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Introduction

The accumulation of low molecular weight water-soluble com-
pounds known as “compatible solutes” or “osmolytes” is the 
common strategy adopted by many organisms to combat the 
environmental stresses. The most common compatible solutes 
are betaines, sugars (mannitol, sorbitol and trehalose), polyols, 
polyamines and amino acid (proline). Their accumulation is 
favored under water-deficit or salt stress as they provide stress 
tolerance to cell without interfering cellular machinery.1 The 
tolerant or sensitive species show differential stress tolerance 
depending on the levels of accumulation of these compounds 
during abiotic stresses. Genes participating in the biosynthe-
sis of different kinds of compatible solutes have been identi-
fied from varied sources. Genetic engineering with these 
endogenous or ectopic genes has therefore, been used suc-
cessfully to synthesize compatible solutes in target organisms 
and improvement of stress tolerance.2,3 A correlation between 
accumulation of sugars like raffinose family oligosaccharides 
(RFO), trehalose, fructan, galactinol and sugar alcohols like 
mannitol, D-ononitol and abiotic stress tolerance has also been 
reported in references 4 and 5. Their biosynthetic genes have 
also been proven useful to improve abiotic stress tolerance in 
transgenic plants.4,6,7 Similar to sugars, accumulation of pro-
line is a common physiological response in many plants under 
biotic and abiotic stresses.8 The main proline biosynthetic gene 
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The accumulation of osmolytes like glycinebetaine (GB) in 
cells is known to protect organisms against abiotic stresses 
via osmoregulation or osmoprotection. Transgenic plants 
engineered to produce GB accumulate a very low concentration 
of GB, which might not be sufficient for osmoregulation. 
Therefore, other roles of GB like cellular macromolecule 
protection and ROS detoxification have been suggested 
as mechanisms responsible for abiotic stress tolerance in 
transgenic plants. In addition, GB influences expression of 
several endogenous genes in transgenic plants. The new 
insights gained about the mechanism of stress tolerance in GB 
accumulating transgenic plants are discussed.
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pyrroline-5-carboxylate synthase (P5CS) has been identified 
from different species and extensively used to enhance the lev-
els of proline for abiotic stress tolerance in transgenic plants.9 
Further, its stress-inducible expression has been shown as a bet-
ter strategy than constitutive expression in order to minimize 
the undesirable effects in transgenic plants.10,11

Among the nitrogenous compounds, polyamines accumu-
late in a variety of plants in response to abiotic stresses like salt 
and drought.12 Three polyamines namely, putrescine (diamine), 
spermine (triamine) and spermidine (tetramine) are found to be 
involved in variety of physiological functions in all organisms. 
Genes involved in polyamines metabolism have been cloned 
and often used to alter polyamines levels in transgenic plants for 
conferring abiotic stress tolerance.13 However, it is not the higher 
accumulation of putrescine which increases plant stress toler-
ance; rather it is the conversion of putrescine into spermidine and 
spermine, polyamines responsible for stress tolerance.14 Another 
nitrogenous compound, glycinebetaine (GB) is a quaternary 
amine with zwitterionic nature and its natural accumulation is 
associated with abiotic stress tolerance in varied organisms. Like 
other compatible solutes, GB biosynthetic genes have also been 
widely used to improve abiotic stress tolerance in transgenic 
plants.15

Although compatible solutes fall in different bio-chemical 
groups, similar roles have been assigned to them in plant pro-
tection against stresses. However, a precise role of compat-
ible solutes, including GB, in abiotic stress tolerance is largely 
unknown and two basic functions attributed to these solutes 
are osmotic adjustment and cellular compatibility. Osmotic 
adjustment occurs through concentration dependent effects on 
osmotic pressure to absorb more water from surroundings. In 
cellular compatibility mechanism, these compounds replace 
water in biochemical reactions thereby, maintaining normal 
metabolism during stress.16 One major issue with compat-
ible solutes is their lower accumulation in transgenic plants as 
compared with their natural accumulators. At such low levels, 
compatible solutes might not contribute significantly to osmotic 
adjustment. Therefore, these compounds are also suggested to 
be involved in ROS scavenging, macromolecules (nucleic acids, 
proteins, lipids) protection, and act as reservoir of carbon and 
nitrogen source.2,16 In addition, new aspects of their functional-
ity, especially GB, are emerging fast. Present review highlights 
the new emerging roles of GB in protecting plants against envi-
ronmental stresses.
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of endogenous choline were not changed significantly in trans-
genic Arabidopsis and rice plants expressing codA gene.25,38,39 
Therefore, availability of choline does not affect the GB syn-
thesis in these transgenic plants probably due to synergism in 
demand and supply of choline metabolism. However, a recent 
report indicates on limiting roles of choline availability on GB 
accumulation in GB deficient nearly isogenic lines of sorgham 
and maize.44 Therefore, this aspect needs to be further validated 
to conclude the effect of choline availability on GB levels.

Constitutive accumulation of compatible solutes like ploy-
amines, proline and trehalose resulted in abnormal plant 
phenotype. Therefore, stress-inducible expression of genes 
encoding these solutes is often suggested.10,45 However, no such 
abnormality has been observed in transgenic plants accumu-
lating GB constitutively. Su et al.40 have raised transgenic rice 
expressing cox gene from A. pascens under stress-inducible and 
constitutive promoters. GB accumulation following the salt 
stress was higher in lines with constitutive expression, sug-
gesting that constitutive accumulation of GB is beneficial for 
stress tolerance without any phenotypic abnormality to plants. 
In some cases, localized accumulation of GB within the cell 
was found to affect the performence of transgenic plants under 
stress. GB synthesizing enzymes have been targeted to cytosol, 
mitochondria and chloroplast. In transgenic rice with chloro-
plast targeted GB accumulation, protection of photosynthetic 
machinery against salt and cold stress was better than in plants 
with cytosolic GB accumulation, even though GB accumula-
tion was 5-fold higher in later plants.38 Transgenic tomato 
plants were raised with codA targeted to chloroplast, cytosol 
and to both cytosol and chloroplast, simultaneously.46 Plants 
with chloroplast targeted GB synthesis, even though accu-
mulated least amount of GB, showed better seedling growth 
following chilling treatment. These results suggested that GB 
accumulation in chloroplast is a better strategy for engineering 
abiotic stress tolerance in plants.

GB acummulates at a high concentration (4–40 μmol g-1 
FW) in naturally accumulating plants like spinach, sugar 
beet and acts as osmoregulator in abiotic stress conditions.1,15 
However, GB synthesizing genes carrying transgenic plants 
produced much reduced amount of GB (0.05–5 μmol g-1 FW).1 
Although GB at concentration of 0.035 μmol g-1 fresh weight, 
could impart cold and salinity stress tolerance in transgenic 
tobacco.30 Osmoregulation by GB at these concentrations is 
unlikely in transgenic plants rather protection of cellular macro-
molecules is the role played by GB in transgenic system. Several 
alternative modes of GB action (osmoprotection, protection of 
membarane and quaternary structure of enzymes, ROS detoxi-
fication) in abiotic stress tolerance in transgenic plants have also 
been reported (Table 1).

GB and protection of reproductive organs  
during abiotic stress. Plant yield is severly comporised under 
abiotic stress due to limited growth of reproductive organs. 
New evidences indicate toward the protection of reproductive 
organs by GB.15 Indeed, improved plant growth in terms of bio-
mass and yield was reported in transgenic tomato expressing 
codA gene from A. Globiformis.47 codA transgenic Arabidopsis 

