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Abstract
Background—Diabetic patients have an increased risk of developing atherosclerosis and related
complications compared to non-diabetic individuals. The increased cardiovascular risk associated
with diabetes is due in part to genetic variations that influence both glucose homeostasis and
atherosclerotic lesion growth. Mouse strains C57BL/6J (B6) and BALB/cJ (BALB) exhibit
distinct differences in fasting plasma glucose and atherosclerotic lesion size when deficient in
apolipoprotein E (Apoe−/− . Quantitative trait locus (QTL) analysis was performed to determine
genetic factors influencing the two phenotypes.

Methods and Results—266 female F2 mice were generated from an intercross between
B6.Apoe−/− and BALB.Apoe−/− mice and fed a Western diet for 12 weeks. Atherosclerotic lesions
in the aortic root, fasting plasma glucose, and body weight were measured. 130 microsatellite
markers across the entire genome were genotyped. Four significant QTLs, Ath1 on chromosome
(Chr) 1, Ath41 on Chr2, Ath42 on Chr5, and Ath29 on Chr9, and one suggestive QTL on Chr4,
were identified for atherosclerotic lesion size. Four significant QTLs, Bglu3 and Bglu12 on Chr1,
Bglu13 on Chr5, Bglu15 on Chr12, and two suggestive QTLs on Chr9 and Chr15 were identified
for fasting glucose levels on the chow diet. Two significant QTLs, Bglu3 and Bglu13, and one
suggestive locus on Chr8 were identified for fasting glucose on the Western diet. One significant
locus on Chr1 and two suggestive loci on Chr9 and Chr19 were identified for body weight. Ath1
and Ath42 coincided with Bglu3 and Bglu13, respectively, in the confidence interval.

Conclusions—We have identified novel QTLs that have major influences on atherosclerotic
lesion size and glucose homeostasis. The colocalization of QTLs for atherosclerosis and diabetes
suggests possible genetic connections between the two diseases.
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Introduction
Type 2 diabetes mellitus (T2DM) is a major risk factor for atherosclerotic cardiovascular
disease. Diabetic patients have a two- to four-fold higher risk of developing atherosclerosis
and its complications compared with non-diabetic individuals 1. Part of the increased
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cardiovascular risk associated with diabetes is due to genetic variations that influence both
glucose homeostasis and the development of atherosclerosis. A few rare gene mutations
result in both early coronary heart disease and T2DM that are observable as Mendelian traits
segregatingin families, which include LRP62, ABCA1 3,4, and APOB 5. Recent genome-wide
association studies (GWAS) have identified dozens of common genetic variants for both
atherosclerosis and T2DM (http://www.genome.gov/GWAStudies/). Several of the variants
for coronary heart disease are within genes that are involved in glucose metabolism or are
associated with T2DM, such as MTHFD1L and HNF1A. Thus far few studies have been
conducted to examine such genetic variants and in those that have the findings are
inconsistent 6, 7, 8, 9,10. One major challenge for such studies is the difficulties inherent in
establishing causality between genetic variants and complex disease in humans due to small
gene effects, complex genetic structure, and environmental influences.

A complementary approach to the identification of genetic components in human disease is
to use animal models. One commonly usedrodent model of atherosclerosis is the
apolipoprotein E-deficient (Apoe−/−) mouse, which develops all phases of atherosclerotic
lesions seen in humans, progressing from the early foam cell stage to the advanced stage
with a fibrous cap and necrotic lipid core 11. We have observed that atherosclerosis
susceptible C57BL/6 (B6) Apoe−/− mice develop significant hyperglycemia when fed a
Western-type diet 12. In contrast, atherosclerosis-resistant BALB/cJ (BALB) Apoe−/− mice
are highly resistant to hyperglycemia 13. The concordant differences between the two
Apoe−/− strains in susceptibility to atherosclerosis and to hyperglycemia provide an ideal
model for investigating genetic connections between the phenotypes. In the present study,
we performed quantitative trait locus (QTL) analysis on female mice from an intercross
between B6. Apoe−/− and BALB. Apoe−/− mouse strains to investigate the genetic control of
atherosclerosis and glucose homeostasis.

Methods
Mice

B6.Apoe−/− mice were purchased from the Jackson Laboratories. BALB. Apoe−/− mice at
the N10 generation were generated in our laboratory, as previously described 14. B6.
Apoe−/− mice were crossed with BALB. Apoe−/− mice to generate F1s, which were
intercrossed by brother-sister mating to generate a large F2 population. Female F2 mice were
weaned at 3 weeks of age onto a rodent chow diet, and male F2 mice were euthanized at the
time of weaning. At 6 weeks of age, F2 mice were started with a Western diet containing
21% fat, 34.1% sucrose, 0.15% cholesterol, and 19.5% casein (Harlan Laboratories, TD
88137) and maintained on the diet for 12 weeks. All this procedures were in accordance
with current National Institutes of Health guidelines and approved by the University Animal
Care and Use Committees.

Measurements of plasma glucose
Mice were bled twice: once before initiation of the Western diet and once at the end of the
12 weeks’ high-fat feeding period. Mice were fasted overnight before blood was drawn from
the retro-orbital venous plexus with the animals under isoflurane anesthesia. Plasma glucose
was measured with a Sigma glucose (HK) assay kit, which was adapted for a microplate
assay. Briefly, 10 μl of plasma samples (plasma from high-fat diet fed mice was diluted 1:2
in distill water) were mixed with 90 μl of reagent in a 96-well plate. After a 15-min
incubation at room temperature, the absorbance at 340 nm was read on a Molecular Devices
(Menlo Park, CA) plate reader.
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Aortic lesion analysis
Atherosclerotic lesions in aortic root were measured as previously reported 15. Briefly, the
aortic root and adjacent heart were excised en bloc and embedded in optimal cutting
temperature compound. 10-μm thick cross sections of the vessel were collected, stained with
oil red O and hematoxylin, and counterstained with fast green. Atherosclerotic lesion areas
were quantified using an ocular lens with a square-micrometer grid on a light microscope.
The lesion areas of five sections with the largest readings were averaged for each mouse and
this average was used for statistical analysis.

Genotyping
Genomic DNA was isolated from the tails of mice by using the phenol/chloroform
extraction and ethanol precipitation method. A total of 130 microsatellite markers covering
all 19 autosomes and the X chromosome at an average interval of 12 cM were typed.
Parental and F1 DNA served as controls for each marker.

Statistical analysis
QTL analysis was performed using J/qtl and Map Manager QTX software as previously
described 12,15, 16. One thousand permutations of trait values were run to define the genome-
wide LOD (logarithm of odds) score threshold required to be significant or suggestive for
each specific trait. Loci that exceeded the 95th percentile of the permutation distribution
were defined as significant (P<0.05) and those exceeding the 37th percentile were
suggestive (P<0.63) according to the criteria recommended by the genetics community in
2003 17.

Results
Trait value distributions

Fasting plasma glucose levels of 266 F2 mice before and after 12 weeks on the Western diet,
atherosclerotic lesions in the aortic root, and body weight were measured. As shown in
figure 1, values of fasting plasma glucose levels on both chow and Western diets, log-
transformed atherosclerotic lesion sizes, and body weight approach normal distributions.
These data were analyzed to identify chromosomal regions segregating with the traits. Those
loci exhibiting significant linkage and suggestive linkage are presented in Table 1.

Atherosclerotic lesion size
Four significant QTLs, located on chromosomes (Chr) 1, 2, 5, and 9, and one suggestive
QTL on Chr4, were identified for atherosclerotic lesion sizes (Figure 2). Details of the QTLs
detected, including locus name, LOD score, 95% confidence interval (CI), peak location,
genome-wide significance P value, high allele, and mode of inheritance are presented in
Table 1. The two significant QTLs on Chr1 and Chr9 replicated the previously reported
QTLs, Ath1 and Ath29, respectively 15,18. The other two significant QTLs were novel. The
Chr2 locus had a significant LOD score of 3.77 and a genome-wide significant P value of
0.026. It peaked at 52.2 cM and did not overlap in the confidence interval with known
mouse atherosclerosis QTLs. We named it Ath41 according to the QTL nomenclature for
mouse atherosclerotic lesions. The Chr5 locus had a highly significant LOD score of 5.69
and a genome-wide P value of <0.001. Its peak appeared at 54.7 cM. We named it Ath42.
The Chr4 locus had a suggestive LOD score of 2.8 and peaked at 63.3 cM. This QTL was
partially overlapping with Athsq1, an atherosclerotic lesion locus identified in a (MOLF/Ei x
B6.Ldlr−/−) x B6.Ldlr−/− backcross 19. Paradoxically, the BALB allele was associated with
increased lesion size while the B6 allele was associated with decreased lesion size (Table 2).
In contrast, for the 4 significant QTLs, the B6 allele was the high allele that increased lesion

Zhang et al. Page 3

Circ Cardiovasc Genet. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



size and the BALB allele was the low one that reduced lesion size. Ath42 affected
atherosclerotic lesion size in a dominant mode of inheritance while other QTLs exhibited an
additive effect on the trait.

Fasting glucose levels
For fasting glucose on the chow diet, 4 significant QTLs on Chr1, Chr5, and Chr12, and two
suggestive QTLs on Chr9 and Chr15 were identified (Figure 3). The significant locus on
distal Chr1 and the 2 suggestive loci on Chr9 and Chr15 replicated the previously reported
QTLs, Bglu3, a suggestive locus on Chr9 (now named Bglu14), and Fbg2, respectively
(Table 1). The significant QTLs on the middle portion of Chr1, Chr5, and Chr12 were novel.
The LOD score plot for Chr1 displayed two distinct peaks, located approximately 14 cM
apart (Figure 3). The distal QTL peaked at 74.3 CM, overlapping with Bglu3, identified in a
B6 x C3H Apoe−/− F2 cross 12. The proximal peak occurred at 60.3 cM with a LOD score
reaching 3.94. We named this QTL Bglu12 to represent a significant mouse QTL for fasting
glucose. The Chr5 locus had a highly significant LOD score of 6.72 and peaked at 47.3 cM.
We named it Bglu13. The QTL on Chr9 had a suggestive LOD score of 3.06, and
overlapped with a suggestive locus near D9mit229 (26.8 cM) for fasting glucose levels
identified in a B6 x KK-Ay F2 cross 20. We designated this QTL as Bglu14 as it has not
been named. The QTL on Chr12, named Bglu15, had a significant LOD score of 3.43 and
peaked at 10 cM. Bglu15 is close to the centromere compared to Fbg-1, which is located in
the middle portion of Chr12 between D12mit4 (35.5 cM) and D12mit227 (38.4 cM) 21. The
suggestive QTL on Chr15 overlapped with Fbg-2 near D15Mit87 (16.7 cM), identified in
(BALB x KK/Ta) x KK/Ta backcross 21. For fasting glucose on the Western diet, 2
significant QTLs on Chr1 and Chr5 and 1 suggestive QTL on Chr8 were identified (Figure
4). The Chr1 QTL replicated Bglu3, and the Chr5 replicated Bglu13. The Chr8 locus
overlapped with Giq1, a locus with a strong influence on the late phase of glucose tolerance
test identified in a B6×KK-A cross 22. Bglu13 affected fasting glucose levels on both chow
and Western diets in a dominant mode of inheritance while all other QTLs exhibited an
additive effect on the trait except for the QTL on Chr9 and Chr15 that affected glucose
levels in a recessive and a heterosis mode, respectively (Table 2).

Body weight
One significant QTL on distal Chr1 and 2 suggestive QTLs on Chr9 and Chr19 were
identified for body weight (Figure 5). The Chr1 QTL overlaps with Wt3q2 and Wt6q2 for
body weight mapped in two F2 populations created from a selection and an inbred mouse
lines 23, Bw8q1 originally mapped in a B6×A/J intercross 24 and then replicated in a BxH
Apoe−/− F2 cross12, and Nob3 for body fat body weight and blood glucose mapped in
NZO×B6 F2 females 25. The Chr9 locus overlaps with W10q13 mapped in an M16i x L6
intercross 26, Do2 for dietary obese mapped in two crosses derived from AKR/J and SWR/J
mice 27, and Obq18 for obesity mapped in B6 x 129 F2 females 28. The Chr19 locus
corresponds to Wtmq9 mapped in a B6 x C3H Apoe−/− intercross 29, W3q14 from an M16i x
L6 F2 intercross 26, and Abfw4 for abdominal fat mapped in DU6i x DBA/2 intercross 30.

