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In contrast to previous common wisdom that epidemic activity in heterogeneous networks is dominated by
the hubs with the largest number of connections, recent research has pointed out the role that the innermost,
dense core of the network plays in sustaining epidemic processes. Here we show that the mechanism
responsible of spreading depends on the nature of the process. Epidemics with a transient state are boosted
by the innermost core. Contrarily, epidemics allowing a steady state present a dual scenario, where either the
hub independently sustains activity and propagates it to the rest of the system, or, alternatively, the
innermost network core collectively turns into the active state, maintaining it globally. In uncorrelated
networks the former mechanism dominates if the degree distribution decays with an exponent larger than
5/2, and the latter otherwise. Topological correlations, rife in real networks, may perturb this picture,
mixing the role of both mechanisms.

T
he discernment of the mechanisms that contrive to activate spreading processes on heterogeneous substrates
is a pivotal issue, with practical applications ranging from the containment of epidemic outbreaks1 to the
viral spreading of rumors and beliefs2,3. The interest on the effects of heterogeneity has been brought about

by the observation that social contact networks (the natural substrate for most human epidemic processes) are
generally strongly heterogeneous4–6, observation that has led to the introduction of complex network theory in the
quantitative analysis of epidemic spreading7. In this context, the nature of the activation mechanisms translates
on simple epidemic models8 in setting the epidemic threshold lc for some rate of infection l (the spreading rate),
separating a phase in which the spreading affects a finite fraction of the population from a state in which only a
vanishingly small fraction is hit. The research effort is thus focused on a twofold objective: The identification of
the activation mechanisms as a function of the network topology, and the determination of the functional form of
the epidemic threshold.

For the sake of concreteness, we focus our discussion on the simplest models of disease spreading, namely the
susceptible-infected-susceptible (SIS) and the susceptible-infected-recovered (SIR) models, leading, respectively,
to a steady endemic state or to transient outbreaks affecting a given fraction of the population8 (see Methods). On
a network substrate—statistically described, at the simplest level, by its degree distribution P(q), defined as the
probability that a randomly chosen individual (vertex) is connected to q other individuals4—the application of a
heterogeneous mean-field (HMF) approach9 assuming no topological correlations10 and neglecting dynamical
correlations, yields epidemic thresholds inversely proportional to the second moment of the degree distribution,
Æq2æ11–13. Since most natural networks have a degree distribution scaling as4 P(q) ,q2c, Æq2æ takes the form, in the
continuous degree approximation, qh i*q3{c

max , where qmax is the maximum degree in the network5. The second
moment therefore diverges in the infinite network size limit (i.e. when qmax R ‘) for c # 3, leading to a vanishing
epidemic threshold, i.e. any disease can invade the system, whatever its infection rate14,15. For c . 3, on the other
hand, HMF predicts a finite threshold. This result has usually been interpreted in terms of the leading role of the
hubs (the vertices with largest degree in the network) as the elements sustaining the epidemic activity in
the network, whenever they have a sufficiently large degree to make the second moment Æq2æ diverge (i.e. when
c # 3)9.

More refined approaches than HMF, incorporating the effects of the quenched topological structure of the
network, but still neglecting dynamical correlations16–18, predict that the epidemic threshold for SIS is in general
set by the largest eigenvalueLN of the adjacency matrix, i.e. lE

c ~1=LN . This finding, combined with the scaling of
LN (computed by Chung et al. for a class of finite graphs with degrees distributed according to a power-law19),
LN*max

ffiffiffiffiffiffiffiffiffi
qmax
p

, q2h i= qh i
� �

, leads to a threshold20
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Equation (1) implies that the epidemic threshold vanishes in the
thermodynamic limit in power-law distributed networks for any
value of c, even larger than 3, as long as qmax is a growing function
of the network size N, in agreement with previous results for SIS21–23.
In this perspective, it would be the hub, or most connected vertex, the
main responsible of maintaining the epidemic activity and corre-
spondingly setting the threshold20.

The relevance of hubs has been however recently called into ques-
tion by Kitsak et al.24, who pointed out that in some real networks, the
most efficient spreaders are located at the innermost, dense core of
the network, as identified by means of a k-core decomposition25 (see
Methods and Figure 1). In this alternative view, it is thus the nucleus
of high k-core index which sustains epidemic activity, independently
of the degree of the vertices it is composed of.

Inspired by these results, here we analyze in detail the role of the
hub and of the core of the network for the onset of epidemic spread-
ing on complex topologies. By means of theoretical arguments and
extensive numerical simulations, we are able to show that the leading
mechanism governing the dynamics depends on the network fea-
tures, in particular on the strength of the degree heterogeneity, as
measured by the degree exponent c. The analysis of real networks
allows to determine additionally the critical role of degree correla-
tions in suppressing or enhancing the relevant mechanism. The find-
ings presented in this work represent an advancement in the
understanding of the underlying mechanisms that control the beha-
vior of epidemic processes on complex heterogeneous networks. By
identifying with precision the set of vertices ultimately responsible
for the epidemic activation, our results open the path for the for-
mulation of immunization strategies1,26 specifically tailored for each
particular network configuration considered. Moreover, our results
can find application in other, more general spreading processes, such
as rumor, behavior or information spreading in networks27,28, as well
as other dynamical processes ruled by the largest eigenvalue of the
adjacency matrix, such as synchronization phenomena29.

Results
Activation mechanisms for SIS in uncorrelated networks. In the
case of the SIS model the expression of the threshold lc for c . 5/2
can be understood by considering the largest hub and its neighbors as
a star network of size qmax 1 1. Such a system has, in isolation, a
threshold lstar

c ~1
� ffiffiffiffiffiffiffiffiffi

qmax
p

and is thus capable, all by itself and
independently of the degree of the rest of the vertices, to propagate
the infection to a finite fraction of the network, leading to a stable
endemic state whenever lwlstar

c
20. It is therefore the most connected

vertex which singlehandedly can keep the epidemic activity alive,
setting in this way the global threshold for activity in the system.
The change for c , 5/2 in equation (1) is however surprising and
hints towards the possibility of different activation mechanisms for
different c values, thus challenging the belief in the preponderant role
of hubs, which has become common wisdom in network science9.
The results of Kitsak et al. would fit in place, pointing towards a
preponderant role for the innermost core of the network. How-
ever, while the picture presented by Kitsak et al.24 is compelling for
the SIR model, the case of the SIS deserves a closer look.

In order to shed light on this issue, we have performed extensive
numerical simulations of the SIS process on synthetic uncorrelated
scale-free networks with degree distribution P(q) ,q2c, generated via
the uncorrelated configuration model (UCM)30 (see Supplementary
Information online for more details). We have computed the density
of infected vertices in the whole network, