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Abstract
Although Bayesian nonparametric mixture models for continuous data are well developed, there is
a limited literature on related approaches for count data. A common strategy is to use a mixture of
Poissons, which unfortunately is quite restrictive in not accounting for distributions having
variance less than the mean. Other approaches include mixing multinomials, which requires finite
support, and using a Dirichlet process prior with a Poisson base measure, which does not allow
smooth deviations from the Poisson. As a broad class of alternative models, we propose to use
nonparametric mixtures of rounded continuous kernels. An efficient Gibbs sampler is developed
for posterior computation, and a simulation study is performed to assess performance. Focusing on
the rounded Gaussian case, we generalize the modeling framework to account for multivariate
count data, joint modeling with continuous and categorical variables, and other complications. The
methods are illustrated through applications to a developmental toxicity study and marketing data.
This article has supplementary material online.
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1. INTRODUCTION
Nonparametric methods for estimation of continuous densities are well developed in the
literature from both a Bayesian and frequentist perspective. For example, for Bayesian
density estimation, one can use a Dirichlet process (DP) (Ferguson 1973, 1974) mixture of
Gaussians kernels (Lo 1984; Escobar and West 1995) to obtain a prior for the unknown
density. Such a prior can be chosen to have dense support on the set of densities with respect
to Lebesgue measure. Ghosal et al. (1999) show that the posterior probability assigned to
neighborhoods of the true density converges to one exponentially fast as the sample size
increases, so that consistent estimates are obtained. Similar results can be obtained for
nonparametric mixtures of various non-Gaussian kernels using tools developed in Wu and
Ghosal (2008).

In this article our focus is on nonparametric Bayesian modeling of counts using related
nonparametric kernel mixture priors to those developed for estimation of continuous
densities. There are several strategies that have been proposed in the literature for
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nonparametric modeling of count distributions having support on the non-negative integers
. The first is to use a mixture of Poissons

(1)

with Poi(j; λ) = λj exp(−λ)/j! and P a mixture distribution. When P is chosen to correspond
to a Ga(ϕ, ϕ) distribution on the Poisson rate parameter, one induces a negative-binomial
distribution, which accounts for over-dispersion with the variance greater than the mean.
Generalizations of (1) to include predictors and random effects within a log-linear model for
λ are widely used. A review of the properties of Poisson mixtures is provided in Karlis and
Xekalaki (2005).

As a more flexible nonparametric approach, one can instead choose a DP mixture of
Poissons by letting P ~ DP(αP0), with α the DP precision parameter and P0 the base
measure. As the DP prior implies that P is almost surely discrete, we obtain

(2)

with π = {πh} ~ Stick(α) denoting that the π are random weights drawn from the stick-
breaking process of Sethuraman (1994). Krnjajic et al. (2008) recently considered a related
approach motivated by a case control study. Dunson (2005) proposed an approach for
nonparametric estimation of a non-decreasing mean function, with the conditional
distribution modeled as a DPM of Poissons. Kleinman and Ibrahim (1998) proposed to use a
DP prior for the random effects in a generalized linear mixed model. Guha (2008) recently
proposed more efficient computational algorithms for related models. Chen et al. (2002)
considered nonparametric random effect distributions in frequentist generalized linear mixed
models.

On the surface, model (2) seems extremely flexible and to provide a natural modification of
the DPM of Gaussians used for continuous densities. However, as the Poisson kernel used in
the mixture has a single parameter corresponding to both the location and scale, the resulting
prior on the count distribution is actually quite inflexible. For example, distributions that are
under-dispersed cannot be approximated and will not be consistently estimated. One can
potentially use mixture of multinomials instead of Poissons, but this requires a bound on the
range in the count variable and the multinomial kernel is almost too flexible in being
parametrized by a probability vector equal in dimension to the number of support points.
Kernel mixture models tend to have the best performance when the effective number of
parameters is small. For example, most continuous densities can be accurately approximated
using a small number of Gaussian kernels having varying locations and scales. It would be
appealing to have such an approach available also for counts.

An alternative nonparametric Bayes approach would avoid a mixture specification and
instead let yi ~ P with P ~ DP(αP0) and P0 corresponding to a base parametric distribution,
such as a Poisson. Carota and Parmigiani (2002) proposed a generalization of this approach
in which they modeled the base distribution as dependent on covariates through a Poisson
log-linear model. Although this model is clearly flexible, there are some major
disadvantages. To illustrate the problems that can arise, first note that the posterior
distribution of P given iid draws yn = (y1, … , yn)’ is simply
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with δy a degenerate distribution with all its mass at y. Hence, the posterior is centred on a
mixture with weight proportional to α on the Poisson base P0 and weight proportional to n
on the empirical probability mass function. There is no allowance for smooth deviations
from the base.

