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Abstract

In metazoans, the mechanism by which DNA is synthesized during homologous recombination repair of double-strand
breaks is poorly understood. Specifically, the identities of the polymerase(s) that carry out repair synthesis and how they are
recruited to repair sites are unclear. Here, we have investigated the roles of several different polymerases during
homologous recombination repair in Drosophila melanogaster. Using a gap repair assay, we found that homologous
recombination is impaired in Drosophila lacking DNA polymerase zeta and, to a lesser extent, polymerase eta. In addition,
the Pol32 protein, part of the polymerase delta complex, is needed for repair requiring extensive synthesis. Loss of Rev1,
which interacts with multiple translesion polymerases, results in increased synthesis during gap repair. Together, our
findings support a model in which translesion polymerases and the polymerase delta complex compete during homologous
recombination repair. In addition, they establish Rev1 as a crucial factor that regulates the extent of repair synthesis.
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Introduction

DNA double-strand breaks (DSBs) pose a serious threat to cell

viability and genome integrity. DSBs can be repaired either by

non-homologous end joining, in which the DSB ends are

processed and directly ligated, potentially leading to loss of

information and mutagenesis (reviewed in [1]), or by a group of

repair mechanisms collectively known as homologous recombina-

tion (HR). During HR, DNA sequence that is lost due to the

original damage event or during subsequent processing is

recovered through invasion of a nearby template and copying of

this sequence into the break site. Because HR makes use of an

intact, homologous template, it is generally considered to be a

conservative process. However, several studies have shown that

HR repair can also be mutagenic, resulting in an increased

mutation frequency both at the original break site [2] and at

nearby sequences [3].

The initial events of HR involve the creation of single-stranded

39 DNA ends, which are then coated with the Rad51 protein to

form a nucleoprotein filament that conducts a genome-wide

homology search (reviewed in [4]). Upon identification of a

homologous template, a displacement loop (D-loop) is formed in

which the duplex template is unwound and the invading broken

strand pairs with its complement. This D-loop extends and/or

migrates as repair synthesis continues. In one model of HR,

termed synthesis-dependent strand annealing, the invading strand

dissociates and anneals to single-stranded DNA on the broken

duplex [5]. Single-stranded gaps are then filled in and the broken

ends are ligated to complete repair.

Two general types of polymerases are potentially available for

DNA synthesis during HR repair. Replicative polymerases are

highly processive and replicate the bulk of DNA during S phase

(reviewed in [6]). In contrast, translesion synthesis (TLS)

polymerases are specialized for replication of damaged or

abnormal templates (reviewed in [7,8,9]). Previous studies have

provided conflicting results with regard to whether replicative or

translesion DNA polymerases are predominantly used during HR

repair synthesis.

In the budding yeast Saccharomyces cerevisiae, the catalytic subunits

of the replicative polymerases (pol) delta and epsilon play

important roles in repair synthesis during HR [2,10,11,12].

Recently, purified pol delta from budding yeast was shown to

efficiently extend D-loops in the presence of the polymerase clamp

PCNA [13], confirming the in vivo findings. In addition, a non-

essential subunit of pol delta, Pol32, is required for break-induced

replication, a form of HR that requires extensive DNA synthesis

[14].

TLS polymerases have also been implicated in HR repair. In

chicken DT40 B lymphocytes, the absence of polymerases eta and

zeta results in reduced gene conversion during antibody

diversification and increased chromosomal abnormalities, respec-

tively [15,16]. Furthermore, in vitro studies using purified human

proteins have identified a potential function for polymerase eta in

extending D-loop intermediates [17,18]. In budding yeast, TLS
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polymerases are not required for HR repair but localize at regions

near DSBs [19] and contribute to mutagenesis near sites of DSBs

[3,20].

