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Phosphorus (P) is a major macronutrient for plants that is vital to 
a number of processes. Thus, plants must acquire large quantities 
of P from the soil and coordinate its distribution to satisfy the 
developmental requirements of each tissue. P is acquired as inor-
ganic phosphate (Pi) via Pi transporters, which also distribute Pi 
throughout the plant.1 A number of plant Pi transporters have 
been identified based on their homology to the Saccharomyces 
cerevisiae Pho84p Pi transporter. These proteins, which are local-
ized to the plasma-membrane and have 12 membrane-spanning 
domains, comprise the PHOSPHATE TRANSPORTER 1 
(Pht1) family and are presumed to be high-affinity transport-
ers.2 The Arabidopsis Pht1 family contains 9 members, Pht1;1 
through Pht1;9.2 Of these, only Pht1;1 and Pht1;4 had previously 
been functionally characterized, and were shown to be involved 
in Pi acquisition.3 Recently, we described the characterization of 
Pht1;5 via analyses of loss-of-function mutants and overexpression 
transgenics.4 We found that Pht1;5 plays key roles in Pi transloca-
tion and remobilization. Herein we provide additional evidence 
that Pht1;5 is required for normal Pi homeostasis in Arabidopsis 
by examining the expression of other factors known to control P 
distribution in Pht1;5-mutant and overexpression lines.

In plants, Pi acquisition occurs via Pi transporters present in 
root epidermal and cortical cells (Fig. 1-I).5-10 From the cortex, 
Pi must be loaded into the xylem for subsequent translocation 
to shoot tissues (Fig. 1-II). The PHO1 protein plays a role in 
root Pi xylem loading in Arabidopsis.11,12 Via the phloem, Pi is 
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retranslocated to root tissues (Fig. 1-III) and across shoot tissues 
(Fig. 1-IV and V) in accordance with developmental cues and 
Pi status. Our recent report in reference 4, demonstrated that 
Arabidopsis Pht1;5 is involved in (1) P retranslocation between 
shoots and roots of young seedlings (Fig. 1-III) and (2) mobili-
zation/remobilization of P from shoot sources (i.e., mature and 
senescing leaves) to sinks (i.e., young leaves and inflorescence tis-
sues; Fig. 1-IV and V).4 Interestingly, loss of Pht1;5 led to an 
increase in the shoot:root ratio of P relative to wild type, whereas 
Pht1;5-overexpression resulted in a decrease. To gain insight 
into the influence of Pht1;5 disruption on other factors known 
to impact P distribution, we measured the transcript levels of 
PHO1 and At4, as well as primary transcripts of miR399d, in 
the roots of the pht1;5-1 loss-of-function mutant and a Pht1;5-
overexpression line. As shown in Figure 2, PHO1 transcript levels 
were lower in pht1;5-1 mutant roots compared with wild type, 
but were higher in roots of the Pht1;5-overexpressor. This is con-
sistent with the mutant exhibiting downregulation of PHO1 in 
an attempt to decrease Pi xylem loading in roots and subsequent 
translocation to shoots, whereas upregulation of PHO1 in the 
Pht1;5-overexpression line may result from the increased mobi-
lization of Pi to roots. The microRNA miR399 and At4 are two 
antagonistic components of a circuit that functions to modulate 
multiple Pi starvation responses including distribution of P.13-17 As 
with PHO1, the expression of miR399d (one representative of the 
miR399 family) and At4 show reciprocal changes in the pht1;5-1 
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mutant and Pht1;5-overexpressor (Fig. 2). Transcript 
levels for miR399d and At4 were higher and lower, 
respectfully, in pht1;5-1 roots compared with wild 
type, whereas the Pht1;5-overexpressor accumulated 
less miR399d and more At4 transcripts relative to wild 
type. This also indicates that loss of Pht1;5 affects the 
shoot-derived Pi starvation signal thereby systemically 
upregulating the expression of miR399d in the roots. 
Taken together these results suggest that disruption 
of Pht1;5 expression causes atypical Pi mobilization, 
which leads to the initiation of other signal transduc-
tion events that attempt to overcome the alterations in 
P distribution.

Our recent report also indicated that Pht1;5 con-
tributes to mobilization of Pi from mature and senesc-
ing leaves to metabolically active tissues. The leaves 
of transgenic Arabidopsis plants overexpressing Pht1;5 
senesced earlier than those of wild type and contained 
lower levels of P.4 However, the Pht1;5-overexpressor 
accumulated more P in floral stalks and siliques com-
pared with wild type.4 These results are consistent 
with Pht1;5 functioning in retranslocation of Pi from 
P source to sink organs (Fig. 1-IV and V). A similar 
function was recently proposed for the rice Pi trans-
porter, OsPht1;8. Overexpression of OsPht1;8 led to 
increased P content in the panicles and hulls of trans-
genic rice.18 OsPht1;8 was also implicated in root-to-
shoot transport of Pi due to its expression at root-shoot 
junctions.18 Similarly, Pht1;5 is expressed in root stele 
cells of Pi-starved Arabidopsis,8 and mutation of 
Pht1;5 led to a drop in Pi root-to-shoot translocation 
under Pi-deficient conditions.4 These results suggest 
that Pht1;5 may also contribute to the loading of Pi 
into root xylem for subsequent translocation to shoots 

during low Pi conditions (Fig. 1, II).
In conclusion, our work on Pht1;5 highlights intricate regu-

lation of Pi mobilization and distribution in higher plants. In 
addition to Pi acquisition from soil, high-affinity Pi transporters 
are also needed for internal Pi mobilization, which is controlled 
by the coordination of developmental and environmental (i.e., 
P availability) cues. Our work thus gives credence to the notion 
that Pi transporters are not simply downstream components of Pi 
signaling pathways, but rather influence gene expression and sig-
naling events by regulating Pi homeostasis in tissues and organs.
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Figure 1. Proposed role for Pht1;5 in Pi mobilization. The processes of Pi transport 
are shown following its acquisition from the rhizosphere. Green labels show pro-
cesses in which Pht1;5 likely plays a role. The arrows indicate the movement of Pi via 
the xylem (blue) and phloem (red).

Figure 2. Quantitative RT-PCR analysis of genes associated with P 
distribution. Wild-type (WT), pht1;5-1 mutant and Pht1;5-overexpression 
(Pht1;5-Oe) seedlings were grown hydroponically for three weeks in 
high-Pi (1.25 mm Pi) media. Total RNA isolated from these plants was 
used for qRT-PCR. At4g26410 was used as an internal reference gene, 
and the values, normalized to WT levels, are the means ± SE of two 
independent biological replicates run in triplicate.
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