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OBJECTIVEdDisordered mineral metabolism is a common complication of chronic kidney
disease (CKD) and a novel risk factor for CKD progression, cardiovascular disease, and mortality.
Although diabetes is the leading cause of CKD and is associated with worse clinical outcomes than
other etiologies, few studies have evaluatedmineralmetabolism inCKDaccording to diabetes status.

RESEARCH DESIGN AND METHODSdUsing the Chronic Renal Insufficiency Cohort
Study, we tested the hypothesis that diabetes is independently associated with lower serum calcium
and higher serum phosphate, parathyroid hormone (PTH), and fibroblast growth factor 23 (FGF23).

RESULTSdComparedwithparticipantswithout diabetes (n=1,936), thosewith diabetes (n=1,820)
were more likely to have lower estimated glomerular filtration rate (eGFR), lower serum albumin, and
higher urinary protein excretion (all P, 0.001). Unadjusted serum phosphate, PTH, and FGF23 levels
were higher and calcium was lower among those with compared with those without diabetes (all P,
0.001).Aftermultivariate adjustment,diabetes remainedasignificantpredictorof serumphosphate,PTH,
and FGF23 but not calcium. The eGFR cut point at which 50%of participantsmet criteria for secondary
hyperparathyroidism or elevated FGF23 was higher in participants with diabetes compared with those
without (PTH: eGFR 30–39 vs. 20–29, P, 0.001; FGF23: eGFR 50–59 vs. 40–49, P, 0.001).

CONCLUSIONSdDisordered mineral metabolism begins earlier in the course of CKD and is
more severe among CKD patients with compared with those without diabetes. Future studies
should explore mechanisms for these differences and whether they contribute to excess risks of
adverse clinical outcomes among diabetic patients with CKD.
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An estimated 25.8 million people in
the U.S. suffer from diabetes, a lead-
ing risk factor for cardiovascular

disease (CVD) and the most common
cause of chronic kidney disease (CKD)
(1,2). Although improved understanding
of diabetes-related complications has led
to advances in clinical management of af-
fected individuals, recent studies show
that even with delivery of optimal care,
high risks of CVD and CKD persist (3).
Moreover, compared with patients with-
out diabetes, those with diabetes experi-
ence faster progression to end-stage renal
disease (ESRD) and higher rates of CVD
events and mortality (2). Thus, identify-
ing novel pathophysiologic mechanisms
that may contribute to these differences
and can be targeted for intervention is a
critical priority for diabetes and CKD
management.

Chronic Kidney Disease–Mineral and
Bone Disorder (CKD-MBD) refers to the
clinical syndrome of laboratory abnor-
malities, bone disease, and extraskeletal
calcification, including the arterial system
(4). Among the earliest manifestations of
CKD-MBD are vitamin D deficiency, disor-
dered calcium and phosphate homeostasis,
and secondary elevations of parathyroid
hormone (PTH) and fibroblast growth fac-
tor 23 (FGF23). Mounting experimental
and epidemiologic data support these alter-
ations in mineral metabolism as novel risk
factors for ESRD, CVD, andmortality (5,6).
The evidence is especially strong for ele-
vated serum phosphate and FGF23, which
independently predict risks of CKD pro-
gression, CVD, and mortality (7,8). Differ-
ences in mineral metabolism according
to diabetes status have been described in
patients with ESRD (9,10), but a detailed
characterization of the syndrome according
to diabetes status is lacking in earlier stages
of CKD.Wemeasured mineral metabolites
in baseline samples from 3,756 partici-
pants in the Chronic Renal Insufficiency
Cohort (CRIC) Study, a racially and eth-
nically diverse prospective CKD cohort
with a high prevalence of diabetes. We hy-
pothesized that individuals with diabetes
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would have more severe abnormalities of
mineral metabolism at comparable levels
of renal dysfunction than patients without
diabetes (lower serum calcium, higher se-
rum phosphate, PTH, and FGF23 levels).