As a motivating application, we consider data from a developmental toxicity study of
ethylene glycol in mice conducted by the National Toxicology Program (Price et al. 1985).
As in many biological applications in which there are constraints on the range of the counts,
the data are underdispersed having mean 12.54 and variance 6.78. A histogram of the raw
data for the control group (25 subjects) is shown in Figure 1 along with a series of estimates
of the posterior mean of Pr(Y = j) assuming yi ~ P with P ~ DP(αP0), α= 1 or 5, and

 as an empirical Bayes choice. To illustrate the behavior as the sample size
increases we take random subsamples of the data of size ns ∈ {5, 10}. As Figures 1 and 2
illustrates, the lack of smoothing in the Bayes estimate is unappealing in not allowing
borrowing of information about local deviations from P0. In particular for small sample size
as in Figure 2 the posterior mean probability mass function corresponds to the base measure
with high peaks on the observed y. As the sample size increases, the empirical probability
mass function increasingly dominates the base.

With this motivation, we propose a general class of kernel mixture models for count data,
with the kernels induced through rounding of continuous kernels. Such rounded kernels are
highly flexible and tend to have excellent performance in small samples. Methods are
developed for efficient posterior computation using a simple data augmentation Gibbs
sampler, which adapts approaches for computation in DPMs of Gaussians. Simulation
studies are conducted to assess performance and the methods are applied to the
developmental toxicity data and a marketing application.

2. UNIVARIATE ROUNDED KERNEL MIXTURE PRIORS
2.1 Rounding continuous distributions

In the univariate case, letting  denote a count random variable, our goal is to specify a
prior for the probability mass function p of this random variable. Following the philosophy
of Ferguson (1973), nonparametric priors for unknown distributions should be interpretable,
have large support and lead to straightforward posterior computation. We propose a simple
approach that induces Π through first choosing a prior Π* for the density f of a continuous
random variable  and then rounding  to obtain . Here,  is either the
real line  or a measurable subset. As we will show, this approach clearly leads to all three
of the desirable properties mentioned by Ferguson and additionally is easily generalizable to
more complex cases involving multivariate modeling of counts jointly with continuous and
categorical variables and nonparametric regression for counts.

Focusing first on the univariate case, let y = h(y*), where h(·) is a rounding function defined
so that h(y*) = j if y* ∈ (aj, aj+1], for j = 0, 1, … , ∞, with a0 < a1 < … an infinite sequence
of pre-specified thresholds that defines a disjoint partition of . For example, when 

one can simply choose  as {−∞, 0, 1, 2, … , ∞}. The probability mass function p
of y is p = g(f), where g(·) is a rounding function having the simple form
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(3)

The thresholds aj are such that ,  and hence

.

Relating ordered categorical data to underlying continuous variables is quite common in the
literature. For example, Albert and Chib (1993) proposed a very widely used class of data
augmentation Gibbs sampling algorithms for probit models. In such settings, one typically
lets a0 = −∞ and a1 = 0, while estimating the remaining k – 2 thresholds, with k denoting
the number of levels of the categorical variable. A number of authors have relaxed the
assumption of the probit link function through the use of nonparametric mixing. For
example, Kottas et al. (2005) generalized the multivariate probit model by using a mixture
of normals in place of a single multivariate normal for the underlying scores, with Jara et al.
(2007) proposing a related approach for correlated binary data. Gill and Casella (2009)
instead used Dirichlet process mixture priors for the random effects in an ordered probit
model.

In the setting of count data, instead of estimating the thresholds on the underlying variables,
we use a fixed sequence of thresholds and rely on flexibility in nonparametric modeling of f
to induce a flexible prior on p. In order to assign a prior Π on the space of count
distributions, it is sufficient under this formulation to specify a prior Π* on the space  of
densities with respect to Lesbesgue measure on . In Section 2.3, we demonstrate that the
induced prior P ~ Π for the count probability mass function satisfies Ferguson’s desired
properties of interpretability and large support.

2.2 Some examples of rounded kernel mixture prior
For appropriate choices of kernel, it is well known that kernel mixtures can accurately
approximate a rich variety of densities, with Dirichlet process mixtures of Gaussians
forming a standard choice for densities on . Hence, in our setting a natural choice of prior
for the underlying continuous density corresponds to

(4)

where N(y; μ, τ−1) is a normal kernel having mean μ and precision τ and  is a prior on the
mixing measure P, with a convenient choice corresponding to the Dirichlet process
DP(αP0), with P0 chosen to be Normal-Gamma. Let Π* denote the prior on f induced
through (4) and let denote the resulting prior on p induced through (3) with the thresholds
chosen as a0 = −∞ and aj = j – 1 for j ∈ {1, 2, … }.

