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Abstract
Microglia do not constitute a single, uniform cell population, but rather comprise cells with varied
phenotypes, some which are beneficial and others that may require active regulatory control. Thus,
gaining a better understanding of the heterogeneity of resident microglia responses will contribute
to any interpretation regarding the impact of any such response in the brain. Microglia are the
primary source of the pro-inflammatory cytokine, tumor necrosis factor (TNF) that can initiate
various effects through the activation of membrane receptors. The TNF p55 receptor contains a
death domain and activation normally leads to cellular apoptosis; however, under specific
conditions, receptor activation can also lead to the activation of NFκB and contribute to cell
survival. These divergent outcomes have been linked to receptor localization with receptor
internalization leading to cell death and membrane localization supporting cell survival. A second
TNF receptor, TNF p75 receptor, is normally linked to cell growth and survival, however, it can
cooperate with the p55 receptor and contribute to cell death. Thus, while an elevation in TNFα in
the brain is often considered an indicator of microglia activation and neuroinflammation, a number
of factors come into play to determine the final outcome. Data is reviewed demonstrating that
heterogeneity in morphological response of microglia and the expression of TNFα and TNF
receptors are critical in identifying and characterizing neurotoxic events as they relate to
neuroinflammation, neuronal damage and in stimulating neuroprotection.

Keywords
microglia; neuroinflammation; hippocampus; trimethyltin; TNFα; TNF receptors

Introduction
Microglia serve as the resident mononuclear phagocytes of the brain and are highly
heterogeneous within the healthy CNS. They comprise only 10% of the total cell population
of the brain; yet, they have multiple morphological and potential functional profiles
depending on their environment (Streit et al., 2004; Streit, 2006). Structurally, microglia
display a dynamic and active phenotype with ongoing retraction and extension of processes
into the brain parenchyma (Raivich, 2005). This supports the idea of a surveillance function
for microglia in the healthy brain and that these cells are poised to rapidly respond to
environmental changes. Microglia serve as the first line of defense against pathogens
entering the CNS parenchyma and thus, play an important role during injury and infection in
the central nervous system (CNS; Streit et al., 1988; Perry et al., 1993; Gehrmann et al.,
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1993; 1995; Gebicke-Haerter et al., 1996; Kreutzberg, 1996). In the human brain, microglia
activation and neuroinflammation have been associated with viral or bacterial infection,
autoimmune disease such as multiple sclerosis, head trauma, vascular system damage,
neuropsychiatric disorders, and neurodegenerative diseases. In these conditions, microglia
serve as the primary resident immune cell of the brain and produce many of the pro-
inflammatory cytokines, such as tumor necrosis factor-α and interleukin-1 α.

It has been suggested that microglial responses are tailored in regional and insult-specific
manners (Carson et al., 2007). The most recognizable role of microglia in brain defense is as
a scavenger role to remove cellular debris by phagocytosis, as occurs in the event of
infection, inflammation, trauma, ischemia, and neuronal death (Thomas, 1992; Gonzalez-
Scarano and Baltuch, 1999; Carson, 2002; Danton and Dietrich, 2003). However, we now
know that, not only do microglia dynamically survey the CNS and clear damaged cellular
constituents, but that they are capable of initiating a rapid and specific response to subtle
changes in the microenvironment. In addition, microglia are in intimate contact with
neurons, for which they serve important developmental support (Kimoto et al., 2009) and
maintenance functions, such as clearance of aberrant proteins (Kreutzberg, 1996;
Nimmerjahn et al., 2005; Davalos et al., 2005; Raivich, 2005).

With changes in neuronal activity, presence of pathogen, or a mechanical/physical injury,
microglia respond with dramatic changes in cell morphology and increased expression of
macrophage markers. Due to the observation that microglia activation is likely an early
event in all forms of pathology, the presence of activated microglia was initially considered
as a sensitive marker to identify sites predestined for imminent tissue destruction (Galea et
al., 2007). However, further work has demonstrated that changes in microglia morphology
or functional activation do not inevitably lead to neuron loss nor does it only indicate
damage.

Phenotypes of Microglia
Microglia share phenotypic characteristics and innate immunological functions with other
mononuclear phagocytes such as, monocytes, macrophages, and dendritic cells (Flaris et al.,
1993). The classical bone-marrow-derived microglial cells reside in the gray matter and are
ramified (highly branched) with a small amount of perinuclear cytoplasm and a small, dense
and heterochromatic nucleus. Under normal conditions, microglia interact with their
surroundings and provide neurotrophic factors. Microglia can be transformed to a reactive or
activated state by localized changes in the environment, influences from infiltrating blood-
borne cells, local blood-brain-barrier disruption (Nimmerjahn et al., 2005), or the presence
of endangered neurons. In exchange, the transformed microglia can influence other neural,
vasculature, and blood-borne cells by a number of secreted factors including pro-
inflammatory cytokines and chemokines, as well as, nitric oxide and reactive oxygen
intermediates. Chemokines and cytokines produced by microglia can serve to signal
lymphocytes from the vascular system allowing for transendothelial migration into the brain
and the production of interferon gamma, which then propagates microglia activation.

The functional changes of activated microglia are often accompanied by a morphological
transformation leading from cells with thin, ramified processes to cells with larger somata
and shorter and coarser cytoplasmic processes. Microglia can display a ramified, hyper-
ramified, or activated/amoeboid morphology depending upon the type of ongoing response/
injury. For example, increased staining of ramified microglia indicative of thickened
processes is evident in the CA1 pyramidal cell layer and molecular layer of the hippocampus
within a few hours following an acute injection of lipopolysaccride (LPS) and in the
contralateral hippocampus following a direct injection of kainic acid. In each case, these
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morphological changes occur in the absence of neuronal death (Cunningham et al., 2009).
However, microglia localized to areas of neuronal death assume a more amoeboid shape
with dense cell bodies and a reduced number of shortened, thick processes (Cunningham et
al., 2009) progressing to a structural morphology similar to macrophages. While
morphology may not reflect functional activation states of microglia (Schwartz et al., 2006),
ongoing efforts to characterize functional differences between the various microglia
structural phenotypes continue. Such characterization and identification of relationship to
other cells in the brain are critical in determining the contribution of these dynamic cells in
acute and chronic brain insults.

Sources of Brain Macrophages
The brain has two indigenous sources of brain macrophages (a general term encompassing
all phagocytic cells, including activated microglia resident to the brain and blood-derived
monocytes entering the brain upon vascular injury). Once in the brain, the macrophages are
morphologically indistinguishable and identification requires either separation by flow
cytometry on the basis of CD11b/CD45 expression levels (Sedgwick et al., 1991; Renno et
al., 1995; Carson et al. 1998) or passive immune transfer with bone marrow chimera mice
(Ajami et al., 2007). While the entry into the brain is limited and delayed as compared to
peripheral tissue (Andersson et al., 1992), blood-derived macrophages may enter brain
tissue, react upon it, and then return to the circulation in the presence or absence of injury
(Matsumoto and Fujiwara, 1987; Lassmann et al., 1993). Alternatively, macrophages may
differentiate to microglial morphology and remain in the brain tissue for an extended period
of time. In this state they can persist until destroyed by senescence or prompted to move
back into the circulation. Peripheral macrophages provide an enriched source of cytokine
and inflammatory factors as compared to resident microglia. In addition, the impact of these
two different sources of microglia can be very different on neurons. This may be due to
innate features of the two cells yet to be identified or simply related to the magnitude of
microglia versus macrophage secreted factors, such as pro-inflammatory cytokines,
chemokines, nitric oxide, and production of reactive oxygen species.

TNFα and TNF receptor signaling
One such pro-inflammatory cytokine produced by macrophages is tumor necrosis factor
alpha (TNFα). TNFα has been considered as a possible master inflammatory regulator that
can induce further cytokine production, gliosis, blood-brain-barrier damage, demyelination,
inflammation, cell adhesion, and immune reactivity. In the CNS, microglia are the primary
source of TNFα (Gregersen et al., 2000; Hanisch, 2002) and the release of TNFα by
microglia is implicated in neurotoxicity (Badie et al., 2000; Taylor et al., 2005). Although
TNFα has not been demonstrated to cause neuronal death in healthy brain tissue or normal
neurons (Gendelman and Folks, 1999) and normal cellular architecture is maintained in mice
deficient in pro-inflammatory cytokines or receptors, one can not rule out that a localized
activation could initiate neuronal death.

The rapid increase in cytokine expression following injury requires transcription,
posttranscription, translation, and the conversion of latent precursors by proteases to
biologically active forms. The short half-life of cytokine mRNA transcripts requires rapid
translation and secretion into the extracellular space, resulting in a burst of cytokine release.
A microglia response and a rapid and dramatic up-regulation of TNFα protein and mRNA is
found in animal models of cerebral ischemia (Botchkina et al., 1997; Saito et al., 1996) with
increased TNFα expression preceding the onset of neuronal cell death (Botchkina et al.,
1999). Recent studies examining cell death and survival following an ischemic insult
(Lambertsen et al., 2009), exposure to MPTP (Sairanen et al., 2006), or induced by a
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systemic injection of trimethyltin (Harry et al., 2008) suggest that the level of TNFα
produced by microglia at a specific site and the neuronal expression pattern of TNF
receptors can be determining factors for neuronal death or survival. A critical signaling
element in TNFα-induced apoptosis is the robust and prolonged activation of JNK, which
occurs when NF-κB is inhibited (Sakon et al., 2003; Kamata et al., 2005), suggesting a dose-
response effect of TNFα exposure.

TNF initiates its multiple effects on cell function by binding to two distinct cell surface
receptors, a 55 kDa type-1 receptor (TNFp55R) and a 75 kDa type-2 receptor (TNFp75R)
(Tartaglia and Goeddel, 1992; Medvedev et al., 1996). TNFp55R contains a cytoplasmic
sequence identifying an intracellular death domain essential for the transduction of an
apoptotic signal (Micheau and Tschopp, 2003; Thorburn 2004). Receptor activation occurs
by oligomerization and requires internalization of the ligand-receptor complex. TNFp55R
contains tyrosine residues in its intracellular domain and, in most cells, this allows for the
ligand-TNFp55R complex to be rapidly internalized by clathrin-coated pits following
receptor triggering, which is critical for mediating the death signaling. Within minutes of
internalization, the TNF receptosome recruits TNF receptor-associated death domain
(TRADD) (Hsu et al., 1996; Schneider-Brachert et al., 2004). The fate of the cell depends on
which proteins associate with TRADD (Hsu et al., 1996). TNFp75R activation primarily
initiates trophic/protective actions (Shen et al., 1997; Yang et al., 2002), yet this receptor can
also initiate apoptosis (Suvannavejh et al., 2000). While cell death has been reported upon
triggering of this receptor (Bigda et al., 1994; Grell et al., 1993; Medvedev et al., 1994;
1996b), activation of the apoptotic program was considered to be due to endogenous TNF
and the activation of TNFp55R (Grell et al., 1999; Fiers et al. 1995). Later studies using
mice in which astrocyte-specific human tm (transgenic mouse) TNF signals exclusively
through a regulated human (hu) TNFp75R transgene, in the absence of the endogenous
TNFp75R and TNF genes, demonstrated a proinflammatory role for the TNFp75R when
signaling alone in the CNS (Akassoglou et al., 2003). This study demonstrated that
physiological levels of the TNFp75R are sufficient to induce inflammation in the CNS when
TNF is chronically produced. In this case, however, clinical symptoms are not necessarily
associated with the inflammation. With increased levels of the TNFp75R, both
neuropathology and clinical signs are evident. Further work demonstrated that cytotoxic and
inflammatory effects of TNF in the CNS occurred if these transgenic mice are linked with
the TNFp55R. When these transgenic mice are linked with the TNFp75R only, the
inflammatory effects are observed. With two functional TNFRs, it was concluded that the
severity of TNF-induced neuropathology depends on the levels of TNFR expression
(Akassoglou et al., 2003).

A number of studies have supported cooperation between TNF receptors in cytotoxicity
(Declercq et al., 1998; Vandenabeele et al., 1995; Grell et al., 1995; Meager et al., 1993;
Weiss et al., 1997; Akassoglou et al., 2003). It is thought that the cytoplasmic domain of the
TNFp75R has signaling activity for TNFp75R-mediated cytotoxicity. Activation of
TNFp75R can enhance TNFp55R-induced cell death (Chan and Lenardo, 2000; Declercq et
al., 1998; Vandenabeele et al., 1995; Weiss et al., 1997). Activation of TNFp55R results in
activation of NF-κB and induction of associated anti-apoptotic factors (Wajant et al., 1999;
2001; Yang et al., 2001). Thus, TNFp55R-induced apoptosis usually occurs only following
down-regulation of the anti-apoptotic NF-κB response. TNFp75R triggering can modify
TNFp55R-induced apoptosis via inhibition of NF-kB-dependent production of anti-
apoptotic factors and by blocking the action of anti-apoptotic factors at the post-
transcriptional level (Fotin-Mleczek et al., 2002).

TNF receptors are expressed by both neurons and glia (Kinouchi et al., 1991; Tchelingerian
et al., 1996; Dopp et al., 1997). With injury, the expression of receptors and their
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distribution on specific cell types can vary depending upon whether the activation is due to
apoptosis or inflammatory regulation. For example, macrophages within an ischemic infarct
express a high level of TNF receptors while within the prenumbra or with a nerve
transection injury, neurons rather than reactive/ramified microglia may be the prominent cell
expressing TNF receptors (Botchkina et al., 1997; Sairanen et al., 2001; Lambertsen et al.,
2007; Harry et al., 2008). While TNF signals via membrane receptors, TNF exposure also
activates a selective extracellular proteolytic cleavage of TNFR resulting in the release of
soluble TNFR. In this form, the receptors can serve in a protective fashion by binding TNF
and preventing further receptor signaling. It is also known that both the tissue distribution of
the receptor and the differentiation state of the target cell influence the cellular response to
cytokines. The contradictory effects of TNFα may depend on timing i.e., early
proinflammatory functions may be followed by a later stage of immunosuppressive activity
(Liu et al., 1998; Korner et al., 1997), such as the inhibition of T-cell proliferation (Lu et al.,
2007) or apoptosis (Weishaupt et al., 2000).

For the TNF family of receptors, membrane receptor mechanisms of apoptosis are
implicated in neuronal death involving intracellular death-inducing signaling complexes
(Martin-Villalba et al., 2001; Henshall and Simon, 2005) activation of the AP-1 and NF-κβ
transcription factors (Baud and Karin, 2001; Qiu et al., 2002), as well as signal transduction
and activation of caspases (Krammer, 2000; Rosenbaum et al., 2000). It has been proposed
that TNFp55R activation provides a molecular mechanism for the rapid apoptosis of injured
or sick neurons through a caspase 3-mediated pathway (Yang et al., 2002). However, studies
to elucidate the role of individual TNF receptors in the brain using TNF receptor-deficient
mice have provided a less than consistent pattern with contradictory results as to the
influence of each receptor on the severity of an injury (Sullivan et al., 1999; Suvannavejh et
al., 2000; Raivich et al., 2002; Bohatschek et al., 2004; Quintana et al., 2005). Many of these
studies however have employed injury models that disrupt the blood brain barrier and thus
serum factors or infiltrating cells may serve as a major confounder in the final interpretation.
In addition, as a whole, these studies were not designed in a manner to examine the
contribution of receptor cooperation.

Parkinson's Disease
One of the more prominent views of a role of microglia and neuroinflammation in
neurodegeneration comes in the arena of Parkinson's Disease (Orr et al., 2002; Whitton,
2007). TNF-immunoreactive glial cells have been detected in the substantia nigra and
immunoreactivity for TNF receptors was found in cell bodies and processes of most
dopaminergic neurons of Parkinsonian patients (Boka et al., 1994). The general assumption
has been that, given the elevated vulnerability of dopaminergic neurons to oxidative stress
and the increased number of microglia within the substantia nigra (SN), microglia and
neuroinflammation significantly contribute to the disease process. Some questions, however,
are beginning to arise for some of the underlying assumptions. With regards to the
assumption of neuronal vulnerability based upon a greater number of microglia in the SN,
the extensive examination by Lawson (1990) showed the highest number of microglia in the
olfactory telencephalon, followed by a higher relative number of microglia with similar
phenotype in dentate gyrus of the hippocampus, the substantia nigra, and portions of the
basal ganglia (approx. 13%) as compared to a relatively uniform distribution of microglia in
the adult rodent brain (cortex - 3%). This observation has been taken to imply that the
differential vulnerability of the dopaminergic neurons in the SN is related to the number of
microglia present in the structure. Lawson et al (1990) however, also reported that the
regional difference in microglia is also evident to how these cells modify their morphology
and express cell surface antigens.
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In 2006, Sawada and co-workers examined autopsy brains of Parkinson's Disease patients in
the attempt to determine whether cytokines produced by activated microglia in the SN and
putamen served in a neuroprotective or neurotoxic role. At the early stage of the disease
microglia were predominantly associated with tyrosine hydroxylase (TH)-positive neurites
in the SN. In the later stages of the disease, activated microglia displaying an amoeboid
morphology were associated with dying TH-positive neurons. Interestingly, a microglia
response was not limited to the SN but rather was seen in various other regions such as the
hippocampus and the cerebral cortex in the absence of neuronal loss. With a Lewy body
disease, neuronal loss extended to the hippocampus. Sawada et al. (2006) concluded from
these studies that microglia in the SN and putamen may be neuroprotective in the early
stages of the disease but become neurotoxic with the degeneration of dopamine neurons.
Alternatively, the changes in the microglia response may simply reflect a normal phagocytic
activation upon neuronal death. Alternatively, the response of microglia may reflect efforts
to regulate the CD8+ and CD4+ T cells known to be present in the SN of PD patients
(McGeer et al., 2001; Brochard et al., 2009).

Multiple studies have employed minocycline as a method to study the relationship between
microglia activation and neuronal degeneration. Minocycline is a tetracycline derivative
antibiotic with a well-described ability to downregulate multiple inflammation-induced
secretory products, such as NO, IL-1, cyclooxygenase-2 (COX-2), and prostaglandin E(2)
production, as well as expression of inducible nitric oxide synthase, and IL-1beta-converting
enzyme. Initial studies reported that blocking minocycline offered neuroprotection against a
dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) sufficient to induce loss of
nigrostriatal dopaminergic neurons (Wu et al., 2002). While this finding could be interpreted
as supporting an active role for microglia in neuronal death, there are significant
confounders. For example, specificity of an effect of minocycline on microglia is limited as
this drug also has direct anti-apoptotic effects, such as inhibition of caspase-1, caspase-3,
and cytochrome c release. (Chen et al., 2000; Du et al., 2001; Power et al., 2003; Sanchez
Mejia et al., 2001; Tikka and Koistinaho, 2001; Tikka et al., 2002; Yrjanheikki et al., 1998;
1999). In addition, it can modulate ERK1/2 and p38 MAP kinase activity (Corsaro et al.,
2009). As, typically, the microglia response is related to the severity of the injury/cell death
response, the anti-apoptotic actions of minocycline limit the ability to conclude a causal
relationship between microglia activation and neuronal death. The recent finding that
minocycline reduced activation of bone marrow-derived cells but did not alter their
phagocytic activity (Malm et al., 2008) suggests that the cells maintain the ability to clear
neuronal debris. Thus, in any experimental model that induces neuronal death, attempts to
draw conclusions regarding a causation of microglia activation on neuronal death are limited
if not impossible. The work by Sriram et al. (2006) provides an excellent example for
utilizing minocycline to compare the heterogeneity of the microglia response and the impact
on specific neuronal populations. In contrast to the study by Wu et al. (2002), in which
minocycline protected against MPTP-induced loss of nigrostriatal dopaminergic neurons,
Sriram et al (2006) reported that, minocycline did not offer protection against a lower dose
of MPTP or methamphetamine (METH) that induces degeneration of striatal dopaminergic
nerve terminals. At these lower doses an elevation in TNFα remained with minocycline
treatment. The microglia response at the nerve terminals may represent synapse stripping
consistent with a phagocytic activity, which is not altered by minocycline (Malm et al.,
2008). The results of this study suggested a dual role for TNFα and possibly microglia with
promoting degeneration in the striatum and supporting neuronal survival in the hippocampus
(Siriram et al., 2006). This is consistent with earlier work from Rousselet et al., (2001)
suggesting that TNFα did not participate in the death of dopaminergic neurons following
MPTP but that it slightly altered the survival of dopaminergic terminals by a mechanism
requiring both TNF receptors. In the Siriram et al (2006) study, the use of minocycline and
the low-dose MPTP model of synaptic damage allowed for a clear distinction to be
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identified between microglia reaction and TNFα production, versus a neuroinflammatory
response involving nitric oxide and superoxide.

TMT murine model of hippocampal damage to identify microglia and TNF-
related events

Over the years, trimethyltin (TMT) has been used to produce a model of selective
hippocampal damage (review, Harry and Lefebvre d'Hellencourt, 2003). Using this
neurotoxicant, a significant amount of research has examined the role of microglia in
neurotoxicity (Monnet-Tschudi et al., 1995; Maier et al., 1997; Bruccoleri et al., 1998;
Viviani et al., 1998; Bruccoleri and Harry, 2000; Haga et al., 2002; Harry et al., 2002; Little
et al., 2002; Eskes et al., 2003; Figiel and Dzwonek, 2007; Mao et al., 2007; Koda et al.,
2009). These studies have varied from identifying microglia as a sensitive marker for the
neurotoxic effect of the chemical to efforts to identify the mechanism of cell death and
neuroprotection.

In vitro studies demonstrated that TMT activates microglia (Rohl et al., 2009) and induces
TNFα production in cultured mixed glia (Maier et al., 1997; Viviani et al., 1998; Harry et
al., 2002; Eskes et al., 2003), which has been implicated in the in vivo neurotoxicity
(Bruccoleri et al., 1998; Fiedorowicz et al, 2001). Interestingly, this injury model has
provided some of the first evidence that the induction of TNFα by microglia may directly
contribute to the neuropathology (Harry et al., 2008; Bruccoleri and Harry, 2000; Harry et
al., 2002; Figiel and Dzwonek, 2007). However, these studies also suggested a dual role for
TNFα similar to what has been reported for MPTP (Siriram et al., 2006) and demonstrated
heterogeneity of the microglia response. For example, our previous work characterized the
temporal and spatial response of microglia and neurons within the hippocampus following
an acute systemic injection of TMT. As early as 6 hrs, microglia cells are found in
juxtaposition to dentate granule neurons expressing a low-level of active caspase 3
(Lefebvre d'Hellencourt and Harry 2005; Harry et al., 2008). With the progression of dentate
granule cell death occurring over the ensuing 72-hrs post-TMT, an increased staining of
both ramified and amoeboid microglia was observed (Bruccoleri et al., 1998; Harry et al.,
2008a,b). The amoeboid microglia were in contact with apoptotic dentate granule neurons
while the hypertrophied, process-bearing microglia maintained contacts with the healthy
dentate neurons. By 72 hrs, a peak level of phagocytic microglia cells occurs in the dentate
gyrus coinciding with the actual loss of dentate granule neurons, presumably due to
phagocytosis and clearance by microglia (Fig. 1). The morphological response corresponds
to the transient elevation of TNFα mRNA (Fig. 2) and localized microglia expression of
TNFα as determined by in situ hybridization (Bruccoleri et al., 1998; Bruccoleri and Harry,
2000). In addition, mRNA levels for TNF receptors were elevated selectively in the
hippocampus (Harry et al., 2008a,b) and that the level and temporal onset of expression was
higher and earlier in the dentate granule cell region as compared to the pyramidal cell layer
(Lefebvre d'Hellencourt and Harry, 2005; Harry et al., 2008a).

Work examining the osteopetrotic mouse deficient in colony stimulating factor and thus
severely deficient in macrophages and microglia, demonstrated that the physical presence of
microglia was not the deciding factor in TMT-induced toxicity but that rather the significant
elevation in TNFα mRNA by microglia was a major contributing factor (Bruccoleri and
Harry, 2000). Further reports demonstrating that neutralizing antibodies to TNFα provide
neuroprotection against TMT (Harry et al., 2002; 2003; 2008a) suggest a direct causative
effect in neuronal death. Additional work supported the conclusion that the microglia
response represented resident brain cells rather than infiltrating cells from the periphery as
an inhibition of systemic TNFα by pentoxifylline (Shohami et al., 1996) altered mRNAs
associated with the vasculature system but did not provide neuroprotection (Harry et al.,
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2003). In addition, the systemic administration of ebselen also did not provide
neuroprotection (Harry et al., 2003). Ebselen is known to inhibit neutrophil recruitment and
activation through an inhibitory effect on TNF, IL-1, and ICAM-1 expression (Haddad et al.,
2002). In models of brain injury such as ischemia, ebselen has shown promise as a
protective agent due to anti-inflammatory and antioxidant properties (Parnham and Sies,
2000; Imai et al., 2001; Namura et al., 2001). Thus, its ineffectiveness in the TMT acute
injury may be because of a lack of infiltration of systemic immune cells, as well as, the
absence of a significant free radical activation, as suggested by the absence of elevation in
iNOS mRNA levels either in vivo (Bruccoleri et al., 1998; Harry et al., 2003) or isolated
microglia (Maier et al., 1997). When neurotoxicity was examined in TNF receptor deficient
mice a shift in the dose response was observed (Harry et al. 2008a). Mice deficient for one
of the receptors demonstrated a more severe neuropathology while the absence of both
receptors provided neuroprotection (Harry et al. 2008a). When the cellular distribution of
the receptors was examined by immunohistochemistry, it was found that early in the process
of cell death, dentate granule neurons show a transient expression and internalization of
TNFp55R followed closely by expression and internalization of TNFp75R. In mice deficient
for TNFp55R, active caspase 3 positive dentate granule neurons showed an early
internalization of TNFp75R. These data suggested both an interaction between the receptors
in apoptosis and the ability of TNFp75R to act in an apoptotic fashion in the absence of
TNFp55R. This would be consistent with other data on TNF receptor expression as
mentioned earlier but the first time the sequence of events and the relationship to neuronal
survival versus death has been described.

Within this model of delayed-neuronal death (2-3 days) of dentate granule neurons, the CA
pyramidal neurons are spared. Given the circuitry of the hippocampus, including the
trisynaptic circuit of the dentate gyrus, CA3 pyramidal cells, and the CA1 pyramidal cells
(Amaral and Witter, 1989), this model allows us to compare microglia responses between
the two regions (Fig. 3). In the CA1 region, a pronounced microglia response occurs
characterized by hypertrophied process bearing ramified microglia in contact with pyramidal
neurons (Bruccoleri et al., 1998; Harry et al., 2008a,b). By in situ hybridization, TNFα
transcript was detected in these ramified microglia (Bruccoleri et al., 1998; Bruccoleri and
Harry, 2000). Using laser capture microscopy to extract specific hippocampal regions, RNA
levels for TNFα and TNF receptors were elevated in the CA region; however, this was lower
or delayed as compared to the dentate granule cell region (Lefebvre d'Hellencourt and
Harry, 2005; Harry et al., 2008a). Immunohistochemistry for receptor distribution showed
that, while expression was elevated, neither receptor showed evidence of internalization as
occurred in the dentate granule cells. Diverging consequences of TNFα/TNF receptor-
activation can be dependent on subtle differences in stimulus intensity, duration, or the
extra/intracellular environment (Shohami et al., 1999). Thus, the effects of any elevation in
TNFα vary and may depend on the actual level of ligand produced. The differential response
observed between the DG and the CA1 following TMT suggests the possibility of a
threshold requirement for TNFα levels to initiate receptor internalization and activation of
the cell death pathway. Alternatively, at the lower level of TNFα expression the differential
response of microglia cells in the CA layer that may represent trophic factor support for
neurons such as insulin like growth factor (Wine et al., 2009).

Conclusions
From the expanding number of studies on microglia functions, we are beginning to
appreciate the diverse nature of these cells. Overall the data suggest that distinct and
individual microglia responses depend upon the types of changes in the microenvironment.
The heterogeneity of normal microglia across brain regions and in response to injury may
preclude any assumption of a common mechanism of action for brain microglia/
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macrophages; whether neurotoxic or neuroprotective. One of the major current issues with
regards to neuroinflammation is its contribution to chronic neurodegenerative diseases. As
with any disease, it is very difficult to model a human neurological disease. One can model
different features of the disease process such as loss of dopaminergic neurons for this rarely
is considered to reflect all aspects of the disease condition. In any long-term exposure or
degenerative process, it becomes difficult to identify a causal effect of microglia activation
on neuronal death. Many of the acute/short term injury studies are currently providing
critical information with regards to the different types of responses of microglia and the
temporal sequence of events. One of the interesting comparisons is between the various
models that do not involve the infiltration of blood-borne macrophages and thus, the
associated high levels of various stimulatory and damaging factors. For example, the low
dose MPTP and methamphetamine models used by Siriram et al. (2006) and the trimethyltin
model that we have examined in our laboratory demonstrate similar findings of a microglia
and TNFα involvement in neuronal injury in the absence of other “inflammatory factors”
such as iNOS, SOD, IFNγ. Characterizing the heterogeneity and temporal pattern of
morphological and functional changes becomes important in interpreting data on the nature
of the microglia response. Temporal and spatial relationships defined in acute or short-term
studies will provide a significant database from which to determine critical events and
outcomes in more chronic exposures or conditions. In addition, determining neurotoxicity
associated with a microglia response and elevations in TNFα in the absence of other classic
inflammatory markers such as nitric oxide or infiltrating blood borne cells will significantly
contribute, not only to our understanding of the heterogeneity of microglia, but also to
identification of critical signaling events leading to neuronal death or survival.
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Figure 1.
Pathogen free, 23-day-old male mice (CD-1, Charles River; Raleigh, NC) received an
intraperitoneal (ip) injection of either 2 mg/kg trimethyltin (TMT) hydroxide (Alfa Products,
Danvers MA) or saline (2 ml/kg). Procedures complied with a NIEHS animal care and use
committee approved protocol. Rabbit polyclonal anti-active caspase 3 (AC3; 1:1000, 18h,
4°C, #AB3623, Chemicon) was visualized with goat anti-rabbit IgG AF 594 (1:1000,
Molecular Probes). Neurons were identified with Neurotrace® blue fluorescent Nissl stain
(1:500, 1h, RT; Molecular Probes). Microglia were identified by binding of isolectin B4
(IB4) from Griffonia simplicifolia (Sigma, St. Louis, MO) in 1X Automation Buffer
(Biomedia Corp, Foster City, CA) containing 0.1 M CaCl2, MgCl2, MnCl2, and 0.1% Triton
X-100 and visualized by 3,3′-diaminobenzidine (DAB) substrate (Harry et al., 2008a,b).
AC3 was not evident in the control hippocampus and IB4 staining of microglia in the control
brain showed small cells with thin, lightly stained, ramified processes. At 72-hr post-TMT,
AC3 staining was prominent within neurons and a severe microglia response was evident
characterized by both hypertrophied process bearing microglia and amoeboid microglia
within the dentate granule cell layer.