Thus, evidence from a variety of systems suggests that both

replicative and error-prone TLS polymerases may be utilized

during DSB repair. However, the roles of specific polymerases

used during HR and how they are coordinated remains poorly

defined. In this study, we present evidence that multiple TLS

polymerases can function during the initial synthesis stage of HR

repair and that they compete with polymerase delta during repair

of a double-strand gap in Drosophila. Furthermore, we show that

Rev1 may act to coordinate the initial recruitment of TLS

polymerases, thereby preventing replicative polymerases from

acting during early repair synthesis.

Results

Pol32 promotes extensive DNA synthesis during HR
repair

We began by testing whether DNA polymerase delta is involved

in HR. Currently, no fly stocks with viable mutations in the

essential subunits of DNA polymerase delta exist. A putative

Drosophila ortholog of Pol32, encoded by CG3975, has been

previously identified. Drosophila Pol32 possesses conserved PCNA

and polymerase alpha interacting motifs (Figure S1) [21]. We

created multiple CG3975 deletion alleles via imprecise excision of a

P element located in the 39 untranslated region of CG3975 and

performed a rigorous characterization of a potential null allele, L2,

which eliminates almost the entire open reading frame (Figure 1A).

We exposed CG3975L2 mutant larvae to increasing concentra-

tions of various DNA damaging agents, and quantified the ability

of these larvae to survive to adulthood, relative to untreated

Author Summary

DNA polymerases are required during both DNA replica-
tion and various types of DNA repair. DNA double-strand
breaks are frequently repaired by homologous recombi-
nation, a conservative process in which DNA is copied into
the break site from a similar template. The specific
polymerases that operate during homologous recombina-
tion repair of DNA double-strand breaks have not been
fully characterized in multicellular organisms. In this study,
we created mutant strains of Drosophila lacking one or
more DNA polymerases and determined their ability to
synthesize large amounts of DNA during homologous
recombination. We found that the error-prone translesion
polymerases eta and zeta play overlapping roles during
the initiation of synthesis, while the Pol32 subunit of the
replicative polymerase delta complex is required for repair
involving large amounts of synthesis. In addition, we
showed that flies lacking the Rev1 translesion polymerase
synthesize more DNA during gap repair than their normal
counterparts. Our results demonstrate that both replicative
and translesion polymerases are involved in homologous
recombination and identify Rev1 as a protein that may
regulate the access of various polymerases to double-
strand break repair intermediates.

Figure 1. pol32 mutants are sensitive to multiple DNA damaging agents. (A) A null allele (L2) of POL32 (CG3975) was created through
imprecise excision of a P element (EY15283) located in the 39 untranslated region (UTR) of the POL32 gene. White box indicates the POL32 open
reading frame; shaded regions, the UTRs; numbers indicate nucleotide position from start of transcription. (B) pol32 mutants are sensitive to ionizing
radiation (IR). Percent survival was calculated as the percentage of homozygote eclosion relative to an untreated control. (C) pol32 mutants are
sensitive to methyl methanesulfanate (MMS) and nitrogen mustard (HN2), but not camptothecin (CPT). Error bars represent the standard deviation for
at least three trials.
doi:10.1371/journal.pgen.1002659.g001

Multiple Polymerases Act in HR Repair
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controls. The mutants were extremely sensitive to methyl

methanesulfonate (MMS), nitrogen mustard, and ionizing radia-

tion and mildly sensitive to hydroxyurea, but were not sensitive to

camptothecin (Figure 1B, 1C and data not shown). The MMS

sensitivity resembles that observed in pol32 mutant yeast [22]. In

addition, CG3975L2 mutants are unable to replicate their DNA

during early embryogenesis and are female sterile (Y. Rong, data

not shown). Together, the conserved domain structure, mutagen

sensitivity, and female sterility suggest that CG3975 is a functional

ortholog of Pol32. Thus, we will hereafter refer to CG3975 as

Pol32, acknowledging that additional studies are needed to

confirm this assertion.

Previously, we have shown that spn-A mutants, which lack the

Rad51 protein and are therefore unable to carry out the initial

strand invasion steps of HR, are unable to survive ionizing

radiation (IR) doses in excess of 750 rads [23]. Interestingly, spn-A

and pol32 mutants show similar survival defects following IR

exposure (Figure 1B), suggesting that Pol32 might play a critical

role in HR repair.