Other choices can be made for the prior on the underlying continuous density, such as
mixtures of log-normal, gamma or Weibull densities with aj = j. However, we will focus on
the class of DP mixtures of rounded Gaussian kernels for computational convenience and
because there is no clear reason to prefer an alternative choice of kernel or mixing prior
from an applied or theoretical perspective. This choice leads to all three of the desired
Ferguson properties of a nonparametric prior.

2.3 Some properties of the prior
Let Π denote the prior on p defined in Section 2.2, with F denoting the cumulative
distribution function corresponding to the density f. As p is a random probability mass
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function, it is of substantial interest to define the prior expectation and variance of p(j). In
what follows we show that the prior mean and variance have a simple form under the
proposed prior, leading to ease in interpretation and facilitating prior elicitation through
centering on an initial guess for p. Clearly

One can express the expected value of F(aj) marginalizing over the prior  as

Assuming  with P0 = N(μ; μ0, κτ−1)Ga(τ; ν/2,ν/2) we have

(5)

where  is the cdf of a non central Student-t distribution with ν degrees of freedom,
location ξ and scale ω. Hence, the expected probability of y = j is simply a difference in t
cdfs having ν degrees of freedom, mean μ0, and scale κ + 1. Setting μ0 = 0 and κ = 1 for
identifiability, the prior for p can be centered to have expectation exactly equal to an
arbitrary pmf q chosen to represent one’s prior beliefs simply by moving around the
thresholds; a simple iterative algorithm for choosing a to enforce E{p(j)} = q(j), for j = 0, 1,
… is shown below. Although we can conceptually define an infinite sequence of thresholds,

practically it is sufficient to define E{p(j)} = q(j), for j = 0, 1, … , J with 
and let the remaining aj for j = J + 1, … to be equispaced with unit step.

The variance can be computed along similar lines. Let FD(a, b) = F(b) – F(a), Φ(a; ξ, ω) the
cumulative distribution function of a normal with mean ξ and variance ω, ΦD(a, b; χ, ω) =
Φ(b; ξ, ω) – Φ(a; ξ, ω) and ,

(6)

The expected value of the squared normal cdf is with respect to P0 and can be computed
numerically. The derivations are outlined in the supplemental materials.

In the presence of prior information on the random p, one can define the sequence of aj
iteratively in order to let E{p(j)} = q(j), where q is an initial guess for the probability mass
function, defined for all j. Result (5), with μ0 and κ fixed to 0 and 1, leads to define the
thresholds iteratively as
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From the above, it is clear that the prior is interpretable to the extent that simple expressions
exist for the mean and variance that can be used in prior elicitation. In addition, as we will
show the prior has appealing theoretical properties in terms of large support and posterior
consistency. Large Kullback-Leibler support of the prior Π is straightforward if we start
from a prior Π* with such a property. Lemma 1, in fact, demonstrates that the mapping

 maintains Kullback-Leibler neighborhoods and, as is formalised in Theorem 1,
this property implies that the induced prior p ~ Π assigns positive probability to all
Kullback-Leibler neighbourhoods of any  if at least one element of the set g−1(p0) is
in the Kullback-Leibler support of the prior Π*. By using conditions of Wu and Ghosal
(2008), the Kullback-Leibler condition becomes straightforward to demonstrate for a broad
class of kernel mixture priors Π*.

Lemma 1—Assume that the true density of a count random variable is p0 and choose any
f0 such that p0 = g(f0). Let  be a Kullback-Leibler neighbourhood
of size ∊ around f0. Then the image  contains values  in a Kullback-Leibler
neighbourhood of p0 of at most size ∊.

Theorem 1—Given a prior Π* on  such that all  are in the Kullback-
Leibler support of Π*, then all  are in the Kullback-Leibler support of Π.

Theorem 1 follows directly from Lemma 1, because for every  by Lemma 1 we have
.

A direct consequence of Theorem 1 is that, under the theory of Schwartz (1965), the
posterior probability of any weak neighbourhood around the true data-generating
distribution  converges to one with Pp0-probability 1 as n → ∞.

Theorem 2 points out that in the space of probability mass functions weak consistency
implies strong consistency in the L1 sense. This implies that the Kullback-Leibler condition
is sufficient for strong consistency in modeling count distributions.

Theorem 2—Given a prior p ~ Π for a probability mass function , if the posterior
Π(·∣y1, … , yn) is weakly consistent, then it is also strongly consistent in the L1 sense.

2.4 A Gibbs sampling algorithm
For posterior computation, we can trivially adapted any existing MCMC algorithm
developed for DPMs of Gaussians with a simple data augmentation step for imputing the
underlying variables. For simplicity in describing the details, we focus on the blocked Gibbs

sampler of Ishwaran and James (2001), with  with π1 = V1, πh
= Vh∏l<h(1 − Vl), Vh independent Beta(1,α) and VN = 1. Modifications to avoid truncation
can be applied using slice sampling as described in Walker (2007) and Yau et al. (2010).
The blocked Gibbs sampling steps are as follows:
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Step 1 Generate each  from the full conditional posterior

Step 1a Generatge 

Step 1b Let 

Step 2 Update Si from its multinomial conditional posterior with

where .

Step 3 Update the stick-breaking weights using

Step 4 Update (μh, τh) from its conditional posterior

with , , 

and .

2.5 Simulation study
To assess the performance of the proposed approach, we conducted a simulation study. Four
different approaches for estimating the probability mass function were compared to our
proposed rounded mixture of Gaussians (RMG): the empirical probability mass function (E),
two Bayesian nonparametric approaches, with the first assuming a Dirichlet process prior
with a Poisson base measure (DP) and the second using a Dirichlet process mixture of
Poisson kernels (DPM-Pois), and lastly the maximum likelihood estimate under a Poisson
model (MLE). Several simulations have been run under different simulation settings leading
to qualitatively similar results. In what follows we report the results for four scenarios. The
first simulation case, henceforth scenario (a), assumed the data were simulated as the floor
of draws from the mixture of Gaussians given by 0.4N(25, 1.5) + 0.15N(20, 1) + 0.25N(24,
1) + 0.2N(21, 2), the second scenario (b), assumed a simple Poisson model with mean 12,
the third (c) assumed the mixture of Poissons given by 0.4Poi(1) + 0.25Poi(3) + 0.25Poi(5)
+ 0.1Poi(13), while the last one (scenario (d)) assumed an underdispersed probability mass
function, the Conway-Maxwell-Poisson distribution (Shmueli et al. 2005) with parameters λ
= 30 and ν = 3.

For each case, we generated sample sizes of n = 10, 25, 50, 100, 300. Each of the five
analysis approaches were applied to R = 1, 000 replicated data sets under each scenario. The
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methods were compared based on a Monte Carlo approximation to the mean Bhattacharya
distance (BCD) and Kullback-Leibler divergence (KLD) calculated as

where we take the sums across the range of the observed data ± a buffer of 10.

In implementing the blocked Gibbs sampler for the rounded mixture of Gaussians, the first
1, 000 iterations were discarded as a burn-in and the next 10, 000 samples were used to
calculate the posterior mean of . For the hyperparameters, as a default empirical Bayes
approach, we chose , the sample mean, and κ = s2, the sample variance, and aτ = bτ =
1. The precision parameter of the DP prior was set equal to one as a commonly used default
and the truncation level N is set to be equal to the sample size of each sample. We also tried
reasonable alternative choices of prior, such as placing a gamma hyperprior on the DP
precision, for smaller numbers of simulations and obtained similar results. The values of p(j)
for a wide variety of js were monitored to gauge rates of apparent convergence and mixing.
The trace plots showed excellent mixing, and the Geweke (1992) diagnostic suggested very
rapid convergence.

The DP approach used  as the base measure, with α = 1 or α ~ Ga(1, 1) considered as
alternatives. For fixed α, the posterior is available in closed form, while for α ~ Ga(1, 1) we
implemented a Metropolis-Hastings normal random walk to update log α, with the algorithm
run for 10, 000 iterations with a 1, 000 iterations burn-in.

The blocked Gibbs sampler (Ishwaran and James 2001) was used for posterior computation
in the DPM-Pois model, with the first 1,000 iterations discarded as a burn-in and the next
10,000 samples used to calculate the posterior mean . A gamma base measure with
hyperparameters a = b = 1 was chosen within the DP while the precision parameter was
fixed to α = 1.

The results of the simulation are reported in Table 1. The proposed method performs better,
in terms of BCD and KLD, than the other methods when the truth is underdispersed and
clearly not Poisson, as in the first scenario. As expected, when we simulated data under a
Poisson model the MLE under a Poisson model and the DPM of Poissons performs slightly
better than the proposed RMG approach in very small samples. However, even in modest
sample sizes of n = 25, the RMG approach was surprisingly competitive when the truth was
Poisson. Interesting, when the truth was a mixture of Poissons (third scenario) we obtained
much better performance for the RMG approach than the DPM-Pois model. The ∞ recorded
for the empirical estimation is due to the presence of p(j) exactly equal to zero if we do not
observe any y = j.