Glycinebetaine: Roles, Mechanism  
and Emerging Concepts

Glycinebetaine (GB) accumulates in a variety of organisms under 
abiotic stresses and has been studied in great details.1,16 Plants 
known to accumulate GB naturally have been reported to grow 
well under drought and saline environment.1,3 Accumulation of 
GB in transgenic apple expressing stress regulator gene, Osmyb4, 
was linked to enhanced drought and cold tolerance.17 Exogenous 
application of GB improves the growth and survival rate of plants 
under a variety of stresses18 and in food born bacteria Listeria 
monocytogenes.19 GB is synthesized either by oxidation of choline 
or N-methylation of glycine by three known pathways.1 In plants, 
the enzyme choline monooxygenase (CMO) first converts cho-
line into betaine aldehyde and then a NAD+ dependent enzyme, 
betaine aldehyde dehydrogenase (BADH) produces glycinebeta-
ine. These enzymes are mainly found in chloroplast stroma and 
their activity is increased in response to salt stress. In E. coli, GB 
is synthesized by choline dehydrogenase enzyme (CDH) along 
with BADH. Whereas in soil bacterium, Arthrobacter globiformis, 
choline oxidaseA (codA) converts choline into GB and H

2
O

2
 in 

a single step.
Use of GB biosynthetic genes in transgenic plants. Major 

cereals like wheat, maize and barley do not accumulate signifi-
cant amount of GB naturally. This could be due to the pro-
duction of truncated transcripts for GB synthesizing enzyme 
(BADH), in these cereals.20 Among these, rice is the only cereal 
that does not accumulate GB naturally.21 Rice has two BADH 
and one CMO encoding genes, however, no GB accumulation 
occurs in rice under stress. The BADH transcripts are processed 
in an unusual manner in rice resulting in removal of transla-
tional initiation codon, loss of functional domains and prema-
ture stop codons.20 However, some correctly spliced BADH 
transcripts have also been reported from rice. Exactly similar 
observations were made for CMO transcripts in rice by same 
group.22 However, transgenic rice plants expressing functional 
BADH gene from barley could convert exogenously applied 
betaine aldehyde to GB at a level better than WT plants.23 
Introduction of spinach CMO gene in rice also resulted in 
accumulation of detectable amount of GB.21 Therefore, rice 
produces highly reduced amount of functional BADH and 
CMO proteins resulting in undetectable amount of GB syn-
thesis. Interestingly, BADH gene has been linked to fragrance 
in rice.24 Like rice many crop plants lack the ability to accumu-
late GB naturally during abiotic stress.15 Identification of genes 
of GB biosynthetic pathways has made it easy to engineer GB 
biosynthesis into non-accumulators by transgenic approach for 
improved stress tolerance. This approach has been successfuly 
used in diverse plant species, e.g., Arabidopsis,25-28 tobacco,29-31 
Brassica,32,33 Persimmon,34 tomato,35,36 maize,37 rice,38-40 potato41 
and wheat42 to improve their abiotic stress tolerance.

Among the different GB biosynthetic genes, choline oxidase 
(codA) from A. globiformis has been widely used for GB produc-
tion in transgenic plants. This gene converts choline into GB 
in one step. Availability of endogenous choline, therfore, could 
limit the GB biosynthesis in transgenic plants.43 However, levels 
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and thus enhances the PSII repair, which leads to increased 
stress tolerance.3

Reactive oxygen species (ROS) are continually produced 
in chloroplast and mitochondria as byproduct of metabolism. 
However, their production is enhanced under abiotic stresses 
which lead to photoinhibition of PSII in chloroplast. GB has 
been shown to protect the photosynthesis machinery by stabi-
lizing the activity of repair proteins under high concentrations 
of NaCl.54 The role of GB in ROS detoxification is also evident 
by reduced accumulation of ROS in transgenic plants under 
water-deficit stress as compared with WT plants.55 Therefore, 
GB can provide tolerance to abiotic stresses even at low concen-
tration by protecting photosynthesis under abiotic stress.15,51,53,54

Tolerance to abiotic stress is coupled with contribution 
of endogenous genes in transgenic plants. The proposed 
mechanisms for GB-mediated abiotic stress tolerance include 
stabilization of native structure of proteins and enzymes, osmo-
regulation, membrane integrity, protection of photosynthesis 
and detoxification of reactive oxygen radicals produced during 
stress (Table 1). Given the low levels of accumulation of GB in 
transgenic plants, these mechanisms may not explain observed 
stress tolerance in transgenic plants completely. Two osmolytes 
GB and proline have been shown to destabilize the double-helix 
DNA and lowers the melting temperature of DNA in vivo. This 
would make GB a candidate to regulate gene expression under 
abiotic stress by activating replication and transcription.56 In 
addition to GB, H