To further characterize the role of Pol32 in HR repair, we

utilized a site-specific DSB repair assay in which the mechanism of

repair can be inferred using an eye color reporter construct [24].

We chose this assay because it imposes a demand for large

amounts of repair synthesis and should therefore be extremely

sensitive to genetic changes that alter polymerase activity. In the

assay, dual DSBs are created on the same chromosome via

excision of an X chromosome-linked P{wa} element, generating a

14 kb gap (Figure 2A). The P{wa} element contains a white gene

driven by an Hsp70 promoter. Expression of white is decreased due

to a copia retrotransposon insertion into an intron of white; females

homozygous for the insertion have an apricot eye color. Following

excision of P{wa} in the male pre-meiotic germline, repair usually

Figure 2. pol32 mutants are impaired in DNA synthesis during HR repair. (A) The P{wa} site-specific repair assay. Expression of transposase in
males possessing P{wa} (i) results in a 14 kilobase gap (ii) relative to an uncut sister chromatid. Full HR requires synthesis of the white gene and copia
long terminal repeats (LTRs), followed by annealing at the LTRs (iii). Aborted HR results when end-joining repair occurs prior to synthesis of the entire
white gene. Amount of repair synthesis in aborted HR repair events can be estimated by PCR (iv). (B) pol32 mutants are significantly impaired in full
HR repair relative to wildtype. Wildtype n = 55; pol32 n = 120. Error bars represent standard errors. *P,0.05, Mann-Whitney test. (C) Repair synthesis is
decreased in pol32 mutants. Each bar represents the percentage of events with at least the indicated amount of synthesis. Right end: wildtype n = 55;
pol32 n = 151. Left end: wildtype n = 55 pol32 n = 66. *P,0.05, Fisher’s exact test.
doi:10.1371/journal.pgen.1002659.g002

Multiple Polymerases Act in HR Repair
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initiates through HR, utilizing an unbroken sister chromatid as a

template [24]. Repair products in males are recovered in female

progeny that also inherit an intact P{wa} element from their

mothers, and the frequency of three different types of repair events

can be quantified using eye color as a reporter for the type of repair:

(1) No excision of the P{wa} element or restoration of the intact

transposon results in the original apricot eye color; (2) Repair that

involves extensive synthesis (at least 4.5 kilobases from both ends,

9 kb total) and annealing at the long terminal repeats of copia allows

for full expression of the white gene and results in a red eye color

(hereafter referred to as ‘‘full HR’’); (3) Repair in which end joining

occurs immediately upon excision, or HR in which synthesis aborts

prematurely before fully copying the white gene results in yellow-

eyed flies (‘‘aborted HR’’). In the third case, the amount of repair

synthesis that occurred prior to end joining can be estimated by

PCR. Previously, we have found that end-joining repair without

synthesis is an extremely rare event in wild-type flies [24]. Failed

repair events in which HR aborts but end joining is not completed

will presumably be lost to apoptosis and not recovered.

Strikingly, the frequency of full HR repair decreased by

approximately 70% in pol32 mutants (Figure 2B). This could

reflect a requirement for Pol32 in annealing at the long terminal

repeats of copia or a role of Pol32 in primary HR synthesis.

Analysis of repair synthesis tract lengths supports the latter

interpretation. Repair synthesis from the aborted HR products

was shorter in pol32 mutants, particularly as measured from the left

end of P{wa}. The point where Pol32 becomes crucial appears as

early as 2.5 kilobases from the left end of the break (Figure 2C).

Overall, these results suggest that Drosophila Pol32 is important

for HR repair involving extensive DNA synthesis. As aborted HR

occurs at different distances on the left and right ends, we cannot

rule out the possibility that Pol32 is required both to enhance pol

delta processivity and also to promote synthesis through difficult to

replicate, sequence-specific regions.