We also calculated the empirical coverage of 95% credible intervals for the p(j)s. These
intervals were estimated as the 2.5th to 97.5th percentiles of the samples collected after
burn-in for each p(j), with a small buffer of ±1e – 08 added to accommodate numerical
approximation error. The plots in Figure 3 report the results with j on the x-axis for the
second and third scenario and sample size n = 50. We found qualitatively similar results for
other scenarios and sample sizes and we report a plot for each of them in the sumpplemental
materials. The effective coverage of the credible intervals for p(j) for the RMG fluctuates
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around the nominal value for all the scenarios and sample sizes. However using the Dirichlet
process prior we get an effective coverage that is either strongly less than the nominal levels,
or much too high, due to too wide credible intervals. For DP-Pois, we obtain coverage close
to the nominal level only at the values of j such that the true p(j) is high enough so that
substantial numbers of observations fall at that value.

3. MULTIVARIATE ROUNDED KERNEL MIXTURE PRIORS
3.1 Multivariate counts

Multivariate count data are quite common in a broad class of disciplines, such as marketing,
epidemiology and industrial statistics among others. Most multivariate methods for count
data rely on multivariate Poisson models (Johnson et al. 1997) which have the unpleasant
characteristic of not allowing negative correlation.

Mixtures of Poissons have been proposed to allow more flexibility in modeling multivariate
counts (Meligkotsidou 2007). A common alternative strategy is to use a random effects
model, which incorporates shared latent factors in Poisson log-linear models for each
individual count (Moustaki and Knott 2000; Dunson 2000, 2003). A broad class of latent
factor models for counts is considered by Wedel et al. (2003).

Copula models are an alternative approach to model the dependence among multivariate
data. A p-variate copula C(u1, … , up) is a p-variate distribution defined on the p-
dimensional unit cube such that every marginal distribution is uniform on [0, 1]. Hence if Fj
is the CDF of a univariate random variable Yj, then C(F1(y1), … , Fp(yp)) is a p-variate
distribution for Y = (Y1, … , Yp) with Fjs as marginals. A specific copula model for
multivariate counts is recently proposed by Nikoloulopoulos and Karlis (2010). Copula
models are built for a general probability distribution and can hence be used to model jointly
data of diverse type, including counts, binary data and continuous data. A very flexible
copula model that considers variables having different measurement scales is proposed by
Hoff (2007). This method is focused on modeling the association among variables with the
marginals treated as a nuisance.

We propose a multivariate rounded kernel mixture prior that can flexibly characterize the
entire joint distribution including the marginals and dependence structure, while leading to
straightforward and efficient computation. The use of underlying Gaussian mixtures easily
allows the joint modeling of variables on different measurement scales including continuous
variables, categorical and counts. In the past, it was hard to deal with counts jointly using
such underlying Gaussian models unless one inappropriately treated counts as either
categorical or continuous. In addition we can naturally do inference on the whole
multivariate density, on the marginals or on conditional distributions of one variable given
the others.

3.2 Multivariate rounded mixture of Gaussians
Each concept of Section 2 can be easily generalized into its multivariate counterpart. First
assume that the multivariate count vector y = (y1, … , yp) is the transformation through a
threshold mapping function h of a latent continuous vector y*. In a general setting we have

(7)
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where Kp(·; θ, Ω) is a p-variate kernel with location θ and scale-association matrix Ω and 
is a prior for the mixing distribution. The mapping h(y*) = y implies that the probability
mass function p of y is

(8)

where  defines a disjoint partition of the
sample space. Marginally this formulation is the same of that in (3).

Remark 1—Lemma 1 and Theorem 1 demonstrate that in the univariate case the mapping
 maintains Kullback-Leibler neighborhoods and hence the induced prior Π

assigns positive probability to all Kullback-Leibler neighbourhoods of any . This
property holds also in the multivariate case.

The true p0 is in the Kullback-Leibler support of our prior, and hence we obtain weak and
strong posterior consistency following the theory of Section 2, as long as there exists at least
one multivariate density f0 = g−1(p0) that falls in the KL support of the mixture prior for f
described in (6). In the sequel, we will assume that Kp corresponds to a multivariate
Gaussian kernel and  is DP(αP0), with P0 corresponding to a normal inverse-Wishart base
measure. Wu & Ghosal (2008) showed that certain DP location mixtures of multivariate
Gaussians support all densities f0 satisfying a mild regularity condition. The size of the KL
support of the DP location-scale mixture of multivariate Gaussians has not been formalized
(to our knowledge), but it is certainly very large, suggesting informally that we will obtain
posterior consistency at almost all p0.

3.3 Out of sample prediction
Focusing on Dirichlet process mixtures of underlying Gaussians, we let the mixing
distribution in (7) be P ~ DP(αP0) with base measure P0 = Np(μ; μ0, κ0∑)Inv-W(∑; ν0, S0).
To evaluate the performance, we simulated 100 data sets from two scenarios. The first is the
mixture

with π = (π1, π2, π3) = (0.14, 0.40, 0.46), μ1 = (35, 82, 95), μ2 = (−2, 1, 2.5), μ3 = (12, 29,
37) and variance-covariance matrices

with the continuous observation floored and all negative values set equal to zero leading to a
multivariate zero-inflated count distribution. The second scenario is a mixture of
multivariate Poisson distributions (Johnson et al. 1997)

with λ1 = (1, 8, 15), λ2 = c(8, 1, 3),  and π = 0.7.
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The samples were split into training and test subsets containing 50 observations each, with
the Gibbs sampler applied to the training data and the results used to predict yi1 given yi2
and yi3 in the test sample. This approach modifies Müller et al. (1996) to accomodate count
data.

The hyperparameters were specified as follows:

(9)

with ,  the proportion of zeros in the training sample,  the mean of
the non-zero values and  with sj the empirical variance of yij, i = 1, … , n.
The Gibbs sampler reported in the Appendix was run for 10, 000 iterations with the first 4,
000 discarded. We assessed predictive performance using the absolute deviation loss, which
is more natural than squared error loss for count data. Under absolute deviation loss, the
optimal predictive value for yi1 corresponded to the median of the posterior predictive
distribution.

We compare our approach with prediction under an oracle based on the true models, Poisson
log-linear regressions fit with maximum likelihood, generalized additive models (GAM)
(Hastie et al. 2001) with spline smoothing function and generalized latent trait model
(GLTM) (Moustaki and Knott 2000; Dunson 2003) with Poisson responses. The generalized
latent trait model assumed a single latent variable which was assigned a standard normal
prior, while a vague normal prior with mean 0 and variance 20 was assigned to the factor
loadings with one of them constrained to be positive for identifiability. The out of sample
prediction was made taking the median of a MCMC chain of length 12, 000 after a burn in
of 3, 000 iterations from the posterior predictive distribution of yi1 in the test set. The results
are reported in Table 2.

An additional gain of our approach is a flexible characterization of the whole predictive
distribution of yi1 given yi2, yi3 and not just the point prediction . In addition to median
predictions, it is often of interest in applications to predict subjects having zero counts or
counts higher than a given threshold q. Based on our results, we obtained much more
accurate predictions of both yi1 = 0 and yi1 > q than either the log-linear Poisson model or
the GAM approach when the true model is not a mixture of multivariate Poissons and
prediction with similar degree of precision when the truth is a mixture of multivariate
Poissons. As an additional competitor for predicting yi1 = 0 and yi1 > q, we also considered
logistic regression, logistic GAM and a logistic latent trait model with the same prior
specification as before fitted to the appropriate dichotomized data. Based on a 0-1 loss
function that classified yi1 = 0 if the probability (posterior for our Bayes method and fitted
estimate for the logistic GLM and GAM) exceeded 0.5, we compute the misclassification
rate out-of-sample in Table 3.

4. APPLICATIONS
4.1 Application to developmental toxicity study

As a first application, we consider the developmental toxicity study mentioned in Section 1.
Pregnant mice were assigned to dose groups of 0, 750, 1,500 or 3,000 mg/kg per day, with
the number of implants measured for each mouse at the end of the experiment. Group sizes
are 25, 24, 23 and 23, respectively. The scientific interest is in studying a dose response
trend in the distribution of the number of implants. To address this, we first estimate the
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probability mass function within each group using the RMG methodology of Section 2.
Trace plots showed rapid convergence and excellent mixing, with the Geweke (1992)
diagnostic failing to show lack of convergence.