2
O

2
 is also produced as byproduct in codA 

expressing transgenic plants. Therefore, accumulation of H
2
O

2
 

in Arabidopsis and tomato plants expressing codA gene was 
found to be higher than untransformed plants.35,57 H

2
O

2
 is a 

well-known regulator of gene expression during biotic and abi-
otic stress signaling.58 Transgenic rice carrying fungal glucose 

plants produced about 22% more flowers and 28% more seeds 
than WT plants in unstressed conditions.35 These effects of GB 
were attributed to higher accumulation of GB in reproductive 
organs. Reproductive organs; flowers, siliques and inflorescence 
accumulated about 5-fold higher GB than leaves in plants 
experessing codA gene constitutively.35 Tomato plants express-
ing codA gene produced 10–30% more fruit than WT plants 
after chilling stress.35 All these effects were due to the protec-
tion of reproductive organs from stress by higher localized accu-
mulation of GB.3

GB, protection of photosynthesis machionary  
and ROS detoxification during abiotic stress. Recently, Chen 
and Murata3 have proposed that in addition to other roles, GB 
could be involved in inhibiting ROS accumulation, protection 
of photosynthetic machinery, activation of some stress related 
genes and membrane protection. GB has also been implicated 
in protection of quaternary structure of proteins (thereby main-
taining the enzyme activity) from damaging effects of envi-
ronmental stresses.48 Many proteins are prone to aggregation 
under heat and salt stress thereby, losing their native structure 
and activity. The chaperone proteins (molecular chaperons) 
are known to prevent protein aggregation, disassemble protein 
aggregates, and help in protein refolding under stress. The low 
molecular weight compounds like osmolyte (chemical chaper-
ons) have also been shown to stabilize protein native structure.49 
A direct role of GB in chaperon-mediated protein disaggrega-
tion has been reported.50 GB could activate ClpB, a component 
of chaperon network and therefore, increased the efficiency of 
chaperone-mediated protein disaggregation under salt and heat 
stress in E. coli.50 During salt or drought stress, synthesis of pro-
teins involved in PSII repair is affected leading to photoinhibi-
tion.51-53 GB antagonizes the inhibition of protein biosynthesis 

Table 1. Major roles of GB in transgenic plants under abiotic stresses*

Plant species transformed Gene Phenotype Remark Reference

Arabidopsis thaliana codA
Tolerance to various abiotic 

stresses
Protection against damage of membrane, enzyme 

activity, photosynthesis 
25–28

Oryza sativa codA
Tolerance to salt, cold and 

drought stress

Protection against damage of membrane, enzyme 
activity, photosynthesis and yield loss; regulation of 

ROS detoxification and transcriptome changes 
38, 55

Lycopersicon esculentum codA
Cold, salt and oxidative stress 

tolerance
Protection of photosynthesis and reproductive organs; 

increased ROS detoxification
46, 47

Nicotiana tabacum
betA Tolerance to salt and drought Protection of photosynthesis 30

BADH Tolerance to heat stress Protection of rubisco activity 69

Triticum aestivum BADH Heat and drought tolerance Protection of photosynthesis 42

Zea mays betA Cold and drought tolerance Protection of photosynthesis and membrane integrity 68

Diospyras kaki codA Salt tolerance Protection of photosynthesis 34

Solanum tuberosum codA
Tolerance to salt, drought and 

oxidative stress
Protection of photosynthesis and membrane integrity 41

Gossypium hirsutum betA Drought tolerance Protection of membrane integrity 67

*GB biosynthetic genes have been introduced in different transgenic plants by several researchers, however, for the sake of brevity, studies  
commented on role of GB are listed here. Other studies are mentioned in text. Source of codA gene is Arthrobacter globiformis, while BADH genes are 
from spinach69 and Artiplex.42 betA, E. coli gene encoding choline dehydrogenase.
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wheat and tomato plants, respectively.18,63 Expression 
of many stress-related genes changed in GB treated 
Arabidopsis plants.64 It was further revealed that 
RabAc4 (G-protein involved in membrane traffick-
ing) is required for GB mediated chilling tolerance. 
codA expressing transgenic plants accumulate both 
GB and H

2
O

2
. In transgenic tomato carrying codA 

gene, expression of 30 genes was induced and that of 
29 repressed.47 These reports indicate that effects of 
compatible solutes might be manifested through the 
induction of genes whose products are involved in 
stress tolerance and other plant responses.

