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Introduction

Diabetes is characterized by insulin insufficiency and results from 
loss of pancreatic β-cell mass (Type I diabetes),1,2 or both loss of 
β-cell mass and function (Type II diabetes). The molecular and 
cellular mechanisms that regulate β-cell mass are complex and 
developing effective diabetes therapies requires a comprehensive 
understanding of the external cues and cell intrinsic processes 
that control β-cell regeneration. Regeneration can occur by self-
replication or through transdifferentiation of other pancreatic 
cells3-7 and there is debate about the relative importance of these 
processes in preserving β-cell mass at different stages of life.8-15

Human β-cell replication has been observed in vivo under 
certain conditions such as the proximity of islets to gastrinomas.16 
To date, however, a robust method for inducing human β-cell 
proliferation remains elusive. In adult humans, β-cell replication 
occurs at a rate which is significantly lower than that observed in 
rodents.15,17-20 Thus, efforts to induce β-cell replication in rodents 
have not always been predictive of findings in humans. For exam-
ple, although both rodents and humans exhibit a dramatic age-
related decline in β-cell turnover,9,20,21 β-cell replication can be 
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induced in adult rodents in response to the increased metabolic 
demands of pregnancy and insulin resistance. In contrast, there 
is debate about the source of the pregnancy-associated increase in 
β-cell mass in humans.22-24 Species differences are also relevant 
to in vitro studies, as rodent β-cells more readily proliferate in 
response to growth factors and mitogenic stimuli in vitro than do 
human β-cells.25,26

At the molecular level, many members of the cell cycle 
machinery are differentially expressed between mouse and 
human β-cells and could account for differences in replication 
rate. The cyclin dependent kinase inhibitor (cdki) p57Kip2 is more 
highly expressed in human than rodent islets. Moreover, a role for 
p57Kip2 in human β-cell replication is suggested by the associa-
tion between p57Kip2 silencing and β-cell hyperproliferation in 
focal ‘persistent hyperinsulinemia and hypoglycemia of infancy’ 
(PHHI).27 Whether or not p57Kip2 plays a role in adult human 
β-cell replication however, remains unknown.

In the pancreas, basic helix-loop-helix (bHLH) proteins  
(e.g., E47) are essential mediators of cell fate specification and 
cell cycle control.28-33 bHLH proteins form obligate homodimers 
or heterodimers, which bind to regulatory E-box sequences in the 
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this possibility, Id3 dramatically suppressed p57Kip2 expression. In 
addition, Id3 caused a robust increase in nuclear incorporation of 
(BrdU) in human β-cells. Surprisingly however, BrdU incorpora-
tion was not accompanied by upregulation of the cell cycle mark-
ers, Ki67, phospho-CyclinE and pHH3. Furthermore, BrdU was 
localized to nuclear foci which were also found to express DNA 
repair proteins. The fact that BrdU uptake reflected DNA dam-
age, not proliferation, highlights the limitation of BrdU incor-
poration as a true measure of β-cell replication. The resistance 
to cell cycle entry in β-cells was in stark contrast to our recent 
findings in duct cells. The context specific responses to Id3 in 
the human pancreas provide a promising comparative model for 
understanding and potentially resolving β-cell specific resistance 
to replicative stimuli.

Results

Id3 represses p57Kip2 expression in human β-cells. Recently we 
reported that E47 activated transcription of the cyclin depen-
dent kinase inhibitor (cdki) p57Kip2, inducing cell cycle arrest in 
a human islet cell line.40 Here, we investigated whether repress-
ing E47 activity would inhibit p57Kip2 in primary adult human 
β-cells. We chose to downregulate E47 activity by overexpression 

DNA of target genes. A layer of regulatory control comes from 
the Id family of HLH transcriptional repressors. The four mam-
malian Id (Id1–4) proteins lack the basic amino acid sequence 
that mediates binding to DNA.34 Thus, Id proteins act as tran-
scriptional repressors by forming inactive dimers sequestering 
bHLH proteins. Human β-cells express all four Id proteins.35 
Studies with mouse and human cell lines have shown that Id2 
influences expansion of pancreatic progenitors36 and expression 
of Ids in human islets is induced by glucose uptake. In turn, Ids 
may play a role in regulating insulin transcription and secre-
tion37,38 but little is known regarding the relevance of Id proteins 
to adult human β-cell replication.