Figure 4 shows the estimated and empirical cumulative distribution functions in each group
along with 95% pointwise credible intervals and the estimates from a DPM of Poissons
analysis. Clearly, the DPM of Poissons provided a poor fit to the data and hence poor
characterization of changes with dose, while the proposed RMG method provided an
excellent fit for each group. To summarize changes in the distribution of the number of
implants with dose, we estimated summaries of the posterior distributions for changes in
each percentile between the control group and each of the exposed groups, with the results
shown in Figure 5. In each of the dose levels, the exposure led to a stochastic decrease in the
distribution of the number of implants, with an estimated decrease in the number of implants
at each percentile (there is a minor exception at high percentiles in the 750 mg/kg group).
The estimated posterior probabilities of a negative average change across the percentiles was
0.72, 0.99 and 0.94 in the 750, 1,500 and 3,000 mg/kg groups, respectively. These results
were consistent with Mann-Whitney pairwise comparison tests that had p-values of 0.23,
0.04 and 0.06 for stochastic decreases in the low, medium and high dose groups. In contrast,
likelihood ratio tests under a Poisson model failed to test any significant differences between
the control and exposed groups.

4.2 Application to Marketing Data
Telecommunications companies every day store plenty of information about their customer
behaviour and services usage. Mobile operators, for example, can store the daily usage
stream such as the duration of the calls or the number of text and multimedia messages sent.
Companies are often interested in profiling both customers with high usage and customers
with very low usage. Suppose that at each activation a customer is asked to simply state how
many text messages (SMS), multimedia messages (MMS) and calls they anticipate making
on average in a month and the company wants to predict the future usage of each new
customer.

We focus on data from 2, 050 SIM cards from customers having a prepayed contract, with a
multivariate yi = (yi1, … , yip) available representing usage in a month for card i.
Specifically, we have the number of outgoing calls to fixed numbers (yi1), to mobile
numbers of competing operators (yi2) and to mobile numbers of the same operator (yi3), as
well as the total number of MMS (yi4) and SMS (yi5) sent. Jointly modeling the probability
distribution f(·) of the multivariate y using a Bayesian mixture and assuming an underlying
continuous variable for the counts, we focus on the forecast of yi1, using data on yi2, … , yi5.
Some descriptive statistics of the dataset show the presence of a lot of zeros for our response
variable y1. Such zero-inflation is automatically accommodated by our method through
using thresholds that assign negative underlying  values to yij = 0 as described in Section
2.3. Excess mass at zero is induced through Gaussian kernels located at negative values.

We can model the data assuming the model in (7) with hyperparameters specifiedas in (9)
and computation implemented as in Section 3.3. A training and test set of equal size are
chosen randomly. Trace plots of yi1 for different individuals exhibit excellent rates of
convergence and mixing, with the Geweke (1992) diagnostic providing no evidence of lack
of convergence.

Our method is compared with Poisson GLM and GAM as in Section 3.3 and with a
generalized latent trait model with prior as in Section 3.3. The out-of-sample median
absolute deviation (MAD) value was 8.08 for our method, which is lower than the 8.76
obtained for the best competing method (Poisson GAM). The generalized latent trait model
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turns out to have a too restrictive structure with poor performance both computationally and
in terms of prediction (MAD of 10.63). These results were similar for multiple randomly
chosen training-test splits. Suppose the interest is in predicting customers with no outgoing
calls and highly profitable customers. We predict such customers using Bayes optimal
prediction under a 0-1 loss function. Using optimal prediction of zero-traffic customers, we
obtained lower out-of-sample misclassification rates than the Poisson GAM, but had
comparable results to logistic GAM as illustrated in the ROC curve in Figure 6 (a). Our
expectation is that the logistic GAM will have good performance when the proportion of
individuals in the subgroup of interest is ≈ 50%, but will degrade relative to our approach as
the proportion gets closer to 0% or 100%. In this application, the proportion of zeros was
69% and the sample size was not small, so logistic GAM did well. The results for predicting
highly profitable customers having more than 40 calls per month are consistent with this, as
illustrated in Figure 6 (b). It is clear that our approach had dramatically better predictive
performance.

5. DISCUSSION
The usual parametric models for count data lack flexibility in several key ways, and
nonparametric alternatives have clear disadvantages. Our proposed class of Bayesian
nonparametric mixtures of rounded continuous kernels provides a useful new approach that
can be easily implemented in a broad variety of applications. We have demonstrated some
practically appealing properties including simplicity of the formulation, ease of computation
and straightforward joint modeling of counts, categorical and continuous variables from
which is it possible to infer conditional distributions of response variables given predictors
as well as marginal and joint distributions. The proposed class of conditional distribution
models allows a count response distribution to change flexibly with multiple categorical,
count and continuous predictors.

