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Mitochondria and Cell Bioenergetics:
Increasingly Recognized Components

and a Possible Etiologic Cause of Alzheimer’s Disease

Russell H. Swerdlow

Abstract

Significance: Mitochondria and brain bioenergetics are increasingly thought to play an important role in Alz-
heimer’s disease (AD). Recent Advances: Data that support this view are discussed from the perspective of the
amyloid cascade hypothesis, which assumes beta-amyloid perturbs mitochondrial function, and from an op-
posite perspective that assumes mitochondrial dysfunction promotes brain amyloidosis. A detailed review of
cytoplasmic hybrid (cybrid) studies, which argue mitochondrial DNA (mtDNA) contributes to sporadic AD, is
provided. Recent AD endophenotype data that further suggest an mtDNA contribution are also summarized.
Critical Issues and Future Directions: Biochemical, molecular, cybrid, biomarker, and clinical data pertinent to
the mitochondria–bioenergetics–AD nexus are synthesized and the mitochondrial cascade hypothesis, which
represents a mitochondria-centric attempt to conceptualize sporadic AD, is discussed. Antioxid. Redox Signal. 16,
1434–1455.

Introduction

Historically, Alzheimer’s disease (AD) was defined as
a clinical dementia syndrome that occurs in conjunction

with brain beta-amyloid (Ab) plaques and tau tangle deposits
(1, 6, 140, 177, 180, 256). More recently, the definition was
extended to include a ‘‘preclinical’’ form characterized by Ab
changes and normal cognition (2, 178, 248). The preclinical
AD diagnostic criteria designate Ab an ‘‘upstream’’ marker
and all other recognized neuroimaging and biochemical
phenomena as ‘‘downstream’’ markers (248).

Ab’s upstream designation is consistent with the amyloid
cascade hypothesis (107–109), which postulates the Ab (99)
byproduct of amyloid precursor protein (APP) degradation
(135) causes AD. Outside of rare familial autosomal dominant
forms, though, it is unclear why Ab dynamics change in AD.
After all, Ab is constantly produced in brains of young and old
people. Extracellular Ab levels rise during the day and fall
during sleep (136). Interstitial Ab falls after severe closed head
injuries, and rising levels signal clinical recovery (27). Clearly,
Ab production is a regulated process and the simple presence of
Ab in the brain does not necessarily initiate AD. What, then,
could possibly constitute the ‘‘upstream’’ regulator of brain Ab?
This review argues mitochondria and cell bioenergetics (Fig. 1)
regulate Ab, and that in sporadic AD, changes in mitochondrial
function and cell bioenergetics occur upstream to Ab changes.

Mitochondria Are Increasingly Implicated
in AD and AD Models

Altered oxidative metabolism in AD was reported in the
1960s (89), and abnormal glucose utilization was noted
throughout the 1970s and beyond (25, 67, 87, 90, 126, 243, 255).
During this time, changes to the main bioenergetics organelle,
the mitochondrion, were observed on several levels (263). Mi-
tochondrial ultrastructure was perturbed, and activities of
several mitochondria-localized enzymes (including pyruvate
dehydrogenase complex and a-ketoglutarate dehydrogenase
complex) were reduced (97, 128, 212, 247, 291). Mitochondrial
oxygen consumption in AD subject frontal cortex homogenates
was shown to differ from control subject homogenates (243).
Reduced brain oxygen utilization was demonstrated using
oxygen-15 positron tomography (88, 92). Interestingly, bioen-
ergetics and mitochondrial changes were found to extend be-
yond the brain to nondegenerating tissues such as fibroblasts
and lymphocytes (20, 22, 96, 97, 214, 215, 241, 242). Pioneering
investigators postulated energy metabolism might constitute
an important feature of AD (22, 97, 242), but interest in this line
of investigation was largely restricted to the field’s periphery.

In 1990, reduced activity of the electron transport chain
(ETC) enzyme complex IV (cytochrome oxidase; COX) was
demonstrated by Parker et al. (203). The AD COX defect in this
study was identified through studies of platelet mitochon-
dria. A similar finding was subsequently demonstrated in
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independent studies of brain, platelet, and fibroblast mito-
chondria (24, 31, 40, 62, 144, 165, 176, 189, 204, 205, 240, 280, 281,
284, 292). Some researchers attributed the COX activity reduc-
tion to declining COX protein or COX subunit mRNA levels (42,
43, 111, 145). Others reported the enzyme’s kinetic properties,
and therefore the enzyme structure itself, were altered or that
the enzyme was improperly assembled (206, 284). For example,
in AD brain mitochondria, COX activity was reduced even
when referenced to its own aa3 subunit (206), thus suggesting
reduced AD brain COX activity is not simply or solely a con-
sequence of less COX holoenzyme.

Mitochondrial mass, number, and content were shown to
be changed in oxidatively stressed hippocampal pyramidal
neurons from AD brains (113). These neurons showed in-
creased levels of mtDNA, mtDNA molecules containing a
specific 5 kb deletion, and the mtDNA-encoded COX1 protein
subunit. This was not due, however, to increased numbers
of intact mitochondria or, at least in the case of mtDNA, in-
creased amounts of mtDNA within intact mitochondria.
Rather, increases were driven by an expanded pool of au-
tophagocytized mitochondria. While this mitochondrial pool
increased, the number and mass of normal mitochondria ac-
tually fell. Because the amount of PCR-amplifiable mtDNA
also drops in AD brains (28, 55, 65, 113, 220), it is presumed
mtDNA within autophagosomes is not extracted or amplified
using standard techniques. Additional AD brain morpho-
metric studies further found reduced mitochondrial number,
mass, and size; disrupted cristae; and altered intracellular
distributions (9). Moreover, these changes were not limited to
cells and regions that manifest concomitant Ab or protein
aggregation changes.

Other studies quantifying AD brain mitochondrial mass
and mitochondrial COX protein content emphasize that the
stage of disease, or at least the stage of disease a given neuron
is in, influences what is observed. Using immunochemical
and mitochondrial dye approaches, de la Monte et al. noted
that, despite an overall reduction in mitochondrial mass, es-
pecially in terms of COX content, considerable heterogeneity
between individual brains and neurons within brains exist
(65). The authors postulated less severely affected neurons
mount ultimately unsustainable compensatory increases in
COX protein and mitochondrial mass. This interpretation
is consistent with the findings of Nagy et al., who found
‘‘healthy-appearing’’ neurons in AD brain hippocampi had
increased COX protein levels, while tangle-bearing neurons
lacked COX protein (190).

During the 1990s, mitochondrial defects were demonstrated
in other neurodegenerative diseases, and it was proposed the
brain might be particularly susceptible to mitochondrial dys-
function (259). Oxidative stress was documented in AD brains
(138, 160, 170, 172, 199, 245, 246) and it was postulated that
mitochondria, a well-recognized source of reactive oxygen
species (ROS) production (39), could be responsible (11, 264).
Mitochondria were discovered to play a central role in pro-
grammed cell death (115, 148, 216, 301), a process felt possibly
to mediate neuron loss in AD (57, 65, 66, 151, 194, 222, 231, 244,
251). Age-dependent increases in mtDNA damage, either in the
form of oxidative modifications or frank mutations, were
documented (54, 179). The age-dependent nature of these
changes offered a potential explanation for why AD prevalence
increased so much with advancing age. Cytoplasmic hybrid
(cybrid) modeling of AD mitochondrial dysfunction further

FIG. 1. The mitochondrion and
its relationship to bioenergetic
fluxes. Under normal conditions,
neuron mitochondria may depend
heavily on astrocyte-generated
lactate as a carbon fuel source, and
for this reason the reaction from
lactate to pyruvate is explicitly in-
dicated. The conversion of lactate
to pyruvate definitely occurs in
the cytosol, and some researchers
believe this conversion may also
occur within the mitochondrion
itself. In general, though, carbon
from several sources including
carbohydrates, fatty acids, and
amino acids can feed into the
Krebs cycle. Reactions in the Krebs
cycle reduce NAD + to NADH
and FAD to FADH2. High-energy
electrons from NADH enter the
ETC at complex I, and high energy
electrons from FADH2 enter the
ETC at complex II (not shown).
As electrons flow through the ETC
from high to low energy states,
energy from those electrons is used to pump protons from the matrix to the intermembrane space and create a proton
gradient. Due to electrochemical and pH gradients, protons in the intermembrane space are directed to re-access the matrix
through complex V (the ATP synthase) and energy captured from this proton flux is used to phosphorylate ADP. Also shown
is the mtDNA, which encodes catalytically critical parts of the complex I, III, IV, and V holoenzymes. CoQ, coenzyme; Cyt. C,
cytochrome C.
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suggested AD-specific mtDNA signatures existed and were
physiologically relevant (257). AD cybrid studies are discussed
in detail in a following section.

As interest in mitochondria grew, speculation arose over
the possible presence of an Ab-mitochondria nexus. Initial
attempts to address this involved exposing cultured cells or
isolated mitochondria to Ab. These studies found Ab im-
paired mitochondrial respiration and inhibited COX (30, 35,
61, 207, 210), thereby providing a potential mechanism
through which AD brain mitochondrial dysfunction could
arise. Subsequently, reduced brain respiration was demon-
strated in multiple Ab-producing transgenic mouse models
(74, 76, 112, 298, 299). Related studies from transgenic mice
reported expression of genes encoding mitochondrially-
located proteins and respiratory chain subunits increased
(218), and that brain regions that do not accumulate Ab may
actually show elevated COX activity (249). This suggested Ab-
induced mitochondrial dysfunction triggers a compensatory
response. Consistent with this finding, Diana et al. reported that
in cultured cells low concentration Ab exposure decreases
mitochondrial mass, fragments mtDNA, and initiates an ap-
parent compensatory increase in mtDNA synthesis (73).

Adding Ab to cell cultures, though, does not inhibit all
bioenergetic pathways. Allaman et al. found exposing cul-
tured astrocytes to Ab increased glucose uptake as well as
glycolysis, pentose phosphate shunt, Krebs cycle, and glyco-
gen synthesis fluxes (4). These flux increases may reflect the
fact that from a metabolism perspective the brain is not a
homogeneous entity. Instead, astrocytes and neurons likely
constitute functionally interactive units (3, 163, 209, 253).

In 2001, Cardoso et al. reported Ab exposures that were
toxic to human teratocarcinoma cells were not toxic to te-
ratocarcinoma cells depleted of endogenous mtDNA (q0 cells)
(33). Because mtDNA encodes subunits belonging to com-
plexes I, III, IV, and V, these holoenzymes are not fully
functional in q0 cells. With proper metabolic support, though,
q0 cells remain viable and expand in culture. In the native
teratocarcinoma cells, Ab decreased MTT reduction, in-
creased extracellular LDH, inhibited ETC enzymes, reduced
ATP levels, and depolarized mitochondria. These effects
were not observed in the Ab-exposed q0 cells. In the native
cells, antioxidant pretreatments minimized some of the Ab-
induced changes, including decreased MTT reduction. While
this study did not explicitly demonstrate a physical interac-
tion between Ab and either mitochondria or the ETC, it
showed in cell culture that some aspects of Ab toxicity are
mediated through direct or indirect mitochondrial effects.
Following this, a number of studies reported APP and Ab co-
localize with mitochondria in both AD autopsy brains and
AD transgenic mice (7, 8, 36, 61, 72, 74, 75, 106, 157, 162, 167,
296, 298). Interestingly, the APP-cleaving gamma secretase
complex is also present within mitochondria (105, 271).

Over the last decade, investigators have reported several
specific Ab–mitochondria interactions. In studies involving
AD autopsy brains and Ab-producing transgenic mice, Ab
was found to bind a redox enzyme, Ab-binding alcohol de-
hydrogenase (ABAD), within the mitochondrial matrix (162).
Ab-binding to ABAD deformed the enzyme, prevented NAD
binding, and interfered with enzyme activity. Blocking the
Ab–ABAD interaction minimized cognitive decline in this
model. In a subsequent publication, this team reported Ab
also interacted with cyclophilin D, a constituent of the mito-

chondrial permeability transition pore, and that binding of
Ab to cyclophilin D activated a mitochondrial permeability
transition (75).

Despite the fact and perhaps because the number of intact
mitochondria is reduced in degenerating neurons, in AD
brains the balance between mitochondrial fission and fusion is
shifted in favor of fission (168, 287–289). The proteins that
mediate mitochondrial fusion, Opa1, Mfn1, and Mfn2, are
reduced. Fis1, which mediates mitochondrial fission, is in-
creased. Drp1, which also facilitates fission, was reduced in
one study but increased in another (168, 288). In the study
where Drp1 was increased, Drp1 mRNA expression was
similarly elevated (168). This study also reported a physical
association between Ab and Drp1. In the studies where Drp1
was reduced, exposing cultured neuronal cells or primary
neurons to Ab fragmented mitochondria and altered mito-
chondrial fission–fusion protein levels (288). The intracellular
mitochondrial distribution shifted from neurites and axons
and towards the perinuclear region. Overexpressing Opa1
and Drp1 mitigated Ab-induced mitochondrial fragmentation
and restored a normal mitochondrial distribution pattern.

Overall, multiple cell and animal-based studies show Ab
functionally and structurally alters mitochondria. While the
sequence of this relationship is consistent with the amyloid
cascade hypothesis, it is important to note the experimental
models used for these studies (adding Ab to cell cultures, and
transgenic mice whose mutant APP expression facilitates Ab
production) do not address whether a converse relationship
also exists.

This point is critical, as data suggest mitochondrial function
affects Ab, and mitochondrial dysfunction promotes amy-
loidosis. One study found exposing APP-expressing COS cells
to a combination of sodium azide, a COX inhibitor, and 2-
deoxyglucose, a glycolysis inhibitor, profoundly affected APP
processing (93). This treatment, which presumably reduced
ATP levels, shifted cell APP processing to the endoplasmic
reticulum (ER) and yielded an ‘‘amyloidogenic’’ derivative. As
defined by the authors, this new amyloidogenic derivative
consisted of an 11.5 kD APP fragment that contained the entire
Ab amino acid sequence. The sodium azide-2 deoxyglucose
treatment therefore appeared to shift APP processing away
from its a-secretase cleavage. Similar effects were seen in neu-
roglioma cells and following treatment with CCCP, a respira-
tory chain uncoupler.

Other studies have focused on whether bioenergetic ma-
nipulation affects APP a-secretase cleavage. One report tested
the effect of 2-deoxyglucose and oligomycin, an ATP synthase
inhibitor, on differentiated PC12 cell (a rat adrenal pheochro-
mocytoma cell line) APP processing (290). This intervention
decreased a-secretase-mediated APP cleavage. The authors
speculated reducing a-secretase activity might shift APP pro-
cessing towards the amyloidogenic direction. Another study
performed using COS cells found glucose deprivation, 2-
deoxyglucose, and sodium azide independently decreased
levels of the soluble a-secretase-derived APP product (94). APP
mRNA levels remained unchanged, so diminished amounts of
the a-secretase-produced APP product was probably not an
artifact of reduced APP. Also, glutathione restored the a-
secretase-generated product to normal and even supranormal
levels suggesting ROS, conditions that occur in conjunction
with ROS, or some other glutathione-sensitive parameter shifts
APP processing from the a-secretase cut. In this context, data
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that show ROS activates the APP b-secretase (BACE) and in-
creases Ab production are potentially relevant (47, 268, 269).

Fukui et al. evaluated how bioenergetic manipulation af-
fects mouse brain amyloidosis (91). The authors crossed
transgenic mice expressing mutated human APP and PSEN1
genes with mice that had a Cre–loxP-mediated knockout of
the neuron COX10 gene. COX10 synthesizes a heme compo-
nent that constitutes part of the COX holoenzyme. The brains
of the crossed mice showed reduced numbers of amyloid
plaques. Oxidative stress, BACE activity, and Ab42 levels
were also lower. It is unclear why COX10 knockout reduced
brain oxidative stress and COX1 levels, since these changes
are opposite to what is observed in the AD brain (113). It is
perhaps conceivable COX10 knockout lowered levels of an
otherwise normal COX holoenzyme, lowered COX holoen-
zyme levels reduced the overall respiratory flux, a reduced
respiratory flux lowered free radical production, lowered free
radical production deactivated BACE, and less Ab was pro-
duced. If correct, the Fukui et al. report could join other APP
transgenic mouse studies that found manipulating oxidative
stress alters brain Ab dynamics or plaque accumulation. Per-
tinent studies include those showing paraquat-induced oxi-
dative stress increased brain Ab levels, increasing periredoxin 3
decreased brain Ab levels, increasing MnSOD decreased pla-
que accumulation, and reducing MnSOD increased plaque
accumulation (47, 78, 155).

Khan et al. determined Ab levels in SH-SY5Y cybrid cell
lines expressing AD and control subject mtDNA (141). AD
cybrid lines had reduced COX activity and increased ROS
production. Intracellular and extracellular levels of the 40 and
42 amino acid Ab species were elevated in AD cybrid cell
cultures. These and other data that argue mitochondria play a
key role in AD are discussed below.

Could Mitochondria Cause AD?

The first demonstration of reduced AD subject COX ac-
tivity came from studies of platelet mitochondria (203). Al-
though it is currently recognized that systemic biochemical
and clinical changes associate with AD, and therefore AD may
not be a brain-limited disease (22, 260), in 1990 this was not a
generally acknowledged view. Why, then, did Parker et al.
decide to assay ETC activities in platelet mitochondria? In
this case, the decision to assay mitochondria from a non-
degenerating tissue was based on epidemiologic and mito-
chondrial genetic principles. Specifically, the authors
recognized that most AD cases, and especially late-onset AD
cases, typically do not demonstrate recognizable Mendelian
inheritance patterns. Parker, who was at that time developing
a genetic theory of sporadic disease that was based on mito-
chondrial DNA (mtDNA) inheritance (201, 202), postulated
mtDNA might contribute to the apparently sporadic late-
onset form of AD. Immediately prior to his AD platelet study,
Parker and colleagues had successfully shown that subjects
with Parkinson’s disease, another neurodegenerative disor-
der in which only a minority demonstrate Mendelian inheri-
tance, have reduced platelet and muscle mitochondria
complex I activity (17, 202). If his sporadic disease hypothesis
was correct, Parker predicted, a systemic ETC defect should
also exist in AD.

Parker’s sporadic disease hypothesis was based on several
mtDNA principles including maternal inheritance, hetero-
plasmy, threshold, and mitotic segregation (Fig. 2). Because
mtDNA is essentially all inherited maternally (98), inherited
mtDNA mutations cannot produce Mendelian disease pat-
terns. Maternal inheritance might arise from inherited
mtDNA mutations, but only in situations where the

FIG. 2. Maternal inheritance,
heteroplasmy, mitotic segrega-
tion, and threshold effects let
mtDNA play a role in sporadic-
appearing diseases. In females,
diploid oogonia produce haploid
oocytes during embryogenesis. If a
heteroplasmic mtDNA mutation is
present within an oogonium, oo-
cytes with different mtDNA muta-
tion burdens may result. In general,
oocytes with high mutation levels
are more likely to produce disease-
affected offspring, but due to mi-
tochondrial segregation that occurs
after fertilization, different tissues
may contain different levels of the
mutation. Females with a high
mutation burden in the nervous
system but not their germ cells will
themselves have a high risk of de-
veloping the neurologic disease
and a low risk of transmission to
the next generation. Females with a
high mutation burden in their germ
cells but not the nervous system
have a high risk of transmission to the next generation and a low risk of developing the neurologic disease. Therefore, although
the mtDNA mutation is maternally inherited, the disease it associates with appears mostly as a sporadic disorder with perhaps
a subtle maternal inheritance bias.

MITOCHONDRIA IN ALZHEIMER’S DISEASE 1437



mutations are present in adequate amounts in both the germ
line and somatic tissues. Due to heteroplasmy, threshold, and
mitotic segregation, these conditions might not be met. For
example, a heteroplasmic mutation might only be present in a
limited number of the mtDNA molecules of an ovum. Because
during mitosis mtDNA molecules are stochastically distrib-
uted to daughter cells, different tissues may end up with
different mtDNA mutation burdens. A relatively high level of
mutation, therefore, may end up in the nervous system but
not the germ line, in which case a carrier female’s chances of
developing a neurologic disease would exceed her chance of
transmitting a neurologic disease. Alternatively, if a relatively
high level of mutation ends up in the germ line but not the
nervous system, a carrier female’s chances of transmitting a
neurologic disease to her offspring would exceed her chances
of developing the disease. This latter scenario takes into ac-
count the concept of threshold, which assumes that in order to
cause disease, the burden of mtDNA mutation in an affected
tissue must exceed the threshold at which the mutation or
mutations produce biochemical consequences.

Next, the question of whether mtDNA contributes to low
platelet mitochondria COX activity in AD subjects needed to
be addressed. COX is a 13-subunit holoenzyme, and three of
its subunits are encoded by genes on mtDNA. The tran-
scription and translation of these mtDNA subunits also de-
pends on the integrity of a set of mtDNA rRNA and tRNA
genes, as well as a regulatory region that influences mtDNA

replication and expression. To evaluate mtDNA’s contribu-
tion to the AD platelet mitochondria COX defect, a cybrid
approach was used.

AD Cybrids

Cybrid cells are generated by mixing the contents of non-
nucleated cells, or cytoplasts, with nucleated cells (257) (Fig.
3). This approach was developed during the 1970s to explore
the functional consequences of unique mtDNA species (29,
286). In its earliest permutation, investigators created cybrid
cell lines with mixed mtDNA populations; the mtDNA in
these lines consisted of a nucleated cell’s endogenous mtDNA
plus the cytoplast’s mtDNA. In the 1980s, investigators dis-
covered how to fully deplete cell lines of endogenous mtDNA
(70, 71, 181). These lines were called q0 cell lines, since prior to
its identification as mtDNA cytoplasmic DNA was classified
as ‘‘q’’ DNA (83). As q0 lines became available, investigators
began using them to produce cybrid lines whose mtDNA
derived entirely from a cytoplast mitochondrial donor (143).
In 1994 it was shown that platelets, which contain mito-
chondria but not nuclei, function effectively as cytoplasts
when mixed with q0 cells to produce cybrid cells (49).

The first studies of cybrid cell lines containing AD subject
mtDNA were published in 1997 (64, 233, 264). These cell lines
are referred to as ‘‘AD cybrid lines’’ or simply as ‘‘AD cy-
brids’’. To produce the AD cybrids, blood samples were taken

FIG. 3. The cybrid technique. mtDNA-depleted (q0) cells line and non-nucleated cytoplasts or platelets are mixed in the
presence of a plasma membrane-disrupting detergent. After the detergent is diluted, membrane reconstitution generates
some cells that contain a nucleus from a q0 cell, q0 cytosolic contents, and cytoplast cytosolic contents. Only cybrid cells that
contain cytoplast mtDNA can go on to produce functional ETCs and survive a subsequent selection process. After the
selection process is complete, the resulting cybrid cell line is used for biochemical and molecular analyses. Because cybrid cell
lines created from a common q0 cell nuclear background have equivalent nuclear genes, and the cell expansion environment
is equivalent between cell lines, biochemical or molecular differences between lines are expected to reflect differences between
their mtDNA content.
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from subjects diagnosed with AD. Platelets were isolated
from each individual blood sample, and the platelet mito-
chondria from each platelet preparation were incorporated
into q0 cells derived from either human neuroblastoma SH-
SY5Y cells or teratocarcinoma NT2 cells. At the same time that
the AD cybrids were generated, platelet mitochondria ob-
tained from non-AD, age-matched control subjects were also
used to generate ‘‘control cybrids’’. In both the neuroblastoma
and teratocarcinoma-based studies, mean COX Vmax activities
were lower in the AD cybrid group than they were in the
corresponding control cybrid group (64, 233, 264). Reduced
COX activity was subsequently observed in several inde-
pendent neuroblastoma and teratocarcinoma AD cybrid se-
ries (32, 37, 95, 195–197, 276, 277). Across studies the
magnitude of this reduction has ranged from about 15% to
50%. The defect is greatest when assayed in enriched mito-
chondrial fractions, and least when studied in whole cells.
This bioenergetic lesion, either directly or indirectly, is further
associated with a reduced cell ATP level; in the NT2 AD cy-
brid series of Cardoso et al., the ATP level was lowered by 28%
(32). This effect is presumed to be COX mediated, since
complex I activities between groups, when analyzed, have
been comparable (64, 95, 233, 277).

It is important to note that cybrid cell lines are created not
through the transfer of isolated mtDNA, but rather through
the transfer of whole mitochondria to q0 cells. An assumption
is made that all transferred cytoplast components that cannot
perpetuate independently of the host cell nucleus degrade
over time and dilute over the course of repeated cell divisions.
Therefore, any transferred cytoplast component that cannot
perpetuate itself independent of the cell nucleus should not
have a sustainable molecular or biochemical effect. Theoreti-
cally, a cytoplast’s only self-perpetuating component is its
mtDNA. For this reason, the most straightforward explana-
tion of these cybrid studies is that the AD cybrid COX activity
reduction is determined by mtDNA.

In AD cybrids, the mtDNA-derived COX defect produces
other features that recapitulate phenomena observed in AD
subject brains (Fig. 4). Altered mitochondrial morphology,
membrane potential, free radical production, calcium han-

dling, movement, and mtDNA synthesis rates are observed.
Cell transcription factor activities, calcium homeostasis, in-
tracellular signaling, energy levels, apoptosis markers, and
APP processing are perturbed.

Electron microscopy (EM) reveals AD cybrids have in-
creased numbers of enlarged mitochondria with swollen pale
matrices; disrupted, reduced cristae; broken outer membranes;
and crystal-like inclusions (276, 277, 302). Despite this, relative
to control cybrids, the AD cybrid average mitochondrial size
is reduced. The overall cell mitochondrial mass is equivalent
between AD and control lines, though, because AD cybrid
cells appear to contain more mitochondria (276). Preserved
mitochondrial mass has been visually demonstrated through
EM, and by biochemical assays that find AD cybrids maintain
normal citrate synthase and complex I activities (31, 64, 95,
233, 276, 277). Mitochondrial degradation rates in AD cybrids
have not been directly characterized, but mitochondrial
mtDNA synthesis is increased in AD cybrids and may rep-
resent part of a compensatory response to mitochondrial
dysfunction (276). Some of these findings reflect changes ob-
served in human AD brains, which show an increased fre-
quency of disrupted mitochondria and generally smaller
mitochondria that potentially reflect a shift in the mitochon-
drial fission–fusion balance towards fission (9, 113, 168, 288).
While preservation of mitochondrial mass is not typical of the
AD brain, several caveats are worth noting. First, Hirai et al.
found that when cell mtDNA is quantified so that intact mi-
tochondria, disrupted mitochondria, and phagosome mtDNA
are accounted for, the AD neuron total mtDNA content is
actually elevated (113). Second, total cell COX protein is in-
creased in what are apparently healthier AD brain neurons
(65, 113, 190). Third, during early AD stages, COX subunit
gene expression is increased while complex I subunit gene
expression is not (169). Fourth, early in life AD transgenic (tg)
2576 mice show upregulated expression of genes that encode
mitochondria-localized proteins (218). Therefore, by increas-
ing their mtDNA synthesis rate and maintaining their mito-
chondrial mass, AD cybrids are possibly demonstrating a
compensatory response that seems to initially occur (but ul-
timately fail) in AD brain neurons.

Compared to differentiated control cybrids, differentiated
SH-SY5Y AD cybrids have a higher percentage of sedentary
mitochondria (275). The mitochondria that are moving have
a slower mean velocity. Direct studies of AD brain also
suggest mitochondrial transport abnormalities occur, and
that mitochondria are directed away from axons and neur-
ites (254, 288).

Past fibroblast and lymphocyte studies demonstrate that
calcium dynamics are altered in AD (96, 124, 150, 214, 215).
The ability of mitochondria to regulate calcium levels is also
perturbed in AD cybrids. The total amount of calcium that
mitochondria can store, as well as the rate at which they can
store it, is reduced (233). This may partly explain why AD
cybrids have increased cytosolic calcium levels under basal
conditions (233), and why AD cybrid mitochondria, when
subjected to cyclosporin A-mediated hyperpolarization, fail
to show the typical membrane potential oscillation response
(i.e.,‘‘flickering’’) that occurs in cyclosporin-treated normal
cells (272). Reduced mitochondrial calcium sequestration is
also consistent with a relative depolarization of the mito-
chondrial membrane potential, a phenomenon that has been
shown in several AD cybrid studies (37, 141, 276, 277).

FIG. 4. The chain of events in AD cybrids. Altered COX
function in AD cybrids presumably arises from and reflects
mtDNA differences between the AD and control subjects
that provided each cell line’s mtDNA. Because mtDNA only
encodes components of the respiratory chain, all other un-
ique biochemical and molecular changes that occur in a cy-
brid line are consequences of its mtDNA-determined
respiratory chain function.
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Under physiologic conditions, mitochondrial superoxide
production is associated with mitochondrial membrane po-
tential hyperpolarization (26). AD cybrid mitochondria, which
are relatively depolarized, also generate excess superoxide (16,
32, 68, 195, 233, 264, 302). Mitochondrial ROS overproduction
in the setting of a low membrane potential suggests that AD
cybrids have a fundamentally defective ETC. Additional evi-
dence of AD cybrid oxidative stress includes increased markers
of lipid peroxidation, including thiobarbituric acid reactive
substances (TBARS) and 4-hydroxynonenol (4-HNE) protein
adducts, and increased protein carbonylation (32, 196). Similar
changes are also observed in AD brains (139). AD cybrids also
show upregulated activities of several antioxidant enzymes
(AOEs), including catalase, copper-zinc SOD, MnSOD, gluta-
thione peroxidase, and glutathione reductase (264). This most
likely represents a compensatory, yet ultimately unsuccessful,
response to enhanced mitochondrial ROS production. In-
creased oxidative stress is of course a well-documented feature
of the AD brain (113, 193, 213, 245, 250).

In AD cybrids, oxidative stress mediates, at least in part, the
observed mitochondrial membrane potential depolarization.
Administering trolox, a water-soluble vitamin E analog and
antioxidant, to AD cybrids increased their mitochondrial
membrane potential (141). Other cybrid data provide poten-
tial mechanistic insight into how oxidative stress affects the
membrane potential, and also influences other phenomena
typical of the AD brain. One particularly interesting finding is
that AD cybrids overproduce both Ab40 and Ab42. Khan et al.
reported a series of SH-SY5Y AD cybrids secreted Ab40 and
Ab42 at approximately twice the rate of a control cybrid group
(141). This study also found AD cybrids contained more in-
tracellular Ab40 than the control cybrids; intracellular Ab42
levels trended towards an increase but this difference was not
significant. Subsequently, Onyango et al. reported that, com-
pared to SH-SY5Y control cybrids, AD cybrid intracellular
and conditioned medium Ab42 levels were increased (195).
Since oxidative stress is believed to activate BACE, the en-
zyme that processes APP to its Ab derivative (47, 268), an
ROS-mediated increase in AD cybrid Ab production might be
expected. Increased basal Ab levels may also explain why
exposing AD cybrids to exogenous Ab40 causes an exagger-
ated decline in their mitochondrial membrane potential (32),
and why exposing them to Ab25–35 exacerbates their already
impaired ability to handle an inositol triphosphate (IP3)-
mediated ER calcium release (233).

AD cybrids show profound alterations in intracellular
stress signaling pathways. Relative to control cybrid lines
AKT phosphorylation is increased, as is phosphorylation of
the p38, JNK, and ERK1/2 serine-threonine kinases (195,
197, 302). The status of AKT in the AD brain is unclear, as
its intracellular distribution and absolute amount seem to
change, but available data suggest the AKTser-473 phos-
phorylated to nonphosphorylated ratio increases (101, 159,
208, 219). ERK, p38, and JNK phosphorylation is also in-
creased in the AD brain (101, 304, 305). AD cybrid studies
suggest these activating phosphorylations arise as a conse-
quence of increased oxidative stress, since they are reduced by
the isoflavone antioxidant puerarin and other antioxidants
(195, 302). Further, in AD cybrids, oxidative stress-mediated
p38 and JNK activation may confer harmful consequences, as
p38 and JNK inhibition protects these cells from externally-
induced oxidative stress (192, 196). AKT pathway and ERK1/

2 activation, on the other hand, appear to play a protective
role as the specific inhibition of either AKT or ERK1/2 reduces
AD cybrid cell viability (196, 197, 228). These viability-
reducing and promoting associations are consistent with ex-
isting mitogen activated protein kinase (MAPK) data (192,
228). Tyrosine kinase activity, which is also activated by ROS
(133), is additionally increased in AD cybrids (195, 197).

AD cybrids manifest evidence of decreased neurotrophin
signaling. TrkA and p75NTR receptors are depressed, and the
activity of the remaining TrkA receptors is reduced (195).
Despite this, exposing AD cybrids to nerve growth factor
(NGF) normalizes their elevated cytosolic calcium level and
improves their ability to recover from an IP3-mediated ER
calcium release. This has led some to argue NGF treatment
may benefit AD patients (234). TrkA levels are also decreased
in the basal forebrain and cortex of AD brains (23, 60, 226).

The phosphoinositide (PI) hydrolysis-dependent signal
transduction system is perturbed in both AD brain (129) and
AD cybrids (68). PI signaling occurs when phospholipase C
(PLC) cleaves a phosphorylated inositol (an inositol phos-
phate such as IP3) from a membrane phosphatidylinositol
phospholipid; phosphatidylinositol phospholipids are col-
lectively called PIs. De Sarno et al. assessed the integrity of this
system in AD and control cybrid lines under basal conditions
and following exposure to carbachol, a cholinergic agonist
that binds M1 metabotropic receptors and activates PI hy-
drolysis (68). Although G-protein and PLC levels were
equivalent between groups, in AD cybrids basal and carba-
chol-stimulated PI hydrolysis rates were higher, the G-protein
activator sodium fluoride had an overly robust effect, as did
the PLC activator ionomycin, and glutathione depletion had a
blunted effect. These findings suggest AD cybrids have an
overactive PI hydrolysis system. Since acute oxidative stress
typically reduces carbachol-induced PI hydrolysis (156), and
AD cybrids have elevated PI hydrolysis and chronic oxidative
stress, it was postulated PI hydrolysis hyperactivity in these
cells represents a direct or indirect adaptive response to
chronic oxidative stress.

In addition to producing a phosphorylated inositol mole-
cule, PI hydrolysis by PLC also generates diacylglycerol
(DAG). DAG activates protein kinase C (PKC), which pro-
motes AP-1 transcription factor DNA binding; AP-1 regulates
aspects of cell differentiation, proliferation, and apoptosis.
Although PKC levels are equivalent between groups, less AP-
1 DNA binding occurs in AD cybrids treated with carbachol
or phorbol 12-myristate 13-acetate (PMA), a DAG substitute
that directly activates PKC (68). This may also represent a
consequence of oxidative stress, since oxidative stress reduces
carbachol-induced AP-1 DNA binding (156). In any case, in
AD cybrids, oxidative stress appears to uncouple PKC sig-
naling from PI hydrolysis. It is therefore possible that PI hy-
drolysis hyperactivity represents an attempt to compensate
for this uncoupling. PKC function is reduced and its physical
status is altered in the AD brain (51, 175, 236).

In addition to perturbed AP-1 DNA binding, AD cybrids
also show altered function of other transcription factors. Ac-
tivity of the oxidative stress-sensitive NFjB transcription
factor (127, 133, 229, 230) is likely increased. This is supported
by the finding that phosphorylation of its inhibitor, IjBa, is
elevated; IjBa.phosphorylation targets it for proteosomal
degradation, which frees NFjB and allows it to promote the
expression of generally pro-inflammatory genes (196). NFjB
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activity is also increased in AD patient brain neurons and
astrocytes (132). In AD cybrids, NFjB activation likely plays a
protective role, since NFjB inhibition reduces cell viability
(195–197). In another study, HSF-1 DNA binding was found
to be reduced in AD cybrids (16). It was further shown that in
glutathione-depleted cybrid cell lines, hydrogen peroxide
exposure induced a less robust HSF-1 activation in AD cybrid
lines than it did in control cybrid lines (16). Because acute
hydrogen peroxide exposures typically induce HSF-1 DNA
binding, these data suggest reduced basal and peroxide-
stimulated HSF-1 DNA binding in AD cybrids reflects a
compensatory response to chronic oxidative stress.

A final downstream consequence of the AD cybrid COX
defect is a reduction in ‘‘viability’’ markers and an increase in
apoptosis markers. Relative to control cybrids, AD cybrids
show less XTT and MTT reduction, a phenomenon that is
partly reversed by antioxidant treatment (195–197, 302). AD
cybrid cultures have increased numbers of cells with con-
densed nuclei, annexin V positive-propidium iodide negative
staining, and annexin V positive-propidium iodide positive
staining (195–197, 302). AD cybrids show increased PARP
cleavage and increased H2A.X phosphorylation; reducing Ab
production through gamma secretase inhibition lowers levels
of these apoptosis markers (195–197). The BAX/Bcl2 ratio is
increased due to higher BAX and lower Bcl2 levels, while
treating AD cybrids with the antioxidant puerarin reduces
BAX and increases Bcl2 (302). BAX overexpression in AD
neurons has been reported, while Bcl2 levels seem to fluctuate
depending on the overall health of the neuron being analyzed
(252, 273). AD cybrids have reduced mitochondrial cyto-
chrome c levels, elevated cytosolic cytochrome c levels, and
excess caspase 3 activity (32, 141, 302). The greater frequency
of swollen mitochondria observed in AD cybrids may also
reflect increased apoptosis-related activity, since mitochon-
drial swelling is associated with mitochondrial permeability
transition and permeability transition occurs during apopto-
sis (114, 276–278, 302).

It is important to note there is one published AD cybrid
report in which AD cybrids prepared on a HeLa cervical car-
cinoma nuclear background were studied (125). In this report,
four AD cybrid lines were prepared from platelet mitochon-
dria, three control cybrid lines were prepared from platelet
mitochondria, and two control cybrid lines were prepared
from fibroblast mitochondria. Only semi-quantitative data in
the form of bar graphs are provided, but the bar graphs do
indicate COX activity in each cybrid line is comparable to or at
least not dramatically different from the COX activity of the
native HeLa cell line. Also in this study (125), HeLa q0 cells
were mixed with synaptosomes prepared from a single AD
autopsy brain following a 20 h postmortem interval. After this
mixing, three cell colonies that contained mtDNA were later
identified and the COX activity from each colony was deter-
mined. The data from this experiment, which also are pre-
sented only as part of a semi-quantitative bar graph, show the
COX activity from these three colonies resembled the COX
activity of the native HeLa line. The authors concluded that
mtDNA is equivalent between AD and control subjects and
that AD and control cybrid lines are functionally equivalent.
Because the methods used in this negative AD cybrid study
dramatically differ from those of the 17 published positive AD
cybrid studies, the degree to which this single study contra-
dicts the positive studies is unclear. The 17 positive studies

used SH-SY5Y and NT2 neuronal cell nuclear backgrounds,
and in aggregate the positive studies have now assayed over
200 cybrid lines prepared on three continents. To date, the
positive studies have compared over 100 AD cybrid lines to
over 100 control cybrid lines. Findings from the 18 reported
AD cybrid studies are summarized in Table 1.

Where Are the mtDNA Mutations?

Cybrid data imply mtDNA can account, at least in part, for
low COX activity in AD subjects. They further imply that by
influencing ETC function, mtDNA can induce important AD-
associated biochemical and molecular phenomena.

While cybrid data do not identify the critical mtDNA fea-
ture or features, several inferences are possible. Because
complex I activity is not reduced, at least in AD subject
platelet mitochondria wholesale mtDNA degradation is un-
likely. Similarly, preserved complex I activity as well as pre-
served mtDNA levels indicate low COX activity in AD
cybrids occurs independent of reduced mtDNA levels.

Investigators have argued that somatic acquired mtDNA
mutations may contribute to AD (285). An attractive feature of
this hypothesis is it provides a mechanism that could account
for the striking correlation between AD incidence and ad-
vancing age (130). Mitochondrial DNA mutations certainly do
accumulate with age, and in animal models somatic mtDNA
mutations can drive an aging phenotype (149, 274). Sub-
stantial evidence that somatic mtDNA mutations accumulate
in AD subjects already exists. Several groups report levels of

Table 1. Findings from 18 Published

Alzheimer’s Disease Cybrid Studies

Parameter

Number of
studies

concluding
‘‘Yes’’

Number of
studies

concluding
‘‘No’’

AD cybrids differ from control
cybrids

17 1

Reduced cytochrome oxidase
activity*

9 1

Complex I activity unchanged 4 0
Increased oxidative stress 7 0
Perturbed calcium handling 2 0
Altered mitochondrial morphology 3 0
Altered mitochondrial synthesis

or degradation rate
1 0

Reduced ATP 1 0
Reduced/altered membrane

potential
6 0

Mitochondrial mass unchanged 4 0
Increased apoptotic/reduced

‘‘viability’’ markers
6 0

Altered intracellular or stress
signaling

6 0

Increased intra- and extracellular
Ab levels

2 0

Altered mitochondrial movement 1 0

*Three articles by Onyango et al. all report reduced COX activity,
but are only counted once since the same cell lines are used in each
paper. Similarly, the study of Trimmer and Borland includes a subset
of previously reported cell lines, and so is not independently
counted. AD, Alzheimer’s disease.
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the 4977 base pair ‘‘common’’ mtDNA deletion, which in-
creases with age in postmitotic tissues such as the brain, is
further elevated in the AD brain (54, 104, 113). This particular
deletion encompasses mtDNA-encoded COX genes, and so
when present in high enough amounts reduced COX activity
should result (58, 59). Mitochondrial DNA deletions such as
the common deletion, though, are not known to accumulate in
blood (18) which suggests it is unlikely to account for findings
from AD cybrids.

Lin et al. systematically catalogued low abundance het-
eroplasmic point mutations in brain mtDNA from young
control subjects, aged subjects without dementia, and AD
subjects (158). Correlations between subject age, mutation
burdens, and brain COX activity were observed. Specifically,
the number of low-abundance mutations found in the
mtDNA COX1 subunit gene increased with advancing age,
and a greater number of mtDNA mutations corresponded
with a lower COX Vmax activity. However, between the AD
and age-matched control groups, the absolute number of
detected COX1 mutations was similar. To date, no study has
reliably catalogued low abundance heteroplasmies or com-
pound heteroplasmies in the other two mtDNA-located COX
genes (COX2 and COX3).

Other studies, though, have argued that heteroplasmic
point mutations are more common in AD. In AD brain but not
AD lymphocytes, Chang et al. found a three-fold elevation of a
particular mtDNA displacement (D) loop C to T transition
(45). The authors felt the nature of the sequence change could
represent a consequence of increased AD brain oxidative
stress, a view compatible with several studies finding exces-
sive levels of mtDNA oxidative adducts in the AD brain
(65, 113, 170, 179). Coskun et al. also reported the frequency of
several specific D-loop mutations differed dramatically be-
tween AD and control subject brains (55). This group subse-
quently found that compared to controls, D-loop mutations
were also much more frequent in AD subject serum and
lymphoblastoid cell line mtDNA (56).

Investigators have also argued inheritance of particular
mtDNA sequence variations influences AD risk. One of the
earliest deviations to be reported was an A4336G transition in
the mtDNA tRNAGln gene (81, 122, 227, 237), although several
other studies found no association (48, 80, 221, 294, 306). This
transition is characteristic of particular mtDNA haplogroup
H subgroups (164, 227). To date, some studies have found
haplogroup H is relatively over-represented in AD cohorts
(86, 173, 174, 227). As a potentially related finding, hap-
logroup H may represent a particularly well-coupled hap-
logroup, which infers that individuals with haplogroup H
may produce more ROS than individuals with other hap-
logroups (171). Other studies, though, have reported associ-
ations between AD and less-coupled mtDNA haplogroups
(34, 86, 123, 152, 266, 283). Associations between AD and
particular rare polymorphisms or polymorphism combina-
tions may also exist (41, 270).

Sequencing of AD subject mtDNA thus far has not revealed
any particular high-abundance ‘‘smoking gun’’ mutation that
‘‘causes’’ this disease. This makes sense, since in some demo-
graphics AD is an incredibly common disorder. Almost half of
those over 85 qualify for a diagnosis of AD or its frequent
prodrome, mild cognitive impairment (MCI), as do more than
half of those beyond the age of 90 (85, 295). Because AD
prevalence is so high, any particular causal variation would

probably not qualify as a mutation. This has led some to further
consider whether mtDNA and also nuclear COX gene poly-
morphisms may account for some degree of AD risk.

To assess population variation in COX genes, Lu et al. se-
quenced 13 COX subunit genes, the three mtDNA COX sub-
unit genes, and ten nuclear COX subunit genes, from 50
nondemented individuals (161). Approximately 20% of indi-
viduals carried a nonsynonymous mtDNA COX gene poly-
morphism. Synonymous mtDNA COX gene polymorphisms
were even more frequent. Interestingly, the synonymous
polymorphisms were not evenly distributed, but rather were
clustered in the less conserved COX3 gene. This suggests that
even synonymous polymorphisms could have a functional
consequence, a possibility consistent with existing data that
indicate synonymous polymorphisms, by changing the rate of
protein translation, can alter protein folding and therefore
protein function (142, 146, 147). Aside from a common single
nucleotide polymorphism (SNP) in the nuclear COX4I1 gene
nonsynonymous nuclear changes were rare, but synonymous
polymorphisms and especially 5‘ and 3‘ untranslated region
(UTR) polymorphisms were extremely common. The non-
synonymous COX4I1 SNP and a frequently detected hex-
anucleotide deletion in the COX7A1 5‘ UTR were both found
to have functional consequences. Expression of the COX4I1
SNP was associated with a lower COX Vmax activity, and in a
reporter assay the COX7A1 deletion reduced COX7A1 ex-
pression. Underscoring the tremendous degree of genetic
variation that was found, when synonymous and UTR poly-
morphisms were taken into account, no two individuals
shared an identical COX holoenzyme genotype.

A considerable degree of inherited and acquired inter-
individual COX subunit gene variation, and especially
mtDNA COX subunit gene variation, has thus already been
demonstrated. Some association studies further report po-
tential differences between AD and non-AD cohorts. In these
positive studies, odds ratios are similar to or even exceed
those of other genes associated with AD through large nuclear
gene genome wide association studies (110, 131, 153, 232).
Therefore, instead of asking ‘‘where are the mutations’’, a
more reasonable question is ‘‘how much do demonstrable
mtDNA sequence variations influence AD risk?’’

Data from AD endophenotype studies to some extent in-
directly address this question. When a particular trait or
biomarker typically found in conjunction with a disease is
detected in persons who do not have that disease, the pres-
ence of that trait or biomarker is said to constitute an en-
dophenotype. An endophenotype state does not indicate a
carrier will develop the full-blown disease, although it infers
that compared to persons without the endophenotype, those
with the endophenotype carry an increased risk. To date, a
number of studies, several of which are neuroimaging-based,
have found the adult children of AD-affected mothers are
more likely to express AD endophenotypes than the adult
children of AD-affected fathers. The first AD endophenotype
study, which analyzed fluorodeoxyglucose positron emission
tomography (FDG-PET) scans, found the cerebral metabolic
rate of glucose (CMRglu) of subjects with AD mothers showed
AD-characteristic changes while subjects with AD fathers did
not (184). Over time, CMRglu decline rates are greater in
subjects with AD mothers (187). Subjects with AD mothers
have more atrophy in AD-affected brain regions, as well as
faster rates of atrophy progression (15, 118, 119). Pittsburgh
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compound B (PIB) PET reveals a greater degree of Ab plaque
deposition in those with AD mothers (186, 188). Cere-
brospinal fluid (CSF) analysis reveals a lower CSF Ab42/
Ab40 ratio and CSF isoprostanes, a marker of oxidative
stress, are higher (186). On memory tests, APOE4 carriers
with AD mothers do not perform as well as APOE4 carriers
with AD fathers (69). Platelet mitochondria COX activity is
lower in those with AD mothers than it is in those with AD
fathers (185).

Cybrid, endophenotype, and positive mtDNA–AD associ-
ation studies are consistent with epidemiology data that
suggest an AD maternal inheritance bias does exist (10, 77, 79,
183). One such study, which took into account that women
outlive men and could therefore have a higher lifetime risk of
dementia, found greater female longevity did not account for
this relationship (79). It therefore seems that although both
parents influence an individual’s AD risk, mothers have a
greater impact.

Synthesizing the Data: The Mitochondrial
Cascade Hypothesis

Various explanations for reduced AD subject COX activity
have been proposed (Table 2). Some, such as the possibility
that reduced AD brain synapse activity induces COX down-

regulation (293), could account for low brain COX activity but
do not explain reduced platelet, fibroblast, or cybrid COX
activity.

In general, AD cybrid studies suggest mtDNA gives rise to
a COX defect, the COX defect causes oxidative stress and
reduced ATP levels, and this produces multiple other AD-
typical phenomena, including increased Ab production
(Fig. 5). All these features, in turn, influence the overall health
of the cell. Because direct correlations between AD cybrid cell
line defects and specific mtDNA sequence features are not yet
established, this interpretation of the cybrid data assumes that
only differences in mtDNA can explain persistent specific
differences between individual cybrid cell lines. At this time,
no alternative mechanism that causes sustained, inter-cell line
biochemical differences has been demonstrated.

An individual’s AD risk is influenced by whether they have
an affected parent or parents (137). Although nongenetic
factors can and probably do affect risk (103, 198), this strongly
implies a genetic contribution. Very rare autosomal dominant
forms of AD are recognized (100, 154, 235), but persons with
autosomal dominant, familial AD (FAD) tend to present at
younger ages than those with sporadic AD; most FAD pa-
tients are symptomatic prior to 60 years of age, while most
sporadic AD patients develop symptoms after the age of 60
(256). Regarding sporadic AD, which accounts for over 99% of

Table 2. Potential Causes of Reduced Cytochrome Oxidase Activity in Alzheimer’s Disease

Cause
Could apply

to brain?
Could apply to

non-brain tissues? Could apply to cybrids?

Toxic inhibition by Ab or another toxin Yes Yes Probably not
Toxic downregulation by Ab or another toxin Yes Yes Probably not
Downregulation due to reduced synaptic activity Yes No No
Nonspecific consequence of neurodegeneration Yes No No
Nuclear gene mutation Yes Yes Not unless it induces

a diffuse accumulation
of mtDNA mutation

mtDNA Yes Yes Yes

FIG. 5. Consequences of the mtDNA-
encoded AD cybrid COX ‘‘defect’’. Direct
consequences of the mtDNA-encoded AD
cybrid COX defect include increased ROS
production and, perhaps to some extent,
reduced ATP. The cell may try to com-
pensate for its relatively tenuous bioen-
ergetic status by increasing mtDNA
synthesis. Several cybrid studies indicate
ROS in turn activates a series of events,
including increased Ab production, acti-
vated stress signaling, and altered gene
transcription. ROS, in conjunction with
Ab, also appears to depolarize mitochon-
dria, activate apoptosis, and interfere with
calcium homeostasis.
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cases, several nuclear DNA nondeterministic polymorphisms
are currently believed to influence AD risk. The most strongly
associated and extensively studied risk factor gene is APOE
on chromosome 19q13.2 (52, 211). AD risk is increased in
APOE4, reduced in APOE2, and intermediate in APOE3 car-
riers. How and why apolipoprotein E, the protein encoded by
the APOE gene, modifies AD risk is unknown. One hypoth-
esis is that apolipoprotein E degradation products may di-
rectly interfere with mitochondrial function (44, 46, 191). Also,
one study reported that between APOE4 carriers and non-
carriers, posterior cingulate cortex COX activity was lower in
the APOE4 carriers (282).

Interestingly, polymorphic variations in a neighboring gene,
TOMM40 (translocase of the outer mitochondrial membrane
40 kDa subunit homolog), were recently shown to track with
AD risk (12, 13, 217, 224, 267, 300). Recent studies suggest
particular TOMM40 polymorphisms may affect the age of AD
onset more stringently than APOE polymorphisms, leading
some to speculate this mitochondrial protein is potentially

more relevant to AD than apolipoprotein E (223). Several
studies have also associated variation in the TFAM gene with
AD risk (5, 14, 102, 303). The TFAM gene encodes transcription
factor A of the mitochondria, which plays a major role in
mtDNA replication and expression (50, 82, 134, 200).

The possibility therefore exists that nuclear genes directly or
indirectly related to mitochondrial function mediate a large
proportion of a person’s nuclear DNA-determined AD risk. As
discussed in the previous section, maternal inheritance bias
and maternally-defined endophenotypes also suggest mtDNA
inheritance modifies risk. If these observations and interpre-
tations are correct, then the inheritance of mitochondrial genes,
in conjunction with the inheritance of nuclear genes that spe-
cifically influence baseline mitochondrial function and dura-
bility, could have a profound impact on whether and when an
aging individual develops AD.

Somatic mtDNA mutations have also been shown to ac-
cumulate in both the aging and AD brain (53, 54, 158). These
mutations appear to influence mitochondrial function (158).

FIG. 6. Bioenergetic failure
occurs when mitochondrial
function declines below a
functional threshold. (A) If
mitochochondrial durability
and functional decline rates
are equivalent, the time re-
quired to fall below the dis-
ease threshold is determined
by the baseline level of mito-
chondrial function. (B) Given
equivalent baseline levels of
mitochondrial function, more
durable mitochondria with
slower rates of age-related
decline will remain above the
disease threshold longer than
less durable mitochondria
with accelerated rates of age-
related decline.

FIG. 7. The sporadic Alzheimer’s dis-
ease mitochondrial cascade hypothesis.
The mitochondrial cascade hypothesis
postulates inheritance determines an in-
dividual’s baseline mitochondrial func-
tion and durability. Both parents
influence these parameters, but because
mtDNA is maternally inherited, mothers
have a bigger impact. The functional
baseline determines the reserve bioener-
getic capacity, while durability deter-
mines the rate at which an age-related
decline in mitochondrial physiology oc-
curs. When a functional threshold is
reached, AD-associated histology changes
such as Ab deposition, tangle formation,
and synaptic degradation follow. In the
mitochondrial cascade hypothesis, Ab
oligomers, which have been shown to
interfere with mitochondrial function in

AD models, may contribute to the cascade but do not initiate it. This distinguishes the mitochondrial cascade hypothesis from
the amyloid cascade hypothesis, which proposes Ab oligomerization constitutes the most upstream event and initiates a
neurodegenerative cascade.
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The burden of somatic mutation required to affect function is
not entirely clear and may depend on multiple factors, such as
the type of mutations accumulated, their location on the mi-
tochondrial genome, and the functional baseline upon which
they are superimposed (Fig. 6). An important possibility to
consider further is that an mtDNA molecule’s primary se-
quence may actually influence the rate at which somatic
changes accumulate (117, 279).

When a threshold is reached and biochemical consequences
manifest, various AD histology and molecular phenomena, as
well as clinical signs and symptoms, would result. This ra-
tionale constitutes the core assumptions of the mitochondrial
cascade hypothesis (Fig. 7), a bioenergetics-centric scheme
that places mitochondrial dysfunction at the apex of the AD
pathology pyramid. The mitochondrial cascade hypothesis is
reviewed in detail elsewhere (258, 260–262). It is important to
note other authors have also speculated mitochondrial and
bioenergetic dysfunction may represent the primary cause of
AD (11, 21, 22, 38, 63, 120, 121, 166, 182, 201, 203, 225, 285).

Conclusion

Because the literature supporting a role for mitochondrial
and bioenergetic dysfunction in AD has become so extensive,
many relevant studies could not be discussed. For instance,
mitochondrial uncoupling induces tau-paired helical filament
formation (19), in mice ETC inhibition and fasting robustly
induce neuron tau phosphorylation (84, 116, 265, 297), and
mitochondria may mediate Ab–tau relationships (238, 239).
Apologies are offered to those whose valuable contributions
to this field were not cited.

Data from AD cybrids, which effectively model numerous
AD phenomena, suggest mtDNA may at least partly account
for reduced COX activity and other biochemical changes in
nonbrain tissues. An mtDNA contribution is also compatible
with the growing number of AD epidemiology, association,
endophenotype, and gene analysis studies that implicate a
mitochondrial and possibly even mtDNA role in this disease.
In an attempt to synthesize these data, and to also acknowl-
edge the central role aging plays in late-onset, sporadic AD,
the mitochondrial cascade hypothesis was proposed. The
mitochondrial cascade hypothesis postulates mitochondrial
dysfunction represents the most upstream pathology in AD.
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Abbreviations Used

Ab¼ beta-amyloid
ABAD¼Ab-binding alcohol dehydrogenase

AD¼Alzheimer’s disease
AOE¼ antioxidant enzymes

APOE¼ apolipoprotein E
APP¼ amyloid precursor protein

BACE¼ beta secretase
CMRglu¼ cerebral metabolic rate of glucose
Cybrid¼ cytoplasmic hybrid

CSF¼ cerebrospinal fluid
COX¼ cytochrome oxidase
DAG¼diacylglycerol
ETC¼ electron transport chain
FAD¼ familial Alzheimer’s disease
FDG¼fluorodeoxyglucose
HNE¼hydroxynonenol

IP3¼ inositol triphosphate
MAPK¼mitogen activated protein kinase

mtDNA¼mitochondrial DNA
NGF¼nerve growth factor
PET¼positron emission tomography

PI¼phosphoinositide
PIB¼Pittsburgh compound B

PKC¼protein kinase C
PLC¼phospholipase C

PMA¼phorbol 12-myristate 13-acetate
ROS¼ reactive oxygen species
SNP¼ single nucleotide polymorphism

TBARS¼ thiobarbituric acid reactive substances
TFAM¼ transcription factor A of the mitochondria

TOMM40¼ translocase of the outer mitochondrial
membrane 40kDa subunit homolog

UTR¼untranslated region
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