Polymerases eta and zeta function in HR repair
We hypothesized that the residual repair synthesis that occurs in

the absence of Pol32 could result from the action of either the core

pol delta complex or from translesion polymerase activity. To test

the latter possibility, we used imprecise P element excision to

generate deletions in the coding regions of polymerase eta

(encoded by CG7143) and Rev3 (the catalytic subunit of

polymerase zeta, encoded by mus205) (Figure S2A). Larvae

possessing each of these mutations were tested for their ability to

survive exposure to various DNA damaging agents. Loss of pol eta

resulted in severe sensitivity to ultraviolet (UV) radiation, but not

to other mutagens (Figure 3A and Figure S2B). This likely reflects

a need for pol eta to bypass UV-induced lesions [25,26]. In

contrast, rev3 mutants were extremely sensitive to multiple

mutagens, including ionizing radiation, MMS, and nitrogen

mustard (Figure 3A and Figure S2B). As with the pol32 mutants,

the similar sensitivity of rev3 and spn-A mutants to ionizing

radiation suggests that polymerase zeta plays an important role in

HR repair.

Next, we utilized the P{wa} assay to determine if flies lacking

either pol eta or pol zeta were defective in HR repair of a site-

specific DSB. Flies lacking pol eta had a 45% decrease in full HR

repair relative to wildtype (Figure 3B, left), but the frequency of

aborted HR was unchanged. Full HR repair in rev3 mutants was

also decreased relative to wildtype by 50% (Figure 3B, right).

However, PCR analysis of aborted HR repair products revealed

no significant difference in the synthesis tract lengths between

repair events isolated from wildtype and pol eta or rev3 mutants

(Figure 3C). This was true for both the left and right ends of the

repair products (data not shown). This indicates that DNA

polymerases eta and zeta play a role in gap repair that is distinct

from that of Pol32, which appears most important in repair

contexts requiring multiple kilobases of synthesis. Because we

observed no difference between repair tract lengths of aborted HR

products for wildtype and pol eta or rev3 mutants, the roles of these

TLS polymerases may be limited to initiation of synthesis.

Additionally, their roles may be partially redundant. From these

data, we also could not rule out the possibility that the decrease in

full HR events in pol eta and rev3 mutants might be due to a defect

in gap filling after dissociation and annealing (and not primary HR

synthesis from the D-loop).

To determine if redundancy exists between TLS polymerases in

HR synthesis, we constructed pol eta rev3 double mutants. We

initially predicted that since each single mutant showed a

reduction in full HR events, the double mutant would display a

further reduction in HR repair. Surprisingly, we observed no

difference in the frequency of full HR repair for the pol eta rev3

mutant compared to wildtype (Figure 3D, left). Additionally,

repair tract lengths in aborted HR products from the double

mutant were substantially increased compared to wildtype

(Figure 3D, right). The increase in tract lengths suggests that pol

eta and pol zeta act redundantly and, in their absence, repair

synthesis is more extensive, increasing the chance of recovering full

HR events relative to both single mutants. In addition, the change

in synthesis tract lengths indicates that these two TLS polymerases

act during primary HR synthesis and that their role is not limited

to single-strand gap filling.

Loss of Rev1 increases HR repair synthesis
Pol eta and pol zeta could function independently during HR

synthesis, or they could be recruited to the site of the DSB by a

common mechanism. In mice and flies, translesion polymerase

Rev1 is known to interact with multiple translesion polymerases,

including polymerases eta and zeta [27,28], and these interactions

are conserved in budding yeast [29]. Rev1 is highly upregulated in

late S/G2 [30], which corresponds to the period of the cell cycle

when HR is most active and when breaks induced by excision of

the P{wa} element are being repaired. Rev1 has also been shown

to be required to recruit polymerase zeta to sites of DSBs in yeast

[19]. We therefore hypothesized that Rev1 might be acting to

coordinate the recruitment of both pol eta and pol zeta to initial

HR intermediates.