Recently, we determined that Id3 mediates efficient cell cycle 
entry in quiescent human pancreatic duct cells.39 Due to the fact 
that duct cells act as β-cell progenitors during development and 
possibly during regeneration,5 we hypothesized that β-cells might 
respond similarly to Id3. Additional support for a role for Id3 in 
β-cell replication came from the fact that E47 upregulates p57Kip2 
expression and induces growth arrest in a cell line derived from 
human fetal islets,40 and that E47 and Ids control p57Kip2 expres-
sion in other tissues.41 Thus, we hypothesized that Id3 inhibi-
tion of E47 activity would downregulate p57Kip2 and potentially 
induce cell cycle entry in adult human β-cells. Consistent with 

Figure 1. Id3 mediates cell p57Kip2 downregulation and BrdU incorporation in human β-cells. (A–C) Adult human islets expressing insulin (green) were 
transduced with Ad-LacZ (A) or Ad-Id3 (B) and analyzed for p57Kip2 (red) expression, quantified in (C) (*p < 0.0005, n = 5). (A) White arrows indicate 
representative insulin-positive cells expressing p57Kip2. (D–G) Human β-cells (insulin, green) infected with Ad-Id3 and cultured for 48 h in the presence 
of BrdU alone (D), BrdU+ prolactin (E), BrdU+ exendin-4 (F), or BrdU+ caffeine (G), demonstrate pronounced BrdU incorporation [red, quantified in (H), 
*p < 0.005, **p < 0.001], in three independent islet cell preparations. Notably, these agents had no effect on BrdU incorporation in the absence of Id3. 
High power view of a typical nucleus from an Ad-Id3 infected BrdU-positive β-cell demonstrates a punctate, perinuclear pattern of BrdU uptake (I). 
Blue nuclear counterstain is DAPI. Scale bars, (A–C) = 100 μm, (D–G) = 50 μm, (I) = 10 μm.
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We considered the possibility that Id3 expressing β-cells were 
stalled at stress related checkpoints. Caffeine has been shown 
to circumvent the ATM (ataxia telangiectasia mutated)/ATR 
(ATM-and Rad3-related) DNA kinase checkpoints in some 
cells.46 To determine whether caffeine could overcome growth 
arrest in β-cells, Id3 expressing β-cell cultures were treated with 
caffeine for 16 h. While caffeine significantly increased the per-
centage of Id3-expressing β-cells incorporating BrdU, to 94.0 ± 
3.1% (Fig. 1G and H), Ki67 was not induced. Thus, caffeine was 
not sufficient to promote cell cycle completion. No effect of caf-
feine was observed in Ad-LacZ infected cells.

Id3 activates a DNA repair response in pancreatic β-cells, 
but not in exocrine or mesenchymal cells. Upon close inspection 
it was noted that Ad-Id3 transduced β-cells exhibited a distinc-
tive punctate and perinuclear pattern of BrdU staining, which 
was qualitatively different from the more homogenous nuclear 
stain observed in Ad-Id3-expressing ductal cells or in mesenchy-
mal cells (compare Figs. 1D–G, I, 2B, E and F with bright red 
nuclei in 2A, G and H) and reference 39. This pattern of discrete 
BrdU foci has been reported to occur in mammalian cells at sites 
of DNA repair.47 In particular, the perinuclear localization of 
BrdU is characteristic of repair complexes that localize to DNA 
double-strand breaks at nuclear pores.48 Thus, we speculated that 
BrdU incorporation in Id3-expressing β-cells might reflect DNA 
repair, rather than replication. The two cellular processes can be 
distinguished by their sensitivity to hydroxyurea (HU), which 
inhibits ribonucleotide reductase, a critical enzyme for deoxyri-
bonucleotide synthesis. At low doses, HU selectively attenuates 
DNA replication by depleting the cellular deoxyribonucleotide 
pool while HU has a less marked effect on DNA repair.49 We 
examined the effect of 10 mM HU on BrdU incorporation in 
cultures of Ad-LacZ or Ad-Id3 transduced human pancreatic 
cells: β-cells, insulin+; exocrine cells, PanCK+, insulin-; mesen-
chymal cells, PanCK-, insulin-. Consistent with their replicative 
status, duct and mesenchynal cells exhibited a dramatic reduc-
tion in BrdU incorporation in the presence of HU (compare  
Fig. 2A, G, H vs. D, I, J). In contrast, significant BrdU incor-
poration was retained in Ad-Id3 infected β-cells following HU 
treatment, consistent with a DNA damage response (Fig. 2B vs. 
E and F).

In order to extend the hydroxyurea findings we examined 
expression of additional markers of DNA damage. A DNA 
damage response can also be visualized by accumulation of the 
variant histone protein, H2AX, which is phosphorylated at the 
γ position (γH2AX) at sites of DNA damage and repair.50,51 
Consistent with the HU results, approximately 54.8 ± 3.1% 
of Id3-infected β-cells also expressed nuclear γH2AX, com-
pared with fewer than 2.6 ± 1.3% of LacZ-infected β-cells 
(Fig. 3A–C). Moreover, foci of γH2AX and BrdU co-localized 
within cell nuclei (Fig. 3G–I), as expected if BrdU is incorpo-
rated at sites of DNA repair.

A third indicator of a DNA damage response is an increase in 
foci of phosphorylated 53 binding protein 1 (53BP1). In normal 
nuclei 53BP1 is diffusely distributed, or is restricted to one or 
two foci, but in response to DNA damage 53BP1 is phosphory-
lated and relocalizes to multiple sites of repair.52 As expected, 

of the bHLH inhibitor Id3. Islets were cultured as monolayers 
and infected with either a control adenovirus expressing LacZ 
(Ad-lacZ) or a virus expressing Id3 (Ad-Id3). Ad-Id3 infection 
led to efficient expression of Id3 in β-cell cultures (Fig. S1) 
similar to our recent findings in primary human pancreatic duct 
cells.39 Forty-eight hours following infection, cells were fixed 
and p57Kip2 protein expression was determined by immunohis-
tochemistry. Id3 expression resulted in a profound reduction in 
the number of β-cells expressing p57Kip2 protein, from 48 ± 3% 
in control infected wells to 4.9 ± 1.4% in Id3 expressing cells  
(Fig. 1A–C). Moreover, the effect of Id3 on p57Kip2 expression 
was cell autonomous (Fig. S2).

Id3 induces BrdU incorporation in human β-cells. The effi-
cient downregulation of p57Kip2 raised expectations that Id3 also 
induced β-cell replication. A method commonly used for measur-
ing proliferation in primary β-cells is incorporation of the thymi-
dine analog BrdU into DNA.8,42 Following infection with Ad-Id3 
or control virus BrdU was administered to β-cell cultures for  
48 h. Consistent with their normally quiescent state, Ad-LacZ-
infected cultures exhibited BrdU incorporated in a mere 0.5 ± 
0.5% of β-cells. In striking contrast however, BrdU was incor-
porated into 34.7 ± 2.9% of Id3 expressing β-cells (Figs. 1D, 
2B, 3E and F) suggesting that Id3 expressing β-cell were rep-
licating. Surprisingly however, despite BrdU incorporation, no 
Ki67 or pHH3 expression was observed in β-cells. This BrdU+/
Ki67- phenotype was observed in all 17 islet samples tested, inde-
pendent of donor age (range = 19–62) (Fig. S3). Remarkably, 
when duct cells and β-cells were isolated from the same donor 
pancreas, Id3 induced Ki67 expression only in duct cells.39 Thus, 
the data reveal a fundamental difference in responsiveness to rep-
lication stimuli between the two closely related pancreatic epithe-
lial cell populations.

Id3 induced BrdU incorporation increases in response to 
prolactin, exendin-4 or caffeine. It has been reported that human 
β-cells do not express Ki67 until late in S-phase. We therefore 
considered the possibility that BrdU positive β-cells entered but 
did not complete S-phase and that additional replicative stimu-
lus might be necessary to promote cell cycle completion in Id3 
expressing β-cells. To test this hypothesis Id3 treated β-cells were 
exposed to agents which have been reported to induce β-cell rep-
lication: prolactin and exendin-4 [an analoe of glucagon-like pep-
tide-1 (GLP-1)].26,43-45 Treatment of Id3-expressing β-cells with 
either prolactin or exendin-4 had a synergistic effect on BrdU 
incorporation, with the percentage of BrdU+ β-cells increasing 
from 34.7 ± 2.9%, to 56.7 ± 3.3% in the presence of prolactin, 
and to 78.7 ± 5.8% in the presence of exendin-4 (Fig. 1E, F and 
H). Remarkably, however, expression of Ki67 remained unde-
tectable in prolactin or exendin-4-containing cultures, despite 
the increase in BrdU content. The data suggest that prolactin and 
exendin-4 further induced DNA synthesis but did not promote 
cell cycle progression in Id3 treated β-cells. At the concentrations 
and stimulation conditions used here, neither prolactin nor exen-
din-4 induced BrdU uptake or proliferation marker expression 
in LacZ-expressing β-cells. This is consistent with a report that 
human islets are significantly less responsive to these agents than 
that observed in rodent islets.
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conditions approximately 7% of BrdU positive β-cells exhibited 
DNA damage in situ.

Recently, we found that a single intraparenchymal injection 
of DMSO into the murine pancreas significantly increased BrdU 
incorporation, thus providing a second in vivo model for exam-
ining the correlation between BrdU uptake and DNA damage. 
Following DMSO injection, BrdU was administered for 3 d 
and pancreata were harvested and immunostained as described 
above for untreated mice. DMSO increased the proportion of 
BrdU positive β-cells 1.5-fold, from 11.3 ± 1.2% to 17.2 ± 2.9% 
(Fig. 4). Remarkably, however, the percentage of BrdU + β-cells 
expressing H2AX rose 6-fold, to 26.4 ± 5.1% (Fig. 4). The data 
establish that BrdU incorporation as a measure of β-cell replica-
tion is prone to significant error. Moreover, the extent to which 
BrdU uptake reflects DNA damage differs between in vivo con-
ditions and thus the degree of error cannot easily be anticipated 
or discounted.

we found uniform expression of 53BP1, or fewer than three foci 
in the nuclei of LacZ-infected β-cells (Fig. 3J). In contrast, 
Id3 expression induced a 9.3-fold increase in the percentage of 
β-cells exhibiting multi-focal distribution of 53BP1, from 3.9 ± 
1.8% to 36.4 ± 3.6% (Fig. 3K). Together these results demon-
strate that Id3 induces a bona fide DNA damage/repair response 
in β-cells.

BrdU incorporation is observed in β-cells undergoing 
DNA repair in vivo. The in vitro results demonstrated that 
BrdU incorporation in β-cells is not always indicative of repli-
cation but can also reflect DNA damage. In order to determine 
whether the in vitro findings were relevant to in vivo studies, 
BrdU was administered in drinking water to 4 week old mice for 
3 d. Examination of harvested pancreata revealed that BrdU was 
incorporated into 11.3 ± 1.2% of β-cells. Immunostaining for 
γH2AX expression revealed that 6.9 ± 2.0% of BrdU positive 
β-cells also expressed γH2AX (Fig. 4A–C). Thus, under normal 

Figure 2. BrdU incorporation proceeds in β-cells, but not exocrine and mesenchymal cells, in the presence of hydroxyurea, a proliferation inhibitor. 
(A–F) Islet cell cultures (insulin, green) were treated with BrdU (red). BrdU incorporation observed in Id3 infected β-cells (B) was retained in the pres-
ence of hydroxyurea (HU) (E and F), suggesting DNA damage, not replication. White arrows depict BrdU positive β-cells and inset (white box) in (E) 
is magnified in (F), quantified in (C) (*p < 0.005, n = 3) (G–J). In contrast, HU suppressed BrdU incorporation in Ad-Id3 infected exocrine cells (panCK, 
green) (H) vs. (J) and in mesenchymal cells (insulin and panCK negative, (D) vs. (A), and (G and H vs. I and J), evidence that mesenchymal cells and Id3 
infected exocrine cells, are replicating, n = 3. Blue nuclear counterstain is DAPI. Scale bars, (A, B, D and E) = 50 μm, (F) = 10 μm, (G–J) = 100 μm.
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determined, we speculate that prolactin and exendin-4 provide 
a replication stimulus, but alone it is insufficient to induce cell 
cycle entry. However, in combination with Id3, these agents are 
able to increase the proportion of cells attempting DNA synthe-
sis, and subsequently undergoing DNA repair. A similar result 
was observed following caffeine administration. In caffeine- 
containing cultures, nearly 100% of insulin + cells were also 
BrdU-positive, which is consistent with all cells having circum-
vented the G

1
/S checkpoint, only to encounter a downstream 

block that prevents progression through S phase.
Although we observed BrdU incorporation in β-cells in 

response to Id3, it did not reflect complete cell cycle progression, 
as the cells lacked expression of the proliferation markers Ki67, 
pCyclinE or pHH3. Moreover, the BrdU positive cells exhibited 

Discussion

In this study, we sought to test the hypothesis 
that expression of Id3 in adult human β-cells 
would repress p57Kip2 expression and induce 
proliferation. The ability of bHLH transcrip-
tion factors and Id proteins to regulate cell 
cycle machinery is well documented,53 and is 
thought to underlie oncogenic transformation 
of a variety of cell types.54,55 One mechanism by 
which Ids promote cell cycle entry is through 
inhibition of bHLH-mediated expression of the 
cyclin dependent kinase inhibitors (CDKI).56-

58 Conversely, Id knockdown is associated in 
many cell types with increased expression of 
CDKIs.53,56,59-63 Recently we reported that E47 
directly activates p57Kip2 in a human fetal islet 
cell line.40 In this study Id3 efficiently sup-
pressed p57Kip2. Together the data establish that 
the E47/Id axis controls p57Kip2 levels in human 
β-cells, similar to observations in human neu-
roblastoma cells.41

Our results do not support the hypothesis, 
however, that loss of p57Kip2 is sufficient to 
induce proliferation in primary adult human 
β-cells. In the present study, samples were from 
donors 19 y and older. Because the association 
between β-cell hyperplasia (PHHI) and p57Kip2 
silencing was reported in patients younger than 
12 y of age27 it is possible that β-cell replica-
tion in response to p57Kip2 downregulation is 
age dependent. Age related changes in cell cycle 
genes have been described in murine β-cells.64 
Thus, it is possible that loss of p57Kip2 in neona-
tal human β-cells would trigger cell cycle entry.

In our hands, the β-cell replication stimuli 
prolactin, exendin-4, did not induce prolif-
eration of control (LacZ-expressing) β-cells. 
Although there is abundant evidence that these 
agents increase in vivo islet growth and β-cell 
mass, as well as in vitro replication of rodent 
β-cells and insulinoma cell lines,26,43-45 we 
are unaware of similar data that unequivocally demonstrates a 
stimulatory effect on human β-cells in vitro. In support of our 
finding, the in vitro proliferative responses of highly purified rat 
and human β-cells have been compared.25 The GLP-1 analog 
liraglutide induced BrdU incorporation in insulin-positive rat 
but not human β-cells. Furthermore, the result was confirmed 
when β-cells were identified by PDX-1 staining: no PDX-1+Ki67+ 
or PDX-1+ BrdU+ cells were detected.25 This study is consistent 
with our finding here that prolactin and exendin-4 are themselves 
insufficient to induce cell cycle entry in quiescent human β-cells 
in vitro. Interestingly, we saw a different response under the same 
conditions with Id3-transduced β-cells. Here, prolactin and exen-
din-4 synergized with Id3 to increase the percentage of β-cells 
expressing BrdU. Although the exact explanation remains to be 

Figure 3. Id3 induces the DNA damage response γH2AX and 53BP1 in human β-cells. Hu-
man islets, infected with Ad-LacZ (A, D, G and J) or Ad-Id3 (B, E, H and K) and cultured for 
48 h in the presence of BrdU (n = 3), were immunostained for insulin (green) and the DNA 
damage marker γH2AX (red) in (A and B) and (G–I) (pseudocolored yellow). Greater than 
five γH2AX foci/nucleus were scored as positive, quantified in (C), *p < 0.0001. Triple im-
munostaining for insulin (green in D–I), BrdU (red in D–F) and γH2AX (Cy5, pseudocolored 
yellow in G–I), demonstrated colocalization of BrdU with γH2AX foci in β-cells. (F and I)  
are magnified from the white boxes in (E and H), respectively. (J–L) Immunostaining for 
total 53BP1 protein (green) and insulin (red) in control (Ad-LacZ) (J) and Ad-Id3 (K) infected 
β-cells. More than three foci/nucleus were scored as positive for 53BP1 protein redistribu-
tion, quantified in (L), *p < 0.001. Blue nuclear counterstain is DAPI. Scale bars, (A and B) = 
100 μm, (D, E, G, H, J and K) = 50 μm, (F and I) = 10 μm.
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used proliferation marker,66-70 but its use as a β-cell replication 
marker has been suggested to overestimate the true replication fre-
quency.70 PCNA is involved in excision-repair,71 and it is tempting 
to speculate that at least some PCNA staining may also be due to a 
stimulus-induced DNA repair response, and not replication.

The punctate BrdU staining pattern was an early indicator 
that replication was not completed in Id3-expressing β-cells 
because this pattern was distinct from the more homogenous 
nuclear staining seen in replicating ductal cells (Figs. 2A, 3D 
and E) and reference 39. Moreover, upon close inspection BrdU 
staining colocalized with DNA repair enzymes. BrdU incorpo-
ration that occurs during DNA repair is indicative of double 
strand breaks and collapsed replication forks.47 The DNA dam-
age response is initiated by recruiting repair enzymes, and shunt-
ing of damaged DNA to nuclear pores.48 In undamaged nuclei 
53BP1 is diffusely distributed, or is restricted to one or two foci, 

evidence of a DNA damage response. Therefore, the data raise a 
serious concern about relying solely on BrdU uptake as evidence 
of β-cell replication because BrdU incorporation can signify 
either DNA repair or replication. Importantly, the same limi-
tation in interpretation applies to other methods which rely on 
incorporation of an analog into DNA (e.g., tritiated thymidine 
or fluorogenic deoxyuridine).65

A recent study of replication marker expression in human 
β-cells demonstrated that co-expression of two or more markers 
more accurately discriminates between quiescent and replicating 
β-cells.66 Expression of Ki67 is used routinely as a proliferation 
marker in immunohistochemical studies. However, in β-cells, 
Ki67 is expressed at very low levels through G

1
 and early in S phase 

and its expression peaks during late S/G
2
.66 Therefore, β-cells 

which have begun replication but stalled in early S might not be 
expected to express Ki67. Interestingly, PCNA is also a commonly 

Figure 4. DNA damage in β-cells in vivo. In order to measure DNA synthesis and damage in β-cells in vivo, mice were administered BrdU in drinking 
water for 3 d. Pancreata were harvested and immunostained for BrdU (green), insulin (blue), and γH2AX (red). Under normal conditions (A–C), ap-
proximately 7% of BrdU positive β-cells also exhibited γH2AX (red) expression. In the course of studying small molecules identified in high throughput 
screens,13 however, we found that intraparenchymal injection of DMSO in the pancreas resulted in expression of γH2AX (red) in over 25% of BrdU posi-
tive β-cells (D–F), quantified in (L). Thus, BrdU incorporation can represent DNA damage in a significant percentage of β-cells in vivo as well as in vitro 
(Fig. 3). Arrows in (D–F) mark region magnified in G–I respectively. *p < 0.01, **p < 0.001. Blue nuclear counterstain is DAPI. Scale bars (A–F) = 50 μm,  
(G–I) = 10 μm.
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Methods

Animals. Four week old male ICR mice were purchased from 
Harlan Sprague Dawley, Inc. BrdU water (1 mg/ml, Sigma) 
administrated for 3 d. In some cohorts of mice 100 ul DMSO 
(Sigma) was injected a single time intraparenchymally. After 3 d, 
pancreata were harvested for histology. The study was approved 
by the animal facility in the Sanford-Burnham Medical Research 
Institute.

Cell culture. Primary adult human islets preparations were 
obtained from the NIH Islet Cell Resources-Administrative 
and Bioinformatics Coordinating Center (ICR-ABCC) and Dr. 
James Shapiro in Canada. Cells were cultured in 5.5 mM glucose 
RPMI 1640/10% FBS/1% Pen/Strep (Gibco) on HTB9 matrix 
plates in 5% CO

2
 incubator to form monolayer.

Id3 and LacZ adenovirus infection. Adeno-Id3 a kind gift 
from Dr. Colleen McNamara.81 Islet monolayer cells infected 
with Ad-Id3 or LacZ (MOI 100). After 16 h, viruses were washed 
and cultured 48 h prior to analysis.

Chemical agents. Exendin 4 (20 nM, Sigma), prolactin  
(50 ng/ml, Sigma), hydroxyurea (HU, 10 mM, Sigma) were 
added to cell cultures upon wash step 16 h after virus addition 
and incubated 48 h. Caffeine (10 mM, Sigma) was added to cells 
for 16 h prior to harvest. BrdU (1:1,000, GE) was added to cell 
media for 48 h after removing virus.

Histology and immunohistochemistry. Tissues from mice 
were fixed in 4% paraformaldehyde (USB) for 16–18 h at 4°C 
and washed and embedded in OCT freezing media (Sakura 
Finetek). Samples were sectioned to a mean thickness of 5 
μm. Cultured cells were fixed in 4% paraformaldehyde for 
15 min at 4°C. For immunostaining, cells were permeabilzed 
with 0.3% Triton X-100 in PBS for 15 min and blocked for 
1 h at room temperature. The samples were incubated with 
the following primary antibodies overnight at 4°C: Id3 (Santa 
Cruz), Insulin (Santa Cruz, US bio), CK19 (DAKO), PanCK 
(DAKO), Ki67 (Abcam and DAKO), BrdU (GE), phospho-
Histon H3 (pHH3, Cell Signaling), γH2AX (Cell Signaling), 
Kip2 (Diagnostic Biosystems), phospho-CyclinE, 53BP1 (Cell 
Signaling). Positive and negative controls for each antibody 
were run in all experiments. For fluorescent imaging, samples 
were incubated with Alexa 488 (Molecular Probes), Rhodamine 
or Cy5 (Jackson Immuno Research) fluor-labeled anti-mouse/
rabbit/guinea pig and nuclear counterstained with DAPI 
(Molecular Probes). Digital images of stained sections were 
captured using a fluorescence microscope with a digital cam-
era (Nikon, Tokyo, Japan). Brightfield and fluorescently labeled 
sections were analyzed with a conventional inverted microscope  
(Olympus, PlanFl 40x/0.60) or with a confocal microscope 
(Bio-Rad Laboratories Inc.) equipped with krypton/argon laser.