Our approach has been applied to a marketing application using a DP mixture of
multivariate rounded Gaussians. The use of an underlying Gaussian formulation is quite
appealing in allowing straightforward generalizations in several interesting directions. For
example, for high-dimensional data instead of using an unstructured mixture of underlying
Gaussians, we could consider a mixture of factor analyzers (Gorur and Rasmussen 2009). As
an alternative we considered generalized latent trait models, which induce dependence
through incorporating shared latent variables in generalized linear models for each response
type. However, this strategy would rely on mixtures of Poisson log-linear models for count
data, which restrict the marginals to be over-dispersed and can lead to a restrictive
dependence structure as pointed out in the simulation and in the real data application. It also
becomes straightforward to accommodate time series and spatial dependence structures
through mixtures of Gaussian dynamic or spatially dependent models. In addition, we can
easily adapt any method for density regression for continuous responses to include rounding
such as dependent Dirichlet processes (MacEachern 1999, 2000), kernel stick-breaking
processes (Dunson and Park 2008), or probit stick-breaking processes (Chung and Dunson
2009).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

APPENDIX:

Proof of Lemma 1
Let f a general element of  and denote p = g(f) its image on , hence

(10)

If we discretizise the integral (10) in the infinite sum of integrals on disjoint subset of the
domain of f we have

Using the condition (see Theorem 1.1 of Ghurye (1968))

for each , countable family of disjoint measurable sets of  and , we get

and hence

that gives the result.

Proof of Theorem 2
In  weak convergence of sequences implies pointwise convergence by definition. In
addition, Schur’s property holds in  and hence weak convergence of sequences implies
also strong convergence. Weak and strong metrics are hence topologically equivalent since
pn → p weakly iff pn → p in L1. Topologically equivalent metrics generate the same
topology and this implies that the balls nest, i.e. that for any  and radius r > 0, there
exist positive radii r1 and r2 such that
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where Sr(p) and Wr(p) are respectively strong and weak open neighborhoods of p of radius r.
It follows that for any L1 neigborhood S there exists a weak neighborhood W such that SC ⊆
WC. Hence the posterior probability of SC is

Since the right hand side of the last equation goes to zero with Pp0-probability 1, it follows
that also

with Pp0-probability 1 and this concludes the proof.

Multivariate Gibbs Sampler
For the multivariate rounded mixture of Gaussians we adopt the Gibbs sampler with
auxiliary parameters of Neal (2000), and more precisely the Algorithm 8 with m = 1. The
sampler iterates among the following steps:

Step 1 Generate each  from the full conditional posterior for j in 1, … , p

Step 1a Generate , where

are the usual conditional expectation and conditional variance of the multivariate
normal.

Step 1b Let 

Step 2 Update Si as in Algorithm 8 of Neal (2000) with m = 1.

Step 3 Update (μh, ∑h) from their conditional posteriors.
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Figure 1.
Histogram of the number of implantation per pregnant mouse in the control group (black
line) and posterior mean of Pr(Y = j) assuming a Dirichlet process prior on the distribution of
the number of implants with α = 1, 5 (grey and black dotted line respectively) and base

measure .
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Figure 2.
Histogram of subsamples (n = 5, 10) of the control group data on implantation in mice
(black line) and posterior mean of Pr(Y = j) assuming a Dirichlet process prior on the
distribution of the number of implants with α = 1, 5 (grey and black dotted line respectively)

and base measure .
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Figure 3.
Coverage of 95% credible intervals for p(j) under the (a) second and (b) third scenario.
Points represent the RMG method, cross-shaped dots the DP with α = 1, triangles the DP
with α ~ Ga(1, 1) and x-shaped dots the DPM of Poisson.
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Figure 4.
Posterior estimates for the cumulative distribution function for (a) the control group and (b)–
(d) the dose groups. Black solid line for the empirical cumulative distribution function,
dashed line for the RMG estimation and dotted for the DPM of Poisson. Gray shading for
95% posterior credible bands for the RMG
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Figure 5.
Posterior mean for the changes in the percentiles (x-axis) between the control group and 750
mg/kg (continuous line), 1,500 mg/kg (dash-dotted line) and 3,000 mg/kg (dotted line) dose
groups.
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Figure 6.
ROC curves for predicting customers having outgoing calls to fixed numbers equal to zero
(a) or more than 40 (b). The continuous line is for our proposed approach and the dotted
lines are for the logistic GAM. Both classifications are based on a 0-1 loss function that
classify yi1 = 0 or yi1 > 40 if the posterior (estimated) probability is greater than 1/2.
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Table 2

Mean absolute deviation errors for the prediction obtained with the rounded mixture of Gaussian prior (RMG),
the Oracle prediction, the generalized additive Poisson model (GAM), the Poisson log-linear model (GLM)
and the generalized latent trait model.

Scenario 1 Scenario 2

RMG 2.44 1.42

oracle 1.36 1.28

GAM 2.72 1.55

GLM 5.34 1.98

GLTM 9.68 4.98
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