To test this, we obtained a rev1 mutant stock of flies with a Minos

transposable element inserted into the REV1 coding region (Figure

S3A). We were unable to detect any REV1 transcript by RT-PCR,

suggesting that the transposon insertion is a null mutant (Figure

S3B). The mutant also showed high sensitivity to ionizing

radiation, indicative of a role for Rev1 in HR repair (Figure

S3C). Interestingly, the rev1 mutant phenotype in the P{wa} assay

was qualitatively similar to that of the pol eta rev3 double mutant:

the percentage of full HR repair showed no difference relative to

wildtype, while the repair synthesis tract lengths increased over

that of wildtype (Figure 4A). However, the increase in tract lengths

in the rev1 mutants was not as high as that seen in pol eta rev3

double mutants (Figure 3D; P,0.05 at 3.5 and 4.3 kb, Fisher’s

exact test). Thus, although repair synthesis is more processive in its

absence, Rev1 does not appear to be absolutely required for the

coordination of both pol eta and pol zeta during HR repair.

Because rev3 and rev1 mutants are similarly sensitive to IR, we

predict that the major role of Rev1 is to recruit pol zeta to early

DSB repair intermediates.

Multiple Polymerases Act in HR Repair
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Figure 3. Flies lacking pol eta and the catalytic subunit of pol zeta are HR–deficient. (A) Flies lacking Rev3, but not pol eta, are sensitive to
nitrogen mustard (HN2) and ionizing radiation (IR). (B) Both pol eta and rev3 mutants have decreased full HR repair. Wildtype n = 43; pol eta n = 38;
rev3 n = 98. *P#0.05, Mann-Whitney test. Wildtype versus rev3 aborted HR repair, P = 0.062, Mann-Whitney test. (C) Repair synthesis is unchanged in
the absence of pol eta (n = 19) or Rev3 (n = 38). (D) Left panel: pol eta rev3 double mutants have no change in full HR, but a decrease in aborted HR
(n = 85). *P,0.05, Mann-Whitney test. Right panel: repair synthesis tract lengths are increased in pol eta rev3 mutants (n = 24). *P,0.05, Fisher’s exact
test.
doi:10.1371/journal.pgen.1002659.g003
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Translesion and replicative polymerases act
competitively during HR

Our results indicate that both TLS and replicative polymerases

are acting during HR repair of a double-strand gap. These

polymerases could compete for D-loop substrates, with the amount

of synthesis at any given point during HR dependent upon the

processivity of the polymerase synthesizing at that moment.

Alternatively, a mechanism for a coordinated polymerase switch

may exist, where HR synthesis initiates with a TLS polymerase

and later switches to a replicative polymerase. To explore these

two possibilities, we created a pol32 rev3 double mutant. Full HR

repair was reduced 70%, similar to pol32 single mutants, but repair

synthesis tract lengths were reduced dramatically in aborted HR

repair products compared to wildtype, with defects at distances as

short as 250 base pairs and virtually no synthesis observed at

distances $4.3 kilobases (Figure 4B). The synthesis defect was also

more severe than that of the pol32 single mutants (Figure 2C, right;

P,0.05 at 0.25, 2.5, 3.5, and 4.3 kb, Fisher’s exact test). This

synergistic effect is consistent with the idea that pol delta (with

Pol32) and pol zeta directly compete for HR intermediates. When

both polymerases are impaired or eliminated, repair synthesis is

greatly inhibited.

We reasoned that if the only function of Rev1 is to recruit

polymerase zeta to sites of HR repair, then the phenotype of pol32

rev3 and pol32 rev1 mutants should be identical. To test this

hypothesis, we performed the P{wa} assay in a pol32 rev1 mutant

background. Although full HR events were reduced by 60% in

pol32 rev1 mutants, repair synthesis tract lengths were increased

dramatically over wildtype (Figure 4C). Thus, in the absence of

both Pol32 and Rev1, initial synthesis appears to be more

processive, but long-distance synthesis is reduced. These observa-

tions are consistent with data shown in Figure 2C and Figure 4A.