RESEARCH DESIGN AND
METHODSdThe CRIC study is a mul-
ticenter prospective cohort study of risk
factors for CVD and CKD progression
(11). The ancillary Hispanic CRIC study
recruited additional Hispanic participants
(12). Adult patients aged 21–74 years
with mild to moderate CKD, defined as
an age-stratified estimated glomerular fil-
tration rate (eGFR) at the screening visit
between 20 and 70 mL/min/1.73 m2,
were enrolled between May 2003 and Au-
gust 2008. Individuals who were eligible
based on their screening eGFR but whose
eGFR at the first study visit was found to
be outside the range of 20–70 mL/min/
1.73 m2 were retained in the study. Pa-
tients were excluded for pregnancy, New
York Heart Association class III–IV heart
failure, HIV, cirrhosis, myeloma, renal
cancer, recent chemotherapy or immuno-
suppressive therapy, polycystic kidney
disease, organ transplantation, or prior
treatment with dialysis for .1 month.
The CRIC study protocol was approved
by the institutional review boards at each
of the 13 recruitment sites. All partici-
pants provided written informed consent.
After the baseline visit, participants are
followed annually.

We studied 3,756 CRIC study partic-
ipants who had measurements of the
primary dependent variables at the base-
line study visit (serum calcium, phosphate,
PTH, and FGF23). Diabetes was defined
as current use of diabetes medications or
documented laboratory evidence of di-
abetes (random plasma glucose .200
mg/dL or a fasting plasma glucose level
.126 mg/dL).

Data collection and measurements
We analyzed the following covariate
data collected at the baseline visit: demo-
graphics,medical history, use of phosphate
binders and activated vitamin D, blood
pressure, BMI, and dietary phosphate, cal-
cium, and caloric intake estimated from the
National Cancer Institute’s Diet History
Questionnaire (13). Dietary data were
available for 2,817 participants. Serum 25-
hydroxyvitamin D and 1,25-hydroxyvitamin
D levels were available from the year 1
follow-up visit in 1,457 (605 diabetic par-
ticipants; 852 nondiabetic participants)
and 1,480 (615 diabetic participants; 865

nondiabetic participants) participants, re-
spectively.

Baseline fasting blood samples, spot
urine samples for assessment of the
albumin-to-creatinine ratio, and 24-h urine
collections were assayed using standard
methods. Twenty-four-hour urinary data
were available for 3,554 participants. In
addition to total 24-h urinary mineral
content (mg/day), we analyzed fractional
urinary mineral excretion (fractional excre-
tion of calcium = [urine calcium 3 serum
creatinine]/[serum calcium 3 urine creati-
nine] 3 100%; fractional excretion of
phosphate = [urine phosphate 3 serum
creatinine]/[serum phosphate 3 urine
creatinine] 3 100%). Plasma FGF23 was
measured using the second-generation
COOH-terminal assay that detects two
epitopes in the C-terminus of FGF23
(coefficient of variation [CV] ,5%; Im-
mutopics, San Clemente, CA). Plasma
PTH was measured using a total PTH as-
say, which includes the 1–84 PTH mol-
ecule and 7–84 fragments (CV ,5%;
Scantibodies, Santee, CA). Serum 25-
hydroxyvitamin D was measured using
liquid chromatography–mass spectroscopy
(CV,5%),andserum1,25-dihydroxyvitamin
D was measured by competitive chemilu-
minescent immunoassay (CV ,12%;
Heartland Assays, Ames, IA). Serum
25-hydroxyvitamin D and eGFR were
based on the modified Modification of
Diet in Renal Disease (MDRD) equation
(14). A subset of 1,351 participants (650
with diabetes; 701 without diabetes) had
GFR measured directly using 125I iotha-
lamate clearance (iGFR).

Statistical analysis
We defined hyperphosphatemia as serum
phosphate $4.6 mg/dL, secondary hy-
perparathyroidism as PTH $65 pg/mL,
and FGF23 excess as FGF23$100 RU/mL
(15,16). We compared baseline character-
istics, levels of mineral metabolites, and
prevalence of abnormalities by diabetes
status using two-sample t tests orWilcoxon
rank-sum tests for continuous variables
and x2 tests for categorical variables.
CRIC study participants with diabetes
had lower eGFR at baseline, and eGFR
is a well-established determinant of disor-
dered mineral metabolism in CKD (16).
Therefore, we examined differences in
mean or median levels of mineral metabo-
lites in diabetic subgroups stratified by lev-
els of eGFR (15–29, 30–44, 45–59, and
$60 mL/min/1.73 m2). Participants with
diabetes also had greater degrees of pro-
teinuria, which has been linked to lower

vitamin D levels (17), so we examined cor-
relations between 24-h urinary protein ex-
cretion and mineral metabolites among
participants with diabetes. To evaluate the
role of glycemic control in disordered min-
eral metabolism, we examined correlations
between mineral metabolism markers and
hemoglobin A1c within the group of partic-
ipants with diabetes.

Next, we performed multivariable re-
gression analyses to investigate the in-
dependent association between diabetes
status and mineral metabolites. PTH and
FGF23 were not normally distributed and
were natural log-transformed for the anal-
yses. For ease of interpretation, we report
adjusted means that were back trans-
formed into conventional scale. Separate
regression analyses were performed for
each of the dependent variables (calcium,
phosphate, log PTH, and log FGF23). In
all models, we included diabetes status
as the primary predictor and adjusted for
demographics (age, sex, black race, and
Hispanic ethnicity), clinical characteristics
(current smoking, BMI, and systolic blood
pressure), clinical center, and laboratory
values (eGFR and serum albumin). Higher
BMI in diabetic participants would suggest
differences in dietary exposure. Therefore,
in addition to including BMI in the mul-
tivariable models, we performed supple-
mentary analyses that adjusted for BMI,
dietary phosphate, calcium, and total ca-
loric intakes. To assess whether diabetes
was associated with mineral metabolites
independent of vitamin D status, we per-
formed additional analyses that further
adjusted for 25-hydroxyvitamin D levels
in the subset in whom these data were
available. We also repeated the adjusted
analyses in the subcohort of participants
with iGFR and substituted iGFR for
MDRD eGFR. Finally, we compared the
onset of disorderedmineral metabolism in
relation to eGFR according to diabetes
status by calculating the prevalence of
hyperphosphatemia, secondary hyper-
parathyroidism, and FGF23 excess within
ascending groups of eGFR (,20, 20–29,
30–39, 40–49, 50–59, 60–69, and $70
mL/min/1.73 m2). We summarized these
data by comparing the eGFR range at
which one-half of the participants within
each study group had these abnormalities
and tested for significance of the strati-
fied two-by-two table using the Cochran-
Mantel-Haenszel statistic. Two-sided
P values ,0.05 were considered statisti-
cally significant. All statistical analyses
were performed using SAS software (ver-
sion 9.2; SAS Institute, Cary, NC).
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RESULTSdThe mean (6SD) eGFR
among the 3,756 CRIC study participants
included in this study was 42.7 6 13.5
mL/min/1.73m2. Forty-eight percent had
diabetes, 41.5% were black, and 12.9%
were Hispanic. Table 1 shows the baseline
characteristics of the participants according
to diabetes status. Because of the large
sample size, many comparisons yielded
significant but not clinically meaningful
differences. Age and sex were similar
across the groups; however, a greater per-
centage of participants with diabetes were
black or Hispanic. Systolic blood pressure
and BMI were significantly higher in those
with diabetes versus thosewithout diabetes.
In contrast to previous reports of greater
urinary phosphate excretion in diabetes
(18,19), both 24-h urinary phosphate and
fractional excretion ofphosphatewere com-
parable between the groups. Compared
with those without diabetes, participants

with diabetes had significantly lower
eGFR and higher urinary protein excre-
tion (P, 0.001 for both) (Table 1). There
were no significant differences in use of
phosphate binders or activated vitamin
D, and frequency of use of these medica-
tions was low in both groups.

Serum phosphate, PTH, and FGF23
levels were significantly higher, and se-
rum calcium, 25-hydroxyvitamin D, and
1,25-hydroxyvitamin D were signifi-
cantly lower among those with diabetes
compared with those without diabetes
(P , 0.001 for all) (Table 1). Hyperphos-
phatemia (serum phosphate$4.6 mg/dL),
secondary hyperparathyroidism (PTH
$65 pg/mL), and FGF23 excess (FGF23
$100 RU/mL) were more prevalent in
the diabetic group (P , 0.001 for all)
(Table 1).

Given significant differences in eGFR
between the groups, we examined levels

of mineral metabolites according to di-
abetes status within four strata of eGFR
(Table 2). Although differences between
the study groups were detectable in each
parameter, the most consistent differ-
ences were observed in FGF23 levels,
which were significantly higher in the di-
abetic group in each stratum of eGFR. Of
importance, caloric intake, dietary phos-
phate and calcium intake, and urinary
phosphate and calcium excretion were
comparable in both groups across all cat-
egories of eGFR (Table 2). Within the
eGFR .60 mL/min/1.73 m2 stratum,
only FGF23 was significantly different
in diabetic compared with nondiabetic
participants.

