values (arrows). B, Latent class model analysis resulted in two classes as the
best fit model (see Table 4). Median onset time for each cell is plotted together with the range of values for six interictal bursts, with
class assignment in color. The four most extreme negative outcomes in the dataset were outliers, and are evident in the wide range
for one majority (green) and three minority (red) class cells. The median cell latency values for all cells overlapped.

Table 4. Class assignment by LC analysis—interictal bursts

Group Mean (SE)a (ms)
Number of cells assigned
to classb (% of total)

Number assigned with high
probabilityc (% of class)

Minority 
17.3 (3.7) 3 (7) 2 (67)
Majority 0 (1.4) 40 (93) 40 (100)

LC model analysis found two classes as the best fit model. We arbitrarily named the two classes as minority and
majority. Class assignment was conducted based on maximum posterior probability of membership for each cell to
each class. Among 43 cells, 3 cells were assigned to the minority class.
aOffset in majority class was defined as 0.
bBased on maximum posterior probability across all classes.
cBased on maximum posterior probability of at least 0.90.
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Because of this, GABA triggers an efflux of chloride, membrane
depolarization, summing in a net excitatory effect promoting AP
firing. GDPs are generated by synergetic interactions between
recurrent excitatory GABAergic and glutamatergic synapses,
combined with intrinsic regenerative conductances of CA3 neu-
rons (Khazipov et al., 1997; Sipilä et al., 2005; Ben-Ari et al.,
2007). Factors contributing to delayed action potential firing in
CA3 neurons during GDPs have been subject to detailed analysis
(Valeeva et al., 2010), where it was suggested that neuronal re-
sponses during GDPs were initiated by depolarizing IPSPs driven
by GABAergic interneurons. These IPSP depolarizations were
subthreshold for action potential firing. This required activation
of persistent Na channels by the IPSP to further depolarize the
neuron, which initiated delayed AP firing.

In our study, we found that neurons fired APs in a distribution
spanning 200 –300 ms during spontaneous GDP network bursts,
even though, in many cases, these cells were close neighbors.
Given that interneuron collaterals frequently distribute in in-
tensely local arbors, this appears inconsistent with the contention
that GABAergic interneuron activity alone can control the precise
temporal activation order of multiple, adjacent pyramidal cells.
Rather, we hypothesize that the activity of GABAergic neurons
may control the global propagation direction, creating condi-
tions amenable for pyramidal cells to fire APs, but the activation
timing is determined by the distinct intrinsic properties, and per-
haps anatomy, of the pyramidal cells (Ropireddy et al., 2011). We
further hypothesize that the early, middle, or late class member-
ship determined by the LC analysis is directly related to intrinsic,
cellular properties such as transmembrane chloride gradients,
resting membrane potential, and/or sodium or calcium channel
activity. This may allow subsets of cells to respond more strongly
(activate more readily) to smaller depolarizing inputs. We also
speculate that class membership determined by the LC analysis
could also be related to differences in synaptic connectivity or
dendritic anatomy of individual pyramidal neurons. Neurons
with more widely distributed dendrites may collect synaptic in-
put (activity) from broader areas relative to a lesser neighbor,
which could allow this cell to become a watchful early responder
in wave propagation. Similarly, if a neuron has a more tightly
distributed dendritic tree, it may be able to collect recurrent col-
laterals only from its own immediate neighbors, relegating this
neuron to a follower role.

The fact that waves propagated in different directions within
the same microcircuit (Fig. 3) suggests that there are numerous
burst-initiating locations within a slice. As depicted in Fig. 5D,
our analysis showed that early responders were not necessarily
the earliest activating cells within an image field, suggesting these
early responders were not burst initiators. Because of their loca-
tion (cell body layer) and cell body morphology (no larger than
other cells), and the fact that we did not observe continuous firing
in these early responders (which might be a characteristic of in-
terneurons), we speculate these neurons are subsets of CA3 py-
ramidal cells. Early responders, once activated, could activate
other principal neurons or interneurons through recurrent col-
laterals. Those secondary neurons could further activate other
principal cells. Thus, it is possible that, without those early re-
sponders, GDPs may not propagate as effectively, nor recruit the
same large proportion of neurons into the burst.

If the role of GDPs is to form functional connectivity by fire
together-wire together mechanisms in developing hippocampal
networks (Ben-Ari et al., 2007), the deterministic firing order we
saw in our experiments (Fig. 4) may have a significant role in
forming temporally important wiring patterns. The fact that

GDPs are so synchronous and activate such a large proportion of
the network makes it unlikely that the GDP itself can carry cog-
nitive information. However, the temporal patterns activated
during the GDP may be important in future coding, where any
two neurons that express associated temporal delays can carry
important information in a temporal coding mechanism (Van-
Rullen et al., 2005). It is also possible that the delayed activation in
CA3 may have significant effects on downstream (CA1) signal
transmission by delayed coactivation mechanisms (Izhikevich
and Hoppensteadt, 2009).

The importance of deterministic firing order in synchronous
network bursts and the possible role of this phenomenon in neu-
ronal coding has been examined previously (Beggs and Plenz,
2004). These investigators studied cultured cortical slices using a
multielectrode array and analyzed network bursts. They also
found several repeatable activation orders, albeit within a time
scale of �10 ms (compared with the 200 –300 ms timescale of
GDPs) (Fig. 4). In another multielectrode array recording study
from sensory cortex in vivo, population spikes caused by sensory
stimuli as well as spontaneous events were analyzed (Luczak et al.,
2009). These investigators also found a repeatable, sequential
neuronal activation order that lasted �100 ms. They argued that
the patterns of activation order and frequency response com-
prised the “vocabulary” of coding for sensory inputs.

Bicuculline-induced interictal bursts are stochastic
Without the inhibitory synaptic transmission mediated by
GABAergic neurons and possibly GABA release from mossy fi-
bers (Safiulina et al., 2010), the CA3 network is mainly composed
of glutamatergic excitatory principal cells and their recurrent col-
laterals. In contrast to GDPs, our experimental analyses could not
identify any evidence for ordered burst structure (e.g., early or
late responder groups) in interictal bursts occurring in the pres-
ence of bicuculline, seen exclusively in slices prepared from mice.
Interictal bursts appear to be quite distinct from GDPs, implicat-
ing inhibitory synaptic transmission as critical both in the initi-
ation and shaping of GDPs. Several studies have examined
network burst generation mechanisms in disinhibited hip-
pocampal networks (Miles and Wong, 1983; de la Prida et al.,
2006; Jones et al., 2007). Using electrophysiology, de la Prida et al.
(2006) demonstrated that initiation of spontaneous population
bursts in disinhibited CA3 region followed a buildup of synaptic
excitation and firing to a threshold level, which could take as long
as 50 ms. This group also showed that activation of a single neu-
ron could induce a network burst when the timing matched with
the recovery period from the previous bursts (Jones et al., 2007)
(see also Miles and Wong, 1983), and furthermore, that �50% of
cells they investigated had the capability to induce a network
burst, suggesting that many cells could initiate buildup of cellular
activity that leads to a population burst, supporting a stochastic
process underlying burst generation. In our experiments, it is
possible that the outliers we saw in Figure 7B might correspond to
a similar buildup of activity. Since the cells that fired early did not
retain this role repeatedly from burst to burst, we viewed the early
firing phenomenon to be a stochastic process. The median onset
time of these cells was not different from the remaining popula-
tion (Fig. 7B), suggesting that the network was composed of a
relatively homogeneous population. This may be due to the fact
that blocking interneuronal contributions to spontaneous net-
work bursts created a much simpler network composed of only
glutamatergic recurrent circuits.

Computational modeling studies examining mechanisms of
network burst generation in homogeneous networks composed
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of only one cell type with varied connectivity and excitability
parameters have found that a homogeneous population could
generate network bursts when cells have high connectivity and
random wiring (Izhikevich, 2003). Additional modeling of neu-
ronal avalanches showed that synchronous bursts were generated
in noisy systems and did not require a self-organized, determin-
istic network (Benayoun et al., 2010). These modeling studies
suggest that network bursts such as interictal activity in our ex-
periments could be generated by stochastic mechanism without
having a specific cell type that initiates these events.

In contrast to the above discussion on homogeneity, popula-
tions of bursters have been found in area CA1 in the high K�

model of epilepsy as well as in tissue prepared from animal mod-
els of epilepsy (Jensen and Yaari, 1997; Sanabria et al., 2001;
Becker et al., 2008; Chen et al., 2011). These investigators hypoth-
esized that CA1 population bursts were generated by excitatory
input from CA3 activating a burster population in CA1 first,
followed by these bursters recruiting regular pyramidal cells by
local electrical field or local synaptic interactions. In area CA1 of
brain slices prepared from epileptic animals, a significant propor-
tion of cells (up to 47%) were found to be bursters, and activation
of an individual burster neuron could trigger interictal events.
The computational modeling study by Bogaard et al. (2009) also
explored the role of heterogeneous populations on network burst
generation. When two types of bursting characteristics were
mixed, only a small percentage (10%) of a bursting-favorable cell
types could have a significant effect on network burst generation
and its pattern. This complex burst-generating mechanism,
where heterogeneous populations (deterministic, defined by in-
trinsic properties of individual neurons) act on a stochastic pro-
cess—a hybrid mechanism—may be the realistic model of actual
bursting mechanism in epileptic brains.

Notes
Supplemental material for this article is available at https://dbe.med.
upenn.edu/biostat-research/MaryEPutt. Latent class analysis. Thi
material has not been peer reviewed.
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