Recently, genome-wide transcriptome analy-
sis in transgenic rice expressing codA gene showed 
altered expression of several transcripts even under 
unstressed conditions in relation to wild-type 
plants.55 About 50 genes known to be involved in one 
or other type of stress (both biotic and abiotic) were 
induced in transgenic plants. Genes involved in vari-
ety of cellular processes like transcription, signaling, 
membrane transport, metabolism and growth were 
also induced, supporting the idea of complex nature 
of genetic response to abiotic stress in plants.55,65 
Upregulation of these genes might be responsible for 
observed stress tolerance in transgenic rice. However, 
the activation of these genes exclusively by GB or 
H

2
O

2
 alone could not be established, since both are 

capable of regulating gene expression. Wild-type 
plants when treated exogenously either with GB or 

H
2
O

2
 showed differential expression of some of the stress related 

genes whose expression levels were also altered in codA expressing 
rice.55 Furthermore, certain H

2
O

2
 marker genes like catalase, per-

oxidase and heat shock factors were induced in transgenic plants 
in unstressed condition.55,66 Therefore, transcriptomic changes, 
derived in parts by H

2
O

2
, might also contribute to the stress 

tolerance in codA-expressing transgenic plants along with other 
direct roles of glycinebetaine (Fig. 1).

In conclusion, GB accumulation could contribute to osmoreg-
ulation in natural accumulators; however, osmoprotection seems 
to be responsible for tolerance to abiotic stresses in transgenic 
plants. Extensive work on GB has suggested its varied roles in 
plants. New evidences suggest the contribution of differentially 
expressing endogenous genes in GB mediated stress tolerance in 
plants. Further work would establish whether the transcriptome 
changes are direct targets of GB or are product of metabolic 
adjustment in transgenic plants.
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oxidase gene produced increased levels of H
2
O

2
 and showed 

tolerance to biotic stress.59 Similarly, exogenous application 
of H

2
O

2
 has also been shown to improve abiotic stress toler-

ance in tobacco.35 Although the amount of H
2
O

2
 produced 

in transgenic tomato was only 17–21% higher than wild-type 
plants under unstressed conditions, transcriptome changes were 
observed in transgenic plants.47

Other compatible solutes have also been shown to affect the 
expression of endogenous genes in transgenic plants carrying 
genes for their biosynthesis. Accumulation of putrescine in trans-
genic Arabidopsis plants, overexpressing ADC2 gene, resulted in 
altered expression of many genes, mainly those involved in GA 
metabolism.60 Similarly, stress-related genes were upregulated in 
transgenic Arabidopsis plants overexpressing spermidine syn-
thase gene.61 In a relatively different approach, antisense plants 
for proline dehydrogenase gene resulted in higher proline accu-
mulation and tolerance to abiotic stresses. cDNA microarray 
analysis revealed the up or downregulation of some endogenous 
genes in transgenic plants.62 GB has also been shown to have 
such effects in plants. GB when applied exogenously resulted 
in change in transcript levels of WCOR410 and catalase gene in 

Figure 1. Model for mechanisms of abiotic stress tolerance in codA expressing 
plants. Dotted arrows indicate possible involvement of H2O2 or GB in transcriptome 
changes and subsequent stress tolerance. codA-mediated conversion of choline into 
GB, releases H2O2 as byproduct. The H2O2 might activate stress related transcripts in 
transgenic plants and enhance stress tolerance. Such gene regulation can also be 
result of GB accumulation. Given the limited accumulation of GB in transgenic plants, 
stress related transcriptome changes might contribute to the observed effects of GB 
on stress tolerance.
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