Because diabetes was associated with a
greater amount of proteinuria,we examined
the correlations between degree of pro-
teinuria and the severity of abnormalities
in mineral metabolism within the diabetic

Table 1dCharacteristics of the study population

Variable With diabetes Without diabetes P

n 1,820 1,936
Age (years) 59.5 6 9.8 57.0 6 11.9 ,0.001
Women (%) 43.4 45.7 0.15
Black (%) 44.1 39.1 0.002
Hispanic (%) 17.9 8.3 ,0.001
Systolic blood pressure (mmHg) 133.7 6 22.8 123.8 6 20.5 ,0.001
BMI (kg/m2) 34.0 6 8.0 30.4 6 7.2 ,0.001
Current smoking (%) 11.5 13.8 0.04
Activated vitamin D use (% treated) 3.7 2.6 0.07
Binder use (% treated) 7.5 6.3 0.18
eGFR (mL/min/1.73 m2) 40.7 6 12.8 44.7 6 13.8 ,0.001
24-h urine protein (g/day) 0.38 (0.1–1.8) 0.11 (0.1–0.47) ,0.001
Urine albumin-to-creatinine ratio (mg/mg) 151.4 (19.3–1,018.6) 21.6 (6.0–197.7) ,0.001
24-h urine calcium (mg/day) 32.7 (15.0–66.4) 49.4 (21.7–106.3) ,0.001
24-h urine phosphate (mg/day) 710.3 (512.0–942.1) 717.7 (518.2–965.1) 0.63
Fractional excretion of calcium (%) 0.52 (0.28–1.0) 0.68 (0.33–1.3) ,0.001
Fractional excretion of phosphate (%) 26.0 (18.8–35.7) 24.8 (18.7–33.9) 0.01
Dietary calcium intake (mg/day) 646.4 (442.4–912.5) 592.2 (412.1–846.0) ,0.001
Dietary phosphate intake (mg/day) 1,110.3 (789.9–1,497.2) 1,024.0 (729.2–1,380.2) ,0.001
Total caloric intake (kcal/day) 1,670.9 (1,205.7–2,272.2) 1,626.6 (1,252.2–2,276.7) 0.70
Serum albumin (g/dL) 3.8 6 0.5 4.0 6 0.4 ,0.001
Serum calcium (mg/dL) 9.1 6 0.5 9.2 6 0.5 ,0.001
Serum phosphate (mg/dL) 3.9 6 0.7 3.5 6 0.6 ,0.001
PTH (pg/mL) 60.3 (38.0–102.5) 49.5 (33.0–78.9) ,0.001
FGF23 (RU/mL) 172.4 (114.3–277.2) 121.9 (84.0–198.8) ,0.001
25-hydroxyvitamin D (ng/mL) 23.9 6 13.3 31.0 6 14.8 ,0.001
1,25-dihydroxyvitamin D (ng/mL) 25.8 6 18.4 33.5 6 20.3 ,0.001
Secondary hyperparathyroidism (%) 45.9 35.0 ,0.001
Hyperphosphatemia (%) 16.8 5.1 ,0.001
FGF23 excess (%) 82.1 63.4 ,0.001

Data are percent, means6 SD, ormedians (interquartile range). 25-hydroxyvitamin D and 1,25-hydroxyvitamin D levels measured from the year 1 visit were available
in 1,457 (605 with diabetes; 852 without diabetes) and 1,480 (615 with diabetes; 865 without diabetes) participants, respectively. Twenty-four-hour urinary data
were available for 3,554 (1,718with diabetes; 1,836without diabetes) participants. Dietary data were available for 2,817 (1,261with diabetes; 1,556without diabetes)
participants. Fractional mineral excretion data were available for 3,621 (1,751 with diabetes; 1,870 without diabetes) participants.

996 DIABETES CARE, VOLUME 35, MAY 2012 care.diabetesjournals.org

Disordered mineral metabolism in diabetic CKD



T
able

2
d
L
aboratory

and
dietary

values
by

diabetes
status

and
eG

F
R
cut

points

eG
FR

15
–29

(n
=
727)

eG
F
R
30

–44
(n

=
1,432)

eG
F
R
45

–59
(n

=
1,210)

eG
FR

.
60

(n
=
382)

W
ith

diabetes
W
ith

ou
t

diabetes
W
ith

diabetes
W
ithout

diabetes
W
ith

diabetes
W
ithout

diabetes
W
ith

diabetes
W
ith

ou
t

diabetes

n
400

327
778

654
517

693
123

259
eG

F
R
(m

L/m
in/

1.73
m

2)
24.6

6
3.6

25.2
6

3.3
37.6

6
4.1

38.1
6

4.2
51.3

6
4.1

51.8
6

4.3
67.9

6
8.4

67.6
6

7.1

24-h
urine

protein
(g/day)