Figure 4. Rev1 regulates extent of repair synthesis during HR. (A) Left panel: HR efficiency is unchanged in rev1 mutants (n = 104). Right
panel: repair synthesis is increased in rev1 mutants (n = 97). *P,0.05, Fisher’s exact test. (B) Left panel: flies lacking both Pol32 and Rev3 have
decreased full HR repair (n = 173). **P,0.01, Mann Whitney test. Right panel: aborted HR events have shorter synthesis tract lengths in pol32 rev3
mutants (n = 45). (C) Left panel: flies lacking both Pol32 and Rev1 have decreased full HR repair (n = 34). *P,0.05, Mann-Whitney test. Right panel:
aborted HR events from pol32 rev1 mutants (n = 45) have increased synthesis tract lengths compared to wildtype.
doi:10.1371/journal.pgen.1002659.g004

Multiple Polymerases Act in HR Repair
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In rev1 mutants, repair synthesis is initially more processive, and in

the absence of Pol32, repair synthesis is impaired at long distances.

This combined phenotype is most pronounced when examining

the repair tract lengths on the left end (Figure S4). However,

because the pol32 rev1 phenotype differs from that of the pol32 rev3

mutant, this suggests that Rev1 might have two functions in gap

repair: to recruit polymerase zeta and to exclude more processive

polymerases from acting during the initial stages of repair

synthesis.

Discussion

Taken together, our data suggest a model in which TLS

polymerases and replicative polymerases compete for access to D-

loop structures during initial HR repair synthesis (Figure 5). Based

on the increased repair tract lengths that we observed in the

absence of Rev1 (Figure 4A) and when both pol zeta and pol eta

were missing (Figure 3D), we hypothesize that Rev1 and other

translesion polymerases with low processivity are preferentially

recruited to D-loops soon after they are formed. These

polymerases may frequently dissociate, resulting in D-loop

disassembly. Once the D-loop dissociates, reinvasion, polymerase

binding, and extension can occur again, or repair can be

completed by end joining [23,31]. Increasing the frequency of

dissociation may also increase the probability of failed repair and

subsequent cell death.

In the absence of Rev1, a more processive polymerase (likely pol

delta) can gain access to the D-loop intermediates, resulting in

longer repair tract lengths. In cases when pol delta is loaded, Pol32

appears to be important for maintaining the processivity of the

delta complex (Figure 2C). This is consistent with in vitro

replication assays where Pol32 aids the processivity of pol delta

in budding yeast [32] and in vivo assays where Pol32 is important

for break-induced replication and gap repair [14,33].

In yeast, Rev1 levels greatly increase during S/G2 [30]. If a

similar upregulation occurs in Drosophila, this would increase the

probability that Rev1 would arrive first at a DSB. Rev1 could

directly bind to DSBs [34], or it could be recruited by an

interaction between its BRCT domain and phosphoproteins that

accumulate near the break site [19]. Drosophila Rev1 can interact

with both pol eta and with Rev7, the non-catalytic subunit of pol

zeta that forms a heterodimer with Rev3 [27]. Based on the

phenotypes of the rev3 and pol eta mutants (Figure 3A and 3B), we

postulate that pol zeta is the primary TLS polymerase recruited by

Rev1 at DSBs, but that pol eta can function in a backup capacity.

The preferential recruitment of non-processive TLS polymer-

ases during HR initiation provides an explanation for previous

findings that multiple strand invasions and rounds of synthesis

occur during double-strand gap repair [23] and could also explain

the template switching that occurs during the initial stages of

break-induced replication [35]. Notably, the use of TLS

polymerases as ‘‘first responders’’ might be particularly advanta-

geous in instances where extensive synthesis might be unfavorable

or energetically costly. As a corollary to this, large gaps that

require extensive synthesis may be particularly difficult to repair

by HR and may be ultimately repaired by end joining [36].