Statistical analyses. Data are presented as means ± SEM. The 
statistical significance of the differences between groups was ana-
lyzed by Student’s t-test.
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but relocalizes once phosphorylated. Similarly, histone H2AX is 
rapidly phosphorylated52 in response to S phase DNA double-
strand breaks.51,72 Thus, our observation that γH2AX colocalized 
with foci containing BrdU and that 53BP1 relocalized in Id3-
expressing β-cells is entirely consistent with a repair response. 
Further evidence for a repair response in Id3 expressing β-cells 
came from hydroxyurea treatment (HU) which preferentially 
inhibits BrdU incorporation in replicating cells. Mesenchymal 
and ductal cells exhibited extreme sensitivity to HU, consistent 
with DNA replication. In contrast, HU treated β-cells retained 
BrdU uptake in a large proportion of cells.49

Our demonstration that Id3 expressing β-cells failed to enter 
the cell cycle was unexpected in the light of our finding that Id3 
induces robust cell cycle entry of pancreatic ductal cells.39 Ductal 
and β-cells are closely related developmentally; ducts give rise to 
neogenic β-cells during pancreas embryogenesis,73 and we have 
shown that the process can be recapitulated in the adult human 
pancreas.5 Therefore, the data appear to reinforce the hypothesis 
that as β-cells age they lose cell cycle machinery or substrates 
essential for replication. Consistent with this theory, we recently 
found that the mitosis protein CENP-A declined with age in 
humans β-cells, while CENP-A levels remained constant in exo-
crine cells.74 Further, rodent β-cells did not lose CENP-A to the 
extent seen in human cells. Such findings may shed light on the 
context dependent effects of Id3 on β-cells compared with other 
pancreatic epithelial cell types and between species. The ability 
of Id3 to induce cell cycle entry and progression in duct cells also 
served as an important control by ensuring that the Id3 expres-
sion levels and conditions employed in these studies were not gen-
erally toxic to primary human pancreatic epithelial cells.

A recent study has shown that human islets contain a num-
ber of key regulatory molecules necessary for G

1
/S transition, 

including cyclins and cyclin-dependent kinases (cdks).35 Several 
of these proteins are also differentially expressed between human 
and rodent β-cells.35,75 Murine β-cells express abundant cdk-4 
and cyclin D2, and genetic mouse models have shown them to 
be critical for β-cell proliferation and diabetes development.76-79 
In contrast, human β-cells contain high levels of the analogous 
enzyme cdk-6, and cyclins D1 and D3 are thought to play a role. 
Recently, it was reported that overexpression of cdk-6 and cyclin 
D1 in isolated human β-cells in vitro induced BrdU incorpora-
tion and Ki67 expression.35,80 It will be important to determine 
whether there is concomitant cell cycle completion and an increase 
in β-cell number as suggested by transplantation studies.

In this study, we found that expression of Id3 in adult human 
β-cells repressed p57Kip2 expression but did not induce prolifera-
tion. Importantly, Id3 mediated efficient cell cycle progression in 
closely related duct cells thus ruling out adenoviral or Id3 induced 
general cellular toxicity. The BrdU incorporation and DNA dam-
age markers in β-cells are consistent with a model in which the cells 
enter S phase in response to Id3, but undergo replication fork stall-
ing due to either an intrinsic limitation in cell cycle machinery or 
to an abundance of inhibitory factors. Importantly, such questions 
can be addressed by comparing expression profiles in β-cells vs. 
ductal epithelial cells. Such studies should lead to a rational strategy 
for increasing replication competence in adult human β-cells.
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