0.9
(0.2

–3.3)
0.4

(0.1
–1.2)

0.4
(0.1

–1.9)
0.1

(0.1
–0.7)

0.2
(0.1

–0.8)
0.1

(0.1
–0.2)

0.1
(0.1

–0.5)
0.1

(0.1
–0.15)

U
rine

album
in-

to-creatinine
ratio

(m
g/m

g)

525.9
(72.8

–2,144.9)
187.9

(27.9
–654.1)

212.6
(23.5

–1,199.6)
37.6

(6.9
–311.1)

53.1
(10.0

–363.0)
11.2

(4.9
–65.9)

21.0
(5.3

–246.1)
7.9

(4.1
–32.3)

Seru
m

album
in

(g/dL)
3.7

6
0.5

4.0
6

0.4
3.8

6
0.5

4.0
6

0.5
3.9

6
0.4

4.1
6

0.4
3.9

6
0.5

4.1
6

0.4

D
ietary

calcium
intake

(m
g/day)

658.3
(425.5

–913.1)
597.2

(394.1
–885.3)

608.9
(415.0

–904.5)
574.3

(409.1
–809.5)

655.6
(488.7

–916.5)
602.0

(419.4
–850.4)

712.9
(469.7

–966.4)
640.0

(435.8
–864.9)

D
ietary
ph

osph
ate

intake
(m

g/day)

1,091.3
(765.9

–1,476.8)
974.2

(682.2
–1,388.2)

1,072.4
(741.9

–1,455.9)
981.3

(700.8
–1,342.1)

1,156.3
(833.4

–1,533.2)
1,033.5

(756.7
–1,405.7)

1,148.3
(887.0

–1,654.2)
1,082.9

(782.6
–1,387.8)

C
aloric

intake
(kcal/day)

1,583
(1,196

–2,298)
1,581

(1,209
–2,219)

1,645
(1,160

–2,224)
1,600

(1,199
–2,271)

1,729
(1,252

–2,288)
1,681

(1,272
–2,303)

1,818
(1,310

–2,472)
1,688

(1,359
–2,275)

24-h
urine

calcium
(m

g/day)

24.0
(12.0

–41.1)
26.6

(13.5
–50.0)

28.5
(14.0

–56.0)
36.7

(17.3
–79.2)

44.5
(22.0

–91.8)
67.8

(31.7
–128.5)

68.7
(33.0

–138.8)
105.0

(58.2
–183.1)

24-h
urine

ph
osph

ate
(m

g/day)

656.2
(473.2

–875.6)
618.1

(454.7
–794.0)

693.5
(498.0

–912.3)
679.0

(497.5
–882.0)

779.9
(554.0

–1,025.0)
768.0

(566.8
–1,026.5)

768.7
(606.2

–1,118.0)
852.1

(597.2
–1,104.7)

FE
C
a
(%

)
0.61

(0.33
–1.1)

0.65
(0.33

–1.3)
0.48

(0.25
–0.91)

0.58
(0.26

–1.2)
0.54

(0.27
–1.0)

0.72
(0.37

–1.3)
0.70

(0.33
–1.2)

0.90
(0.55

–1.5)

FE
Pi(%

)
35.3

(26.3
–47.2)

35.2
(26.4

–46.7)
26.6

(19.9
–35.5)

26.8
(20.6

–35.4)
22.0

(16.8
–29.0)

22.7
(17.4

–28.8)
18.6

(14.1
–23.7)

18.8
(13.9

–23.9)
Seru

m
calcium

(m
g/dL)

9.0
6

٭0.6
9.2

6
0.6

9.1
6

٭0.5
9.3

6
0.6

9.2
6

0.5
9.2

6
0.5

9.2
6

0.4
9.2

6
0.4

PT
H
(pg/m

L)
105.7

(68.7
–170.5)

101.1
(62.0

–172.4)
61.9

(40.0
٭(99.0–

55.4
(36.7

–82.7)
45.0

(31.1
٭(68.0–

41.0
(31.0

–61.0)
34.3

(26.0
–53.3)

35.9
(27.6

–48.5)
Seru

m
ph

osphate
(m

g/dL)
4.3

6
٭0.8

3.9
6

0.7
3.9

6
٭0.6

3.5
6

0.5
3.7

6
٭0.6

3.4
6

0.5
3.5

6
0.5

3.4
6

0.5

FG
F23

(R
U
/m

L)
279.0

(193.4
٭(401.3–

226.7
(153.3

–356.6)
179.6

(125.5
٭(269.2–

138.5
(98.7

–214.2)
128.4

(96.0
٭(180.3–

99.9
(73.3

–146.7)
99.2

(74.2
٭(131.5–

84.4
(61.7

–111.9)

D
ata

are
percent,m

eans
6

SD
,or

m
edian

s
(interquartile

range).T
w
enty-four-hoururinary

data
w
ere

available
for3,554

(1,718
w
ith

diabetes;1,836
w
ithoutdiabetes)participan

ts.D
ietary

data
w
ere

available
for

2,817
(1,261

w
ith

diabetes;1,556
w
ithoutdiabetes)participants.Fractionalm

ineralexcretion
data

w
ere

available
for3,621

(1,751
w
ith

diabetes;1,870
w
ithoutdiabetes)participants.Five

individuals
w
ith

eG
FR

,
15

are
not

included.FE
C
a,fraction

alexcretion
ofcalcium

;FE
Pi,fractionalexcretion

of
phosphate.٭P

,
0.05

vs.participants
w
ithout

diabetes.

care.diabetesjournals.org DIABETES CARE, VOLUME 35, MAY 2012 997

Wahl and Associates



group. Greater 24-h urinary protein cor-
related with serum phosphate (r = 0.2,
P , 0.001), PTH (r = 0.3, P , 0.001),
FGF23 (r = 0.2, P , 0.001), and 25-
hydroxyvitamin D (r = –0.2, P , 0.001)
levels. Correlation between glycemic con-
trol and mineral metabolites was even
weaker (data not shown).

In multivariable analyses that ad-
justed for age, sex, black race, Hispanic
ethnicity, eGFR, serum albumin, systolic
blood pressure, BMI, and clinical center,
diabetes remained a significant predictor
of phosphate, PTH, and FGF23 but not
calcium (Table 3). Of note, the direction
of association for diabetes and PTH levels
was reversed in the multivariable models,
with diabetes associated with lower PTH
levels (Fig. 1). Additional adjustment for
dietary phosphate, calcium, and total ca-
loric intakes did not change the findings
(Table 3, model 2). Further adjustment
for 25-hydroxyvitamin D levels in the
subset of participants with measured lev-
els did not alter the results (Table 3,
model 3). In the adjusted models, lower
25-hydroxyvitamin D levels were inde-
pendently associated with higher levels
of serum phosphate, PTH, and FGF23.
Finally, when we examined the correla-
tion between eGFR and iGFR in the en-
tire CRIC and within each of the study
groups, we found that the correlations
were high in the entire study sample
(r = 0.82, P, 0.001) and among diabetic
(r = 0.78, P , 0.001) and nondiabetic
(r = 0.84, P, 0.001) participants. More-
over, the results of the adjusted models
remained qualitatively unchanged fol-
lowing substitution of iGFR for eGFR
(data not shown).

To further compare the prevalence of
abnormalities of mineral metabolism ac-
cording to presence of diabetes across the

spectrum of eGFR, we examined the
eGFR at which one-half of the partici-
pants had elevated levels of mineral me-
tabolites. The eGFR cut point at which
50% of participants met criteria for sec-
ondary hyperparathyroidism (PTH $65
pg/mL) was higher in patients with diabe-
tes (eGFR 30–39) compared with those
without diabetes (eGFR 20–29, P ,
0.001). Likewise, among those with dia-
betes, 50% already had elevated FGF23
($100 RU/mL) at an eGFR of 50–59 com-
pared with an eGFR of 40–49 for those
without diabetes (P , 0.001). The preva-
lence of hyperphosphatemia did not reach
50% except in the lowest eGFR cut point
only in the diabetes group, and hyperphos-
phatemia was more prevalent among those
with diabetes comparedwith thosewithout
diabetes at every 10-point range of eGFR
(P , 0.001).

CONCLUSIONSdIn this large de-
scriptive study of patients with CKD stages
2–4, participants with diabetes had higher
levels of serum phosphate, PTH, and
FGF23 levels and lower vitamin D levels
compared with those without diabetes.
Moreover, hyperphosphatemia, secondary
hyperparathyroidism, and FGF23 excess
occurred earlier in the course of CKD in
individuals with diabetes compared with
those without diabetes. Although the di-
rection for the association of PTH and di-
abetes reversed in multivariable models,
serum phosphate and FGF23 levels re-
mained higher in participants with diabe-
tes compared with those without diabetes,
independent of demographic, clinical, and
laboratory values. These findings extend
the previously reported differences in
mineral metabolism found in small studies
of predialysis CKD (20,21) and emphasize
the potential need for greater surveillance

of mineral metabolism in diabetic patients
with early CKD.