Two of the most significant findings from our study are: (1)

multiple polymerases can initiate HR synthesis, and (2) the access

of these polymerases to HR intermediates is likely regulated by

Rev1. In support of the first conclusion, loss of both Pol32 and

Rev3 results in extremely short synthesis tract lengths in aborted

HR repair products (Figure 4B), suggesting that these polymerases

act independently. Interestingly, a limited amount of repair

Figure 5. Model for polymerase action at a DSB. Multiple polymerases compete for access to D-loops. Following formation of a double-strand
gap, Rev1 binds at the break site(s), recruits pol zeta, and blocks access of other polymerases. Initial synthesis is carried out by pol zeta, which readily
dissociates. Repair can then be completed by end joining or another polymerase can bind and reinitiate synthesis. Binding of pol delta and its
processivity subunit Pol32 to the D-loop results in processive synthesis and promotes repair of large gaps. Other polymerases, including pol eta, can
act in backup roles. Elimination of Rev1 or multiple TLS polymerases increases the probability of pol delta recruitment leading to increased repair
synthesis.
doi:10.1371/journal.pgen.1002659.g005

Multiple Polymerases Act in HR Repair
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synthesis is still observed in pol32 rev3 mutants, suggesting that

other polymerases are able to compensate to a certain degree in

the absence of these subunits. The second conclusion arises from

the difference in repair synthesis tract lengths between aborted HR

repair products isolated from pol32 rev3 (very short repair tracts,

Figure 4B) and pol32 rev1 (long repair tracts, Figure 4C) mutants.

These results suggest that Rev1, even in the absence of pol zeta,

can prevent access of processive, replicative polymerases (such as

pol epsilon or the core pol delta complex) to HR intermediates.

This idea is further supported by the decreased percentage of

aborted HR repair events recovered from rev3 mutants (Figure 3B

and 3D). Perhaps in this mutant genotype, Rev1 also precludes

repair by non-homologous end joining, resulting in cell death and

a corresponding decrease in aborted HR repair.

Rev1 also interacts with Pol32 in budding yeast, and this binding

prevents the interaction of Rev1 with pol zeta through Rev7 [29].

However, our data do not suggest that the Rev1-Pol32 interaction is

being utilized to recruit the catalytic subunit of pol delta to sites of

DSBs. If this were the case, repair synthesis tract lengths in pol32 rev1

mutants should be equal to the pol32 single mutant. Instead, repair

tract lengths were increased in the double mutant (Figure 4A versus

Figure 4C), supporting the idea of direct competition between TLS

polymerases and pol delta, with Rev1 arriving first to either recruit

pol zeta or to preclude pol delta. It has been shown that Rev1 can

localize to sites of UV damage independently of pol zeta [37] and

we postulate this can also occur at DSBs.

Our finding that significant redundancy exists between different

polymerases in HR synthesis highlights an emerging theme in

DNA repair. In many eukaryotes, precedent exists for the

utilization of multiple DNA polymerases during various types of

DNA repair. For example, in DT40 cells, mutants lacking

polymerases eta, nu, and theta show reduced capacity for HR

repair during immunoglobulin gene conversion [38]. In mamma-

lian cells, polymerases delta, kappa, and epsilon all play active

roles during nucleotide excision repair [39] and repair of

interstrand crosslinks can involve a combination of six different

translesion polymerases, depending on the type of crosslink and

stage of the cell cycle (reviewed in [40]). Directly related to our

findings, recent experiments with human cells demonstrate that

knockdown of TLS polymerases zeta and Rev1 causes a .50%

reduction in gene conversion following I-SceI induction of a DSB

[41]. Here, we have shown that, for a double-strand gap, TLS

polymerases play a central role in the initiation of HR synthesis

and directly compete with replicative polymerases. Future studies

are needed to fully elucidate the mechanisms by which these

different polymerases are recruited to sites of HR repair and to

determine how polymerase choice is regulated.

Materials and Methods

Fly stocks and mutant creation
Flies were reared at 25uC on standard cornmeal agar medium.

Stocks possessing P element and Minos insertions were obtained

from Bloomington Stock Center or from the lab of Hugo Bellen.

