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Nonlinear-dynamical control techniques, also known as chaos control,
have been used with great success to control a wide range of physical
systems. Such techniques have been used to control the behavior of
in vitro excitable biological tissue, suggesting their potential for
clinical utility. However, the feasibility of using such techniques to
control physiological processes has not been demonstrated in hu-
mans. Here we show that nonlinear-dynamical control can modulate
human cardiac electrophysiological dynamics by rapidly stabilizing an
unstable target rhythm. Specifically, in 52y54 control attempts in five
patients, we successfully terminated pacing-induced period-2 atrio-
ventricular-nodal conduction alternans by stabilizing the underlying
unstable steady-state conduction. This proof-of-concept demonstra-
tion shows that nonlinear-dynamical control techniques are clinically
feasible and provides a foundation for developing such techniques
for more complex forms of clinical arrhythmia.

Increasingly, it is recognized that many cardiac arrhythmias can
be characterized on the basis of the physical principles of

nonlinear dynamics (1, 2). A nonlinear-dynamical system is one
that changes with time and cannot be broken down into a linear
sum of its individual components. For certain nonlinear systems,
known as chaotic systems, behavior is aperiodic and long-term
prediction is impossible, even though the dynamics are entirely
deterministic (i.e., the dynamics of the system are completely
determined from known inputs and the previous state of the
system, with no influence from random inputs). Importantly,
such determinism actually can be exploited to control the
dynamics of a chaotic system. To this end, a variety of nonlinear-
dynamical control techniques, also known as chaos control,‡
have been developed (3, 4) and applied successfully to a wide
range of physical systems (5–14). Such techniques are model-
independent, i.e., they require no a priori knowledge of the
underlying equations of a system and are therefore appropriate
for systems that are essentially ‘‘black boxes.’’

The success of nonlinear-dynamical control techniques in
stabilizing physical systems, together with the facts that many
physiological systems are nonlinear (e.g., the cardiac conduction
system, because of its numerous complex nonlinear component
interactions) and lack the detailed analytical system models
required for model-based control techniques, have fostered
widespread interest in applying these model-independent tech-
niques to biological dynamical systems (15–26). In a pioneering
application, Garfinkel et al. (15) stabilized drug-induced irreg-
ular cardiac rhythms by means of dynamically timed electrical
stimulation in an in vitro rabbit ventricular-tissue preparation.
That work was an important demonstration that the physical
principles of nonlinear-dynamical control could be extended into
the realm of cardiac dynamics. Although extension of that work
to the control of fibrillation in intact hearts is impeded currently
by the complexity of fibrillation [notwithstanding a recent study
that showed interesting dynamical modification of human atrial
fibrillation (27)], there are clinically important low-dimensional
cardiac dynamics (e.g., reentrant arrhythmias) for which such
techniques are well suited. Control of such dynamics has been
demonstrated in computational studies of mathematical arrhyth-
mia models (19, 21) and in in vitro rabbit heart experiments (22).
In this study, we demonstrate that such dynamics also can be
controlled in humans.

Methods
Background. To demonstrate clinical feasibility, we have at-
tempted to control a dynamically tractable rhythm known as
atrioventricular (AV) nodal conduction alternans (referred to
hereafter as alternans). Alternans is a beat-to-beat alternation in
AV-nodal conduction time that can develop if the time between
consecutive AV-nodal excitations is abnormally short—the AV-
nodal conduction time gradually fatigues (lengthens) and then
bifurcates from its steady-state value into an alternation; such a
bifurcation is a hallmark of a nonlinear-dynamical system.
AV-nodal alternans is not clinically dangerous. However, alter-
nans is of interest to nonlinear dynamicists, because it is a
clinically inducible cardiac rhythm that can be used to study how
nonlinear-dynamical control methods can exploit arrhythmia
dynamics for arrhythmia termination. Furthermore, as will be
discussed later, the underlying dynamics of alternans may be
related to more dangerous cardiac dynamics.

Clinically, alternans often has been attributed to the presence of
dual AV-nodal pathways (28). However, Billette and coworkers (29,
30) have demonstrated clearly that alternans can result solely from
the conduction properties of a single AV-nodal pathway. In fact,
alternans attributed to a single AV-nodal pathway have been
observed in humans during AV orthodromic reciprocating tachy-
cardia (ORT; refs. 31 and 32), a repetitive reentrant arrhythmia in
which normal anterograde ventricular excitation by means of the
AV node is followed by reexcitation of the atria by means of a
pathological retrograde accessory ventriculoatrial pathway.

Technique. An alternans pacing and control protocol was per-
formed, after informed written consent was obtained, as a supple-
mentary component of routine clinically indicated electrophysio-
logical studies in five patients (3 males, 2 females; 52 617 yr) with
normal AV-nodal conduction (see Table 1 for patient demograph-
ics and control-algorithm results). In two patients, trials were
performed preceding and after pharmacological autonomic block-
ade, which was administered by means of i.v. delivery of 0.2 mgykg
propranolol and 0.04 mgykg atropine (33). The pharmacological
blockade trials were used to ensure that control-algorithm results
were not related to autonomic influences on AV-nodal function. In
two other patients, because alternans did not occur in the absence
of pharmacological autonomic blockade, the control protocol was
performed only after blockade. In one patient, alternans did occur
in the absence of pharmacological autonomic blockade but a
second trial after blockade was not performed, because b-blockade
was contraindicated due to the patient’s underlying chronic ob-
structive pulmonary disease.

The electrophysiological studies used standardized techniques
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that included the introduction of multiple percutaneous cathe-
ters from the femoral veins to record intracardiac signals from
the right atrium, the His bundle region, and the right ventricle,
as well as to pace from the two chambers. In studies in which
isoproterenol was delivered during the clinical evaluation stage,
the alternans pacing and control protocol was not initiated until
at least 15 min after the termination of isoproterenol delivery.

During each trial, ORT was simulated by means of a protocol
called fixed-delay stimulation (Fig. 1), in which the right atrium was
stimulated (at time A) at a fixed time interval, VA (ventriculoatrial),
after detection of ventricular activation (at time V). When the VA
interval is reduced (simulating faster reentry), the approximately
(i.e., there is a small degree of inherent conduction variability)
period-1 rhythm can destabilize and the AV-nodal conduction time
can bifurcate into period-2 alternans. Note that in this study,
rhythms more complex than alternans were not observed; however,
in a larger clinical study of AV-nodal conduction dynamics during
rapid atrial pacing, more complex AV-nodal rhythms, including
period-4 conduction, were seen (34).

A surface electrogram was sampled at 1 kHz by a National
Instruments (Austin, Texas) AT-MIO-16E-10 data acquisition
board in a 266-MHz Intel Pentium-II-powered computer run-
ning Real-Time Linux and a custom C11 experiment interface
system (35). To simulate ORT, this system automatically de-
tected R-waves in the surface electrogram (denoted time V) by
means of a threshold-crossing algorithm and then, at a prede-
termined VA interval after the detected R-wave, output a
voltage pulse by means of the AT-MIO-16E-10 to trigger a

Bloom DTU215 stimulator (Fischer Imaging, Denver) to stim-
ulate the right atrium (at time A; Fig. 1). The nominal VA
interval was decreased gradually until an alternation (alternans)
in the AV interval was observed.

Once alternans occurred, an adaptive nonlinear-dynamical con-
trol technique (36) was initiated to terminate the alternans. The
control algorithm is designed to stabilize the underlying unstable
steady state, x*, of a system that can be described by a unimodal
one-dimensional function (xn11 5 f(xn, pn), where xn is the current
value of the system variable of interest, x (for alternans, x is the
AV-nodal conduction time, AV), xn11 is the next value of the same
variable, and pn is the current value of an accessible system
parameter p (for alternans control, p is the VA-pacing interval) at
index n. Thus, for alternans, the system function is

AVn 1 1 5 f~AVn, VAn!, [1]

where n is the beat number. The control technique perturbs VA
such that

VAn 5 VA#1 dVAn, [2]

where VA is the nominal VA-pacing interval, and dVAn is a
perturbation (6, 7, 37) given by

dVAn 5
AVn 2 AV*n

gn
, [3]

where AV*n is the current estimate of the unstable steady state
AV*, and gn is the control sensitivity g at index n. Thus, for each
atrial stimulus, the nonlinear-dynamical control algorithm com-
putes a perturbation to the nominal VA interval that is propor-
tional to the difference between the current AV interval and the
targeted unstable period-1 AV steady state.

Importantly, only negative perturbations (i.e., those that result
in a shortening of the VA interval) are permitted. If the
perturbation computed for a given VA interval is positive, the
nominal VA interval is left unperturbed. This condition is
imposed to simulate the ability of a pacemaker to truncate but
not lengthen VA during a hypothetical episode of clinical ORT
(i.e., the natural ORT impulse would excite the AV node before
any stimulus attempted at a lengthened VA interval).

The dynamics of alternans and control are depicted schemat-
ically in Fig. 2. In Fig. 2, f(AVn, VA) is represented by a quadratic
curve fit to uncontrolled AV intervals that obeyed the dynamics
of Eq. 1. During stable alternans (i.e., without control) (Fig. 2a),
the AV intervals alternate indefinitely between points 1 and 2 via
the dynamic route depicted by the dotted lines, and never move
into the unstable interior region of the function. With control
(Fig. 2b), the appropriate VA control perturbation of Eq. 3 shifts
the function to f(AVn, VA 1 dVAn). By doing so, point 1
becomes point 19 (i.e., AVn11 is increased). When the function

Table 1. Demographics and control-trial results

Subject
Agey
sex

Dual
AV-nodal
pathways?

Antiarrhythmic
medications

Heart
disease

Electrophysiology
study indication

Preypost
autonomic
blockade

Control
successesy
attempts

Different
nominal

VAs
s# p,
ms

s# c,
ms

Ds,
%

1 38yF Yes None WPW Palpitations, presyncope Post 14y14 9 17.3 6.1 65
2 35yF No None WPW SVT Pre 8y8 4 14.1 9.0 36
2 35yF No None WPW SVT Post 8y8 4 12.0 3.9 68
3 62yM Yes Digoxin, disopyramide — SVT Pre 2y2 2 43.8 28.5 35
3 62yM Yes Digoxin, disopyramide — SVT Post 2y2 1 5.4 3.1 43
4 75yM No Digoxin, verapamil CAD, HTN SVT Pre 10y10 3 9.7 4.3 56
5 51yM No Digoxin IDCM SVT Post 8y10 1 9.1 5.0 45

s# p, s# c, and Ds are defined in Results. WPW, Wolf–Parkinson–White syndrome; CAD, coronary artery disease; HTN, hypertension; IDCM, idiopathic dilated
cardiomyopathy; SVT, supraventricular tachycardia.

Fig. 1. A schematic showing normal conduction from the sinoatrial (SA)
node, through the right and left atria (RA, LA), the AV node, and the right and
left ventricles (RV, LV). In the absence of an abnormal retrograde pathway,
ORT can be simulated (as depicted by the loop containing the computer) by
fixed-delay stimulation of the right atrium (at time A) at an interval, VA, after
detection of ventricular activation (at time V).
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is returned to f(AVn,VA) at the next beat (i.e., dVA 5 0), AV
progresses to point 2—the unstable period-1 steady state AV*.
Repetition of such perturbations, always calculated according to
the current system state, holds the system within the neighbor-
hood of AV*. Termination of control would be followed by the
drift of AV away from AV*, through the unstable interior region,
back to the stable alternans rhythm of Fig. 2a.

Both AV* and g are estimated adaptively at each beat, thereby
providing inherent algorithmic dynamic flexibility. For alternans,

AV*n is reestimated repeatedly as the midpoint of AVn and AVn21.§
The control sensitivity g is adapted in real time based on the
characteristic dynamics of unimodal one-dimensional systems. Spe-
cifically, for every beat, if the sign of the computed perturbation
(Eq. 3) has alternated for the four previous perturbations, the
magnitude of g is decreased by a factor r (for this study r 5 0.05),
otherwise, the magnitude of g is increased by a factor r (36).

Importantly, this nonlinear-dynamical control technique esti-
mates the control parameters and target-rhythm dynamics in real
time ‘‘on-the-fly’’ (i.e., requiring no learning stage). This feature has
two significant benefits, especially for clinical applications. First, the
repetitive estimation provides inherent robustness to nonstation-
arities, because any change in the underlying system dynamics will
be immediately detected and accounted for. Second, the instanta-
neous onset of parameter estimation eliminates the need for a
precontrol learning stage (3), which is a period often required
before control activation to quantify the system dynamics. With this
on-the-fly approach, the algorithm learns the dynamics at the same
time that it is bringing the system under control. Thus, it is capable
of applying control immediately on the detection of an arrhythmia
(avoiding dangerous lag time) and is able to maintain control as the
dynamics of the arrhythmia change over time.

Results
The alternans pacing and control algorithm results for the five
patients are shown in Table 1. Control was successful in 52 of 54
control attempts (96%). To quantify control-stage efficacy, the
standard deviation of the 15 AV intervals immediately preceding
each control stage [(sp k), where k is the index of a given control
stage)] and the standard deviation of the AV intervals during
each control stage (sck

) were calculated. From these values, the
mean precontrol standard deviation (sp 5 N

1 (k51
N spk

, where N
is the total number of control stages for the trial) and the mean
control-stage standard deviation (sc 5 B

1 (k51
N bksck

, where bk is
the number of beats for the kth control stage and B 5 (k51

N bk)
were computed. The control improvement was quantified as the
percentage of the precontrol AV-interval standard deviation
eliminated during control: Ds 5 100(1 2 scysp). Control im-
provement ranged from 35% to 68%. Control efficacy was
independent of the presence of dual AV-nodal pathways [dual-
pathway physiology was tested without pharmacological auto-
nomic blockade; trials on patients with dual pathways: 48 6 16%
(Ds mean 6 standard deviation); and without dual pathways:
51 6 14%, P 5 not significant (NS)], antiarrhythmic medications
(trials on patients taking antiarrhythmic medications: 45 6 9%;
and not taking antiarrhythmic medications: 56 6 18%, P 5 NS),
or autonomic blockade (trials before autonomic blockade: 42 6
12%; and after autonomic blockade: 55 6 13%, P 5 NS).

Fig. 3 shows a representative example of a patient undergoing
simulated ORT pacing after propranololyatropine autonomic
blockade (Patient 1). Before the initiation of control, the fixed
VA-pacing interval of 60 ms caused an alternation in the
atrial-His (AH) interval between 127 and 167 ms.¶ On control
initiation, the VA nonlinear-dynamical control perturbations
(Eq. 3) moved the AH intervals toward their underlying steady
state, which lies between the bifurcated alternating values.

Fig. 4 shows the time course of a segment of the trial shown
in Fig. 3. The control perturbations made to the VA interval (Fig.
4b) terminated the alternating AV-nodal conduction by forcing

§For higher-order rhythms, additional previous values of the system variable may be
incorporated into the estimate (40).

¶Note that the AH interval, which is the AV-nodal conduction time, is quantifiable during
posttrial analysis of electrograms. Because reliable His-bundle detection is not possible
during a control trial, the AV interval is used as a surrogate for the AH interval. This
substitution is based on the assumption that the HV interval is fixed, an assumption that
was verified for each patient during atrial pacing at multiple cycle lengths.

Fig. 2. A schematic of AV interval dynamics without (a) and with (b) control.
In both panels the schematic is superimposed over five series of AV intervals
(annotated with different gray symbols) that correspond to consecutive con-
trol attempts at the same nominal VA interval in one alternans pacing and
control trial. These AV intervals immediately followed control termination,
and therefore obeyed f(AVn, VA) as they drifted away from the unstable
steady state AV* and back into alternans. Thus, f(AVn, VA) was approximated
by a quadratic curve fit to the AV intervals. The intersection of f(AVn, VA) with
the line of identity (the diagonal line AVn11 5 AVn) is the unstable steady state
AV*. Without control (a), the AV intervals alternate indefinitely between
points 1 and 2 via the dynamic route depicted by the dotted lines, and never
explore the unstable interior region of f(AVn, VA). b shows how the VA control
perturbation of Eq. 3 shifts the function along the line of identity to the
location of the dash-dot curve f(AVn, VA 1 dVAn). By doing so, point 1 becomes
point 19 (i.e., AVn11 is increased). When the function is returned to f(AVn, VA)
at the next beat (i.e., dVAn11 5 0), control succeeds as the AV interval
progresses to point 2, which is at the unstable steady state AV*.
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the AV interval toward its underlying unstable steady state (Fig.
4a). Tight, noise-free control was not possible because of the
biological noise inherent to this system.

Importantly, on termination of each control stage, the AV
interval reverted spontaneously to alternans. This spontaneous
reversion demonstrates that the steady state was unstable, that
the nonlinear-dynamical control perturbations were required for
stabilization, and that the alternans termination was not a
coincidental spontaneous occurrence. An alternative hypothesis,
that control resulted from a reversion to single-pathway con-
duction from dual-pathway alternation, is refuted by the fact that
period-1 conduction was at an interval between the two alter-
nating conduction intervals rather than at one rate or the other.
The single-pathway hypothesis is further supported by (i) the fact
that the onset of alternans was characterized by a bifurcation
(typical of nonlinear-dynamical function) instead of a discrete
jump (typical of dual-pathway function) and (ii) successful
control in three patients who did not have dual AV-nodal
pathways.

The adaptive control algorithm’s inherent ability to track
nonstationarities was demonstrated later in the same trial, as
shown in Fig. 5. During each control attempt, the nominal VA
interval, VA, was increased or decreased in discrete steps. For
example, Fig. 5b shows that from 2,900 # n # 3,115, VA was
increased from 15 to 55 ms. During this time, the control
algorithm never lost its AV stabilization, even as its unstable
steady state shifted from 320 to 285 ms (Fig. 5a).

For Patient 1, nonlinear-dynamical control was applied 14
distinct times; each control attempt successfully eliminated the
alternans rhythm (sp 5 17.3 ms, sc 5 6.1 ms, and Ds 5 65%).
In Patient 2, control was attempted in two trials, one before and
one after propranololyatropine autonomic blockade. In the
preblockade trial, control was attempted 8 times at four different
nominal VA intervals and was successful each time (sp 5 14.1
ms, sc 5 9.0 ms, and Ds 5 36%). In the postblockade trial,

control was attempted 8 times at four different nominal VA
intervals and was successful each time (sp 5 12.0 ms, sc 5 3.9
ms, and Ds 5 68%). In Patient 3, control also was attempted
before and after propranololyatropine autonomic blockade. In
the preblockade trial, control was attempted twice at two
different nominal VA intervals and was successful both times (sp

5 43.8 ms, sc 5 28.5 ms, and Ds 5 35%). In the postblockade
trial, control was attempted twice at one VA interval and was
successful both times (sp 5 5.4 ms, sc 5 3.1 ms, and (Ds 5 43%).
(Most alternans occurrences for this patient were transient and
therefore inappropriate for control attempts.) In Patient 4,
control was attempted without autonomic blockade 10 times at
three different nominal VA intervals and was successful each
time (sp 5 9.7 ms, sc 5 4.3 ms, and Ds 5 56%). In Patient 5,
control was successful in 8 of 10 attempts at a single nominal VA
interval after propranololyatropine autonomic blockade (sP 5
9.1 ms, sc 5 5.0 ms, and Ds 5 45%; values were computed by
using only successful control stages). The two control failures
seemed to result from the fact that VA 5 10 ms, which left little
room for VA interval shortening, thereby increasing the diffi-
culty of unstable steady-state capture. The AV and VA intervals
and g proportionality constant for Patients 2–5 were all quali-
tatively similar to those shown in Fig. 4.

Discussion
In this study, we have demonstrated that nonlinear-dynamical
control techniques can be used effectively in humans. We have
shown, in 52y54 control attempts in five patients, that an adaptive

Fig. 3. Surface (leads I, aVF, V1, and V6) and intracardiac (HRA, high right
atrium; HBE, His bundle; and RVA, right ventricular apex) electrograms from a
segment of an alternans control trial (Patient 1). The two rows of numeric
annotations mark the VA (upper) and AH (lower) intervals in ms. Note that the
onset of atrial activity (A) in HBE occurs later than in HRA, reflecting intraatrial
conduction time. The VA intervals are measured as the time between the elec-
trogram threshold (represented by the dotted horizontal line superimposed over
V6) crossing and the stimulus delivery. Before control initiation (i.e., to the left of
the vertical dashed line), VA was held fixed at 60 ms, corresponding to AH
alternans between 127 and 167 ms. After control was initiated, VA nonlinear-
dynamical control perturbations resulted in termination of alternans as the AH
interval was moved into the neighborhood of its underlying unstable steady
state. As a result of the biological requirement that dVAn , 0 (Eq. 3), a negative
perturbation was delivered (i.e., VA , 60 ms) every second to fourth beat. This
electrogram corresponds to beats 1,287 to 1,299 in Fig. 4.

Fig. 4. A segment of an alternans control trial (Patient 1). a, b, and c show AV,
VA, and g vs. beat number n for various stages (as annotated in c) of the control
trial. VA nonlinear-dynamical control perturbations terminated the alternans in
each of the control attempts. The Insets in each panel show the first 15 beats of
the second control attempt (1,290 # n # 1,305). During this time, the adaptive
flexibility of the algorithm is apparent by means of the algorithmic modifications
made to the AV steady-state estimate [a Inset, AV (filled circles) and AV steady-
state estimate (open diamonds)] and to g (c Inset). The changes in g were dictated
(as described in Methods and ref. 36) by every second beat (1,290 # n # 1,295) to
every fourth beat (1,296 # n # 1,303) and back to every second beat (1,303 # n #

1,305) VA perturbation patterns (b Inset).
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on-the-fly (i.e., requiring no learning stage) nonlinear-dynamical
control technique can alter cardiac dynamics by simultaneously
estimating and stabilizing an unstable target rhythm. Control
efficacy was not related to antiarrhythmic medications, the presence
of dual AV-nodal pathways, or autonomic influences (i.e., control
was effective both with and without pharmacological autonomic
blockade). These findings provide support for earlier suggestions
that nonlinear-dynamical control might be applicable to clinical
arrhythmia control (1, 2, 15, 19, 22).

Nonlinear-Dynamical Control. The idea of using the dynamics of a
chaotic system for system control was proposed in the early 1990s
by Ott et al. (3). Their approach took advantage of the fact that the
aperiodic dynamics of a chaotic system are actually composed of an
infinite number of unstable steady-state rhythms. Chaotic aperiod-
icity stems from the inability of a chaotic system to remain in any
one of its repellent unstable periodic rhythms. The Ott et al.
technique attempts to regularize the dynamics of a chaotic system
by holding it within a targeted unstable rhythm by exploiting the
characteristic dynamics of that rhythm. Such control is possible
because, although long-term forecasting of a chaotic system is
impossible, short-term dynamical prediction is possible. Further-
more, such short-term prediction can be extended to account for
and exploit the effects of a perturbed system parameter. With such
dynamical knowledge, a corrective parameter perturbation can be
used to move the system into, and hold it within, the neighborhood
of a desired unstable steady-state rhythm.

Importantly, the Ott et al. (3) technique is model-independent,
i.e., it requires no a priori knowledge of the underlying equations of
a system. Model-independent techniques extract necessary quan-
titative information (about the functional dependence of the vari-
able to be controlled on a system parameter) from system obser-
vations and then use this information to exploit the inherent

dynamics of the system to achieve a desired control result. Thus,
these techniques are applicable to systems for which analytical
models are typically unavailable or incomplete, i.e., ‘‘black boxes.’’

The Ott et al. (3) technique, and its derivatives, have been
applied to control a wide range of physical systems (3, 4)
including magneto-elastic ribbons (5), electronic circuits (6, 10,
11), lasers (8, 12), chemical reactions (7, 9), and driven pendu-
lums (13, 14). The success of nonlinear-dynamical control in
stabilizing physical systems has fostered interest in applying these
techniques to excitable biological systems (15–19, 21, 22). It is the
model-independent nature of such techniques that make them
particularly well suited for biological systems—although many
physiological mechanisms are well understood qualitatively,
quantitative relationships between physiological system compo-
nents are usually incomplete. Thus, because accurate analytical
system models cannot be developed for such systems, model-
based control techniques are often not applicable to physiolog-
ical systems. In contrast, model-independent techniques are
applicable because, before control, they require only a qualita-
tive understanding of the underlying dynamical mechanisms.

Nonlinear-Dynamical Control of Cardiac Dynamics. In a pioneering
biological nonlinear-dynamical control application, Garfinkel et
al. (15) stabilized drug-induced irregular cardiac rhythms in
tissue from the interventricular septum of a rabbit heart. They
applied electrical nonlinear-dynamical control perturbations di-
rectly to the interbeat intervals to hold the system within an
underlying unstable steady state. They successfully regularized
the electrical activity into low-order rhythms, but not the peri-
od-1 rhythm they targeted. Subsequent mathematical modeling
studies have suggested dynamical mechanisms for such control-
algorithm results, along with improved adaptive algorithms that
could achieve ‘‘tighter’’ control (39–42).

The provocative cardiac chaos-control study by Garfinkel et al.
(15), combined with data suggesting that fibrillation is chaotic
(43, 44), sparked interest in nonlinear-dynamical control of
fibrillation. However, other work has questioned the chaotic
fibrillation hypothesis (45, 46). The current prevailing theory
(47), supported by a range of mathematical (48–56), in vitro
(57–59), and in vivo (57, 60–70) studies, is that fibrillation is a
complex nonlinear combination of stochastic and deterministic
components, such as scroll waves of electrical activity meander-
ing within the ventricular wall. Given this body of evidence, it is
apparent that fibrillation is characterized by high-dimensional
nonstationary spatiotemporal dynamics that are too complex for
current nonlinear-dynamical control techniques.

Nevertheless, nonlinear-dynamical control is still applicable to
the control of cardiac arrhythmias because, as with chaotic
systems, nonlinear-dynamical systems with regular dynamics may
have underlying unstable steady states. Such steady states can be
targeted for rhythm control by using derivatives of the Ott et al.
(3) technique (71). This approach has been demonstrated in
mathematical modeling of cardiac dynamics (19, 21) and in vitro
rabbit heart studies (22).

Nonlinear-Dynamical Control of Clinical Cardiac Dynamics. In this
study, we now have demonstrated the utility of such techniques in
humans. These results suggest that nonlinear-dynamical control
could be used for clinical arrhythmia control. In particular, non-
linear-dynamical suppression of cardiac alternans may have impor-
tant clinical implications given that alternans in electrocardiogram
morphology, such as T-wave alternans, can precede life-threatening
arrhythmias and is a risk factor for sudden death (72–76). T-wave
alternans is the surface electrocardiographic marker of a beat-to-
beat alternation in ventricular repolarization. The period-2 nature
of T-wave alternans suggests that, like AV-nodal alternans, it may
be amenable to nonlinear-dynamical control techniques. However,
because T-wave alternans is distributed spatially over the surface of

Fig. 5. Control of nonstationary alternans (Patient 1). a, b, and c show AV,
VA, and g vs. beat number n for various stages (as annotated in c) of the control
trial. During each control stage, the nominal VA interval was either increased
or decreased (as seen in b), causing a corresponding drift in the underlying
period-1 AV steady state. Nevertheless, nonlinear-dynamical control pertur-
bations made to VA maintained control of AV as it moved through the
different parameter regimes.

Christini et al. PNAS u May 8, 2001 u vol. 98 u no. 10 u 5831

M
ED

IC
A

L
SC

IE
N

CE
S



the ventricles (unlike the spatially localized AV-nodal alternans
controlled in this study), nonlinear-dynamical methods applied to it
must be capable of spatiotemporal control (25, 26, 77–81). If such
control is successful, a potential route to a sustained ventricular
arrhythmia may be eliminated (72–76) thereby preventing the onset
of a potentially deadly arrhythmic event.

More generally, the flexibility and adaptability of nonlinear-
dynamical control techniques may improve ventricular tac-
hycardia therapies. Antitachycardia pacing algorithms used in
current-generation implantable cardiac defibrillators do not use
beat-to-beat feedback information during stimulation. In con-
trast, adaptive nonlinear-dynamical control techniques alter
their intervention parameters, such as interstimulus interval, on
a beat-to-beat basis according to the effects of previous stimuli
on the dynamics of the arrhythmia. By doing so, such ‘‘smart’’
algorithms exploit the underlying dynamics of the arrhythmia
they are attempting to terminate—essentially using the dynamics
of the arrhythmia against the arrhythmia itself. In summary,
nonlinear-dynamical control techniques, by means of their in-
herent adeptness at characterizing and exploiting the underlying
nonlinear nature of arrhythmias, have the potential to provide
novel approaches to the treatment of clinical arrhythmias.

Limitations. Although the findings of this study suggest the feasi-
bility of nonlinear-dynamical control of cardiac arrhythmias in
general, the applicability of this particular control algorithm to
arrhythmias other than induced AV-nodal alternans is unclear,
given that the alternans termination in this study corresponds to a
modification of AV-nodal conduction (not actual termination of
conduction) that is qualitatively different from the termination (not
modification) of a reentrant wave. Another limitation of this study
was that control efficacy was restricted by the 1-ms stimulus-timing
resolution of the stimulator. Because unstable steady states are
highly sensitive to small parameter deviations, it is possible that a
finer stimulus-timing resolution could result in tighter rhythm
control. An additional limitation was the need for visual alternans
recognition and the corresponding manual activation (by means of
a software toggle switch) of the nonlinear-dynamical control algo-
rithm. In an arrhythmia-control device, arrhythmia recognition and
control activation would have to be automated.
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