Coincident QTLs for atherosclerosis and fasting glucose
LOD score plots for chromosome 5 show that the QTLs for atherosclerosis (Ath42)
coincided with the QTL for fasting glucose (Bglu13) in the confidence interval (Figure 6).
Both loci exhibited a dominant effect from the B6 allele on atherosclerotic lesions or fasting
glucose levels (Table 2). LOD score plots for chromosome 1 show partial overlapping of the
QTL for atherosclerosis (Ath1) with the QTLs for fasting glucose (Bglu3) and body weight
in the confidence interval (Figure 7). The B6 allele was associated with increased
atherosclerotic lesions and decreased glucose levels and body weight while the BALB allele
was associated with decreased lesions and increased glucose levels and body weight (Table
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2). Ath29 was also partially overlapping with Bglu14 in the confidence interval on the Chr9
(Table 1).

Discussion
In this study, we have identified five loci contributing to the development of atherosclerosis,
six loci to fasting glucose levels on the chow diet, three loci contributing to fasting glucose
levels on the Western diet, and three loci for body weight in an intercross between B6 and
BALB Apoe−/− mouse strains. Moreover, we have observed the colocalization of QTLs for
atherosclerotic lesions and for plasma glucose levels on chromosomes 1, 5, and 9.

B6 and BALB are prototype mouse strains for genetic studies of atherosclerosis. In
pioneering studies of recombinant inbred strains derived from the two strains, as well as
from B6 and C3H/HeJ, Paigen et al 18 identified the first atherosclerosis susceptibility locus,
Ath-1. Subsequent studies of female F2 and N2 progeny derived from the B6 and BALB
strains demonstrates the segregation of Ath-1 with HDL cholesterol levels 31. However,
there are several limitations in those studies: First, the number rather than the size of
atherosclerotic lesions was measured. Thus, atherosclerotic lesions were treated as a
“qualitative trait” rather than a “quantitative trait”. Second, the mapping was performed
using a rather small numbers of animals, especially the recombinant inbred strains, thus the
power for detecting susceptibility loci was low. Third, there were fewer polymorphic
markers available at the time when the studies were conducted. Lastly, the diet-induced
mouse model of atherosclerosis develops only small fatty streak lesions that are largely
limited to the aortic root 32. In contrast, Apoe-deficient mice develop all phases of
atherosclerotic lesions in large and medium sized arteries seen in humans 11. Our present
work has extended the prior studies by finding five atherosclerosis QTLs, including Ath1.
Among the five QTLs, Ath1, Athsq1, and Ath29, have been previously reported 15,18,33.
Tnfsf4 has been identified to be the causal gene of Ath1 34. We recently have identified
Rcn2, a calcium-binding protein in the endoplasmic reticulum, as a key regulator in oxidized
phospholipid-induced cytokine production and a probable candidate gene of Ath29 35. The
confidence interval of Athsq1 is corresponding to human chromosome 9p21, a region that is
associated with coronary heart disease 36, 37,38.

The QTL on chromosome 2, named Ath41, is close to Athla1, an atherosclerosis
susceptibility locus mapped in a (PERA×B6-Ldlr−/−)×B6-Ldlr−/− N2 backcross mice 39.
Athla1 is located in a more distal region (69 cM), and it increases lesion size only when
homozygous for the B6 allele. Candidate genes for Ath41 include Dab2ip, Tfpi, and
Slc38a11, which have been shown to be associated with coronary heart disease in
humans 40,41,42.

We identified a major locus on chromosome 5, approximately between 40 and 60 cM, which
affected both atherosclerotic lesion size and fasting plasma glucose levels. We named it
Ath42 for atherosclerotic lesions and Bglu13 for fasting glucose. As the two loci overlap
significantly in the confidence interval, it is plausible to postulate that they share the same
underlying causal gene. The present observation that both QTLs exhibited the same
dominant B6 allele effect on the two different traits supports this speculation. Nevertheless,
it is also likely that the two phenotypes are affected by two linked but unique genes residing
in the QTL interval. The region from 40 to 60 cM on chromosome 5 in the mouse
corresponds to chromosomal regions of 4q13, 4q21, and 12q24 in humans. The 4q13 region
has been shown to be associated with variations in metabolic traits, including blood
glucose 43,44, and the 12q24 region is associated with coronary heart disease 45,46, metabolic
syndrome 47,48, type 1 and type 2 diabetes 49,50,51. One promising candidate gene in the
region is Hnf1a, which encodes hepatocyte nuclear factor 1α. One A/G SNP in exon 9
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between B6 and BALB leads to amino acid substitution (P580R) in the Hnf1a protein. In
humans, Hnf1a mutations are the most common cause of maturity-onset diabetes of the
young (MODY) 52. Polymorphisms in the Hnf1a gene are associated with risk for T2DM
and coronary heart disease 49, 53.

The QTLs for plasma glucose and body weight on distal chromosome 1 have been reported
previously in three separate mouse intercrosses, including two B6×C3H crosses deficient in
Apoe 12, 29, and a cross between New Zealand obese (NZO) and B6 mice 25. The confidence
interval of the QTLs overlaps with a region of linkage to type 2 diabetes found in multiple
human populations that has been extensively examined by the International Chromosome 1q
Type 2 Diabetes Consortium 54. In the current cross, we have observed two distinct peaks of
the linkage curve for plasma glucose on the chow diet with the distal peak at 74.3 cM and
the proximal peak at 60.3 cM. The bootstrap test, an effective statistical method for defining
the confidence interval of QTLs using simulation 55, also indicated the existence of two
QTLs for the trait on chromosome 1. We have named the proximal QTL Bglu12 to represent
a new locus for fasting glucose in the mouse.

The QTLs for atherosclerosis (Ath1), fasting glucose (Bglu3), and body weight (BW8q1)
overlap in the confidence interval on the distal chromosome 1 region. The B6 allele was
associated with increased atherosclerosis but decreased glucose levels and body weight.
Apoa2 is a major gene in the region that may contribute to variations in the traits. The QTL
effect on body weight disappeared when the influence from the Apoa2 allele was
eliminated 56. On the other hand, transgene expression of Apoa2 in mice results in several
phenotypes observed in T2DM, including glucose intolerance, insulin resistance,
hypertriglyceridemia, and obesity 57,58. Apoa2 is also a major gene in the mouse that has a
dramatic influence on plasma HDL cholesterol levels 59. BALB mice have an Apoa2b allele
that elevates HDL cholesterol levels and B6 mice have an Apoa2a allele that decreases HDL
cholesterol levels 60. High HDL cholesterol levels protect against atherosclerosis. Apcs,
encoding serum amyloid P (SAP), is another candidate in the distal chromosome 1 region
that may contribute to T2DM and atherosclerosis. Plasma SAP levels, which are primarily
regulated by the Apcs gene, are correlated with blood glucose and body weight in a
segregating F2 population derived from B6 and C3H Apoe−/− mice12. In humans SAP is
significantly correlated with obesity, blood pressure, lipids, common and internal carotid
wall thickness, and ankle-brachial index 61. Cxcr4, Pask, Cntnap5a, Lct, and Pik3c2b are
positional candidate genes for Bglu12. Variants of these genes have been found to be
associated with susceptibility to T2DM, fasting glucose, or insulin resistance in
humans 62, 63,64, 65, 66, 67.