Abnormalities in bone and mineral
metabolism have been reported in pa-
tients with diabetes across the spectrum
of kidney disease and even in those with
normal kidney function. Previous studies
reported that patients with diabetes and
normal renal function have lower PTH
levels, reduced bone formation rates, de-
creased bone mass, and greater risk of
fractures compared with those without
diabetes (22–28). Likewise, patients with
diabetes who are undergoing dialysis are
more likely to develop low-turnover bone
disease and relatively low PTH levels
compared with patients with nondiabetic
ESRD (9,10). In patients with earlier
stages of CKD, the prevalence of vitamin D
deficiency is higher in diabetes than in
CKD as a result of other etiologies (29),
perhaps in part because of greater uri-
nary loss of vitamin D–binding protein
in proteinuria (17). Our findings of lower
25-hydroxyvitamin D levels in participants
with diabetes, and the inverse association be-
tween proteinuria and 25-hydroxyvitaminD
levels, are consistent with this observation.

Although greater prevalence of vita-
min D deficiency should predispose CKD
patients with diabetes to greater severity
of secondary hyperparathyroidism than
patients with CKD as a result of other eti-
ologies, previous small studies reported
lower PTH levels in patients with CKD
as a result of diabetes (18,19). Our findings
are not in complete agreement with these
reports. Although we found that unad-
justed PTH levels were higher in patients
with diabetes comparedwith thosewithout
diabetes, and that the prevalence of second-
ary hyperparathyroidism reached the 50%
threshold at a higher eGFR (earlier in the
course of disease) in the diabetic group,
multivariable adjustment reversed the di-
rection of the relationship, and the associ-
ation between diabetes and lower PTH
levels emerged, as has been described pre-
viously (18,19). Although additional stud-
ies are needed to explain themechanism for
the finding of lower adjusted PTH levels
in diabetic CRIC study participants, unad-
justed PTH levels, which are measured in
clinical practice, are typically higher in di-
abetic patients with CKD, likely because
this group possesses a greater number
of characteristics predisposing them to
secondary hyperparathyroidism (lower
eGFR, higher BMI, greater proteinuria,
and lower 25-hydroxyvitamin D levels).
Closer surveillance of PTHmay be needed
in diabetes.

Table 3dMultivariate-adjusted associations between mineral metabolism markers and
diabetes

Model 1 Model 2 Model 3

b P b P b P

Serum calcium 0.01 0.44 0.004 0.83 0.03 0.16
Log PTH 20.06 0.002 20.06 0.02 20.10 0.001
Serum phosphate 0.31 ,0.001 0.29 ,0.001 0.25 ,0.001
Log FGF23 0.15 ,0.001 0.16 0.005 0.09 0.01

The regression coefficients are calculated for the effect of diabetes on each individual mineral metabolism
marker. Model 1: adjusted for demographics (age, sex, black race, and Hispanic ethnicity), clinical charac-
teristics (current smoking, BMI, and systolic blood pressure), clinical center, and laboratory values (eGFR and
serum albumin). Model 2: same covariates as in model 1, plus dietary phosphate, calcium, and total caloric
intakes. Model 3: same covariates as in model 1 plus 25-hydroxyvitamin D, restricted to those with
25-hydroxyvitamin D levels (n = 1,453).
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We also found higher levels of FGF23
in participants with diabetes, which may
explain previous reports of the indepen-
dent association of diabetes with lower
1,25-dihydroxyvitamin D levels in pa-
tients with earlier stages of CKD, consis-
tent with our data (16). FGF23 is the most
recently discovered hormonal regulator
of mineral metabolism, and elevated lev-
els may be the earliest manifestation of
disordered mineral metabolism in CKD
(15). In healthy individuals, FGF23 is
secreted by osteocytes in response to di-
etary phosphate loading or an increase in
1,25-dihydroxyvitamin D levels, and it
stimulates phosphaturia and reduces
1,25-dihydroxyvitamin D and PTH levels
(30). In patients with CKD, FGF23 levels
are thought to increase as a compensatory
response to maintain normal phosphate

balance as the capacity for renal phosphate
excretion declines. In conjunction with el-
evated PTH levels, elevated FGF23 levels
help to maintain normal serum phosphate
concentrations in the vast majority of pa-
tients with early and intermediate stages of
CKD (30). Data comparing FGF23 in CKD
attributed to diabetes versus other causes
are sparse and conflicting. In three previ-
ous studies of 89–224 participants, some
studies reported higher FGF23 in diabetes
and others reported lower levels (20,21,31).
Inconsistencies in the range of kidney func-
tion, small sample size, and use of medica-
tions that affect mineral metabolism may
have accounted for these disparate results
(20,21,31).