Kraft et al. Page 17

Neurotoxicology. Author manuscript; available in PMC 2012 April 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
A. The severity of dentate granule cell damage increased over the first 72 hrs post-TMT (2
mg/kg TMT hydroxide ip, PND 23 male CD-1 mice). Scale 1-5 based upon number and
location (progressing from inner to outer area of dentate blade) of eosin+ cells (n=10).
*p<0.05 Kruskal-Wallis followed by Mann Whitney-U tests for independent group
comparisons.
B. The response of IB4 + microglia changed over time with a transient increase in the
percent of microglia displaying an amoeboid morphology between 24 and 72 hr (Fig. 2B).
These cells were characterized by an increase in cell body size to greater than 5 microns,
rounding-up of the cell, and the lack of ramified processes representative of a phagocytic
phenotype. *p<0.05 Kruskal-Wallis followed by Mann Whitney-U tests for independent
group comparisons
C. mRNA levels for TNFα demonstrated a peak elevation at 1 day preceding the peak
response of amoeboid microglia (B). This was followed by a decline at 3 days corresponding
to the peak level of amoeboid microglia, and a return to within control levels by 5 days
consistent with the downregulation of the morphological response of microglia. Procedures
were as previously reported (Harry et al., 2008a,b). From amplification plots, threshold
cycle values were determined; fold changes were calculated for TNFp75R transcript level
induced by TMT over saline-treated controls using the comparative CT method. GAPDH
levels were determined as an internal control.
*p<0.05 ANOVA followed by a Dunnett's t-test
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Figure 3.
Heterogeneity of microglia responses within various hippocampal regions were detected at
72 hrs post-TMT (2mg/kg) injection. In the hippocampus of normal mice, Iba-1 staining of
microglia showed small cells with thin, lightly stained, ramified processes. Within the
dentate granule cell layer, microglia displayed a more rounded morphology with retraction
of processes consistent with an amoeboid phagocytic phenotype. Within the CA1 and the
CA3 pyramidal cell layers, microglia showed hypertrophy of processes with indication of
retraction. Microglia were detected by rabbit polyclonal antibody to ionized calcium-binding
adaptor molecule 1 (Iba1; 1:500; 1h, RT; Wako Chemicals, Richmond, VA) detected with
IgG Alexafluor 488 (1:1000, Molecular Probes). Digital images were acquired using a
SpotRT™ cooled, charged-couple device camera (Diagnostic Instruments, Sterling Heights,
MI) on a Leica DMRBE microscope (Wetzlar, Germany) equipped with epifluorescence and

Kraft et al. Page 19

Neurotoxicology. Author manuscript; available in PMC 2012 April 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Z-control and Metamorph™ (Universal Imaging Co., Downingtown, PA). 100x image
stacks were acquired, deconvolved and 3D reconstruction by maximum projection shown at
20 degree angle.
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