The QTL for fasting glucose on chromosome 9 was partially overlapping with the QTL for
atherosclerosis. Sorl1, Rcn2, and Apoc3 are potential candidate genes in the region that may
affect both atherosclerosis and T2DM 35, 68, 69. For Bglu15, Adam17, encoding a disintegrin
and metallopeptidase domain 17, and Ahr, encoding aryl-hydrocarbon receptor, are two
likely candidate genes. Adam17 is involved in the shedding of the extracellular domain of
cytokines, growth factors, receptors or adhesion molecules 70. Ahr signaling affects
molecular clock genes associated with glucose metabolism, and Ahr deficiency enhances
insulin sensitivity and reduces PPAR-α pathway activity 71. In the present study, we have
found some QTLs, such as Bglu3 and Bglu13, that influenced glucose levels when mice had
normoglycemia on a chow diet also affected glucose levels when mice developed
hyperglycemia on a high-fat diet. However, some other QTLs, such as Bglu12, Bglu14, and
Bglu15 only exerted effect under a specific condition (the chow diet). Six QTLs were found
for fasting plasma glucose when mice were fed the chow diet while only three QTLs were
detected when fed the Western diet. The reasons for the discrepancy in the results are
unknown. One probable explanation is that the Western diet has a significant influence on
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plasma glucose levels, which might overwhelm the influence from genetic factors on the
trait. In addition, the western diet induces some metabolic changes that suppress gene
expression. We recently have found that there are much more differentially expressed genes
in the aorta of two strains when fed a chow diet than a Western diet 72.

In summary, we have identified multiple QTLs contributing to the development of
atherosclerosis and glucose homeostasis in a segregating F2 population. The finding on the
colocalization of QTLs for atherosclerosis and glucose has laid the basis for further study to
determine whether they are controlled by the same genes or different unique genes in the
QTL intervals.
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Figure 1.
Distributions of fasting plasma glucose before (A) and after (B) 12 weeks on the Western
diet, LN (natural log)-transformed atherosclerotic lesion sizes (C), and body weight (D) in
266 female F2 mice derived from B6. Apoe−/− and BALB. Apoe−/− mice.
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Figure 2.
A genome-wide scan to search for loci influencing atherosclerotic lesion sizes of the F2
mice. Chromosomes 1 through 20 are represented numerically on the X-axis. The relative
width of the space allotted for each chromosome reflects the relative length of each
chromosome. The Y-axis represents the LOD score. Atherosclerotic lesion sizes were
determined by averaging the lesion areas of 5 cross-sections with the largest readings for
each F2 mouse. Two horizontal dashed lines denote genome-wide empirical thresholds for
suggestive (P=0.63) and significant (P=0.05) linkage.
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Figure 3.
A genome-wide scan to search for loci for fasting plasma glucose levels when the F2 mice
were fed the chow diet. Blood was collected from overnight fasted F2 mice the day before
being started on the Western diet.
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Figure 4.
A genome-wide scan to search for loci for fasting plasma glucose levels on the Western diet.
Mice were fed the high-fat diet for 12 weeks. Blood was collected from overnight fasted F2
mice the day before being euthanized.
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Figure 5.
A genome-wide scan to search for loci for body weight. Mice were weighed the day being
euthanized.

Zhang et al. Page 16

Circ Cardiovasc Genet. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
LOD score plots for atherosclerotic lesion size (A), fasting plasma glucose levels on the
chow diet (B), and fasting plasma glucose levels on the Western diet (C) on chromosome 5.
Plots were created with the interval mapping function of Map Manager QTX, including a
bootstrap test shown as a histogram estimating the confidence interval for the QTL. Two
green horizontal lines represent genome-wide significance thresholds for suggestive or
significant peaks (P=0.63 and P=0.05, respectively). Black plots reflect the LOD calculated
at 1-cM intervals. The blue plot represents the effect of the B6 allele, and the red plot
represents the effect of the BALB allele.

Zhang et al. Page 17

Circ Cardiovasc Genet. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
LOD score plots for atherosclerotic lesion size (A), fasting plasma glucose levels on the
chow diet (B), fasting plasma glucose levels on the Western diet (C), and body weight (D)
on chromosome 1. Plots were created with the interval mapping function of Map Manager
QTXb20, as stated above. The histogram denotes the confidence interval of the QTL.
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