In this highly powered study, we
found that diabetes was independently
associated with elevated median FGF23

levels overall and at every level of eGFR
and that FGF23 excess was more preva-
lent earlier in the course of CKD among
those with diabetes versus those without
diabetes. Although higher serum phos-
phate levels in the diabetic group may be
one potential explanation for this differ-
ence, the cross-sectional design of our
study limited our ability to assess direc-
tionality of associations or to delineate
mechanisms for our findings. Nonethe-
less, we speculate two possibilities based
on prior literature. First, patients with
diabetes have decreased bone formation
rates, which has been proposed as a stim-
ulus for FGF23 secretion (32). Thus, dia-
betesmay inhibit bone formation, thereby
resulting in early and more severe eleva-
tions in FGF23 levels. Second, human
and animal data suggest that patients
with diabetes may have early tubular in-
jury, prior to a measurable decrement in
eGFR or onset of microalbuminuria
(33,34). Therefore, it is possible that at
an equivalent eGFR, patients with diabe-
tes actually have greater severity of kidney
disease and, thus, higher FGF23 levels
compared with those without diabetes.
Emerging reports of FGF23 elevation in
the setting of definite kidney injury but
prior to an appreciable rise in serum cre-
atinine in humans and animals support
this hypothesis (35,36).

Our finding of higher serum phos-
phate levels in the diabetic versus the
nondiabetic group is consistent with pre-
vious studies (21). Although we did not
observe marked differences in dietary in-
take of phosphate or 24-h urinary phos-
phate excretion across the groups, factors
other than dietary intake or urinary excre-
tion may have contributed to our find-
ings. We speculate reduced uptake of
phosphate by bone attributed to de-
creased bone-formation rates (37) or di-
minished intracellular phosphate flux
attributed to insulin resistance in diabetes
led to increased serum phosphate (38).
Although the latter was not supported
by exploratory analyses of the association
between glycemic control and serum
phosphate, hemoglobin A1c may be less
accurate in CKD (39). Additional studies
are needed to clarify mechanisms of ele-
vated serum phosphate in diabetes com-
plicated by CKD.

We acknowledge several limitations
of our study beyond its cross-sectional
design. First, the CRIC study intention-
ally oversampled blacks and Hispanics;
therefore, our study population may not
be entirely representative of others with

Figure 1dAdjusted levels of calcium (A), PTH (B), phosphate (C), and FGF23 (D) according to
diabetes status. Values are means that were estimated from generalized linear models that ad-
justed for age, sex, black race, Hispanic ethnicity, current smoking, BMI, systolic blood pressure,
clinical center, eGFR, and serum albumin.-, values obtained in the diabetic group; ▫, group
without diabetes. *Significant differences between the two groups (P, 0.05). +DM, participants
with diabetes; 2DM, participants without diabetes.
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diabetes and CKD. Second, lack of infor-
mation on diabetes type precludes conclu-
sions of differences in mineral metabolism
between type 1 and type 2 diabetes. Third,
the MDRD equation used to estimate GFR
in the full CRIChas been shown to perform
less accurately in diabetic patients com-
pared with those without diabetes (40).
However, the sensitivity analyses with
iGFR substituted for MDRD eGFR con-
firmed our main findings, and the correla-
tions between iGFR and eGFR were high
in both study groups. Finally, because vi-
tamin D levels were only available at the
year 1 follow-up visit in a subset of par-
ticipants, and not concurrently with the
rest of the mineral metabolism measure-
ments, residual confounding by incom-
plete adjustment for vitamin D may be a
possibility.

We conclude that disordered mineral
metabolism is more severe and develops
earlier in the course of CKD in patients
with diabetes compared with those with-
out diabetes. Future studies should ex-
plore mechanisms for these differences
and whether they contribute to the worse
clinical outcomes experienced by CKD
patients with diabetes. Although long-
term trials targeting mineral metabolism
in diabetic patients with CKD are needed,
in the interim our data support closer
surveillance of mineral metabolism mark-
ers in this population.
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