In some instances, P elements were crossed to a D2–3 transposase

source in a mus309N1 mutant background to generate large

deletion mutations, as described in [42]. The mus309N1 mutation

was removed before further experimentation.

Mutagen sensitivity assays
For all tests, heterozygous mutants were mated in vials

containing 5 mL of food and allowed to lay eggs for three days

before being transferred to fresh vials for two additional days. One

group of vials was treated with 250 mL of mutagen solution, while

the other was treated with the same volume of vehicle control. For

ionizing radiation studies, embryos were collected on grape-juice

agar plates for 12 hours and allowed to develop to third instar

larvae, then irradiated in a Gammator 1000 irradiator. For all

other mutagens, progeny were treated as first instar larvae. Vehicle

control was H20 for all treatments except for camptothecin, in

which DMSO in a 20% Tween, EtOH solution was used. Percent

survival relative to control was calculated as the ratio of the

percentage of homozygotes that eclosed in the treatment group

relative to the expected number based on homozygote survival in

the control group. Each experiment consisted of at least five

independent vials, and error bars represent standard deviations of

at least three independent replicates.

Site-specific gap repair P{wa} assay
HR repair was monitored through the DSB created after

excision of a P{wa} element as described previously ([43] and see

text). A second chromosome transposase source (CyO, H{w+,D2–

3}) was used to excise P{wa} for rev1 and pol eta single mutants,

whereas all other experiments were performed with a third

chromosome transposase source (P{ry+, D2–3}). Matched wildtype

controls using the appropriate transposase source were done for

each experiment (the same representative control for each

respective transposase source is indicated throughout). Individual

males possessing both P{wa} and the transposase source were

mated to females homozygous for P{wa} and repair products were

recovered in female progeny. Each vial was counted as an

independent sample and statistical significance was calculated

using the Mann-Whitney statistical test. Genomic DNA from flies

possessing independent repair events was recovered [44] and PCR

was carried out to estimate the extent of repair synthesis (see Text

S1). Control tract lengths were obtained from excisions using the

third chromosome transposase source.

Supporting Information

Figure S1 ClustalW alignment of Pol32 in yeast, human and fly.

Pol32 was originally identified in Drosophila melanogaster by Gray et

al. (2004) based on its pol-alpha interacting domain (highlighted)

and PCNA-interacting motif (underlined). Only the first 14 amino

acids would be present in a theoretically expressed pol32L2.

(TIF)

Figure S2 Characterization of pol eta and pol zeta mutants. (A)

Mutants of pol eta and rev3 (mus205) were created through imprecise

excision of a P element (pol eta: EY07711; mus205: EY20083).

White box indicates open reading frame; shaded arrow, the

untranslated regions; numbers indicate nucleotide position from

start of transcription. (B) pol eta mutants are sensitive to ultraviolet

radiation (UV) and rev3 mutants are sensitive to methyl

methanesulfonate (MMS). Percent survival was calculated as

homozygote eclosion relative to an untreated control. Error bars

represent the standard deviations of at least three trials.

(TIF)

Figure S3 Characterization of a rev1 mutant. (A) Minos (Mi)

transposable element insertion (MB11152) in the REV1 coding

region. (B) The Minos insertion is a null allele. RT-PCR was

conducted using RNA isolated from MB11152 homozygous

stocks. rp49 (ribosomal protein) was used as a control. Primers

were designed to span an intron; PCR using genomic DNA

(gDNA) produces a larger PCR product. MW = molecular weight

marker. (C) Flies homozygous for the MB11152 insertion (rev1

mutants) are sensitive to ionizing radiation (IR).

(TIF)
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Figure S4 Left end repair synthesis in pol32 rev1 mutants.

Aborted HR events from pol32 rev1 mutants (n = 45) have an

intermediate phenotype relative to pol32 and rev1 single mutants.

Each bar represents the percentage of events with at least the

indicated amount of synthesis.

(TIF)

Text S1 Additional Methods. Expanded methods, including

primers used, for the P{wa} assay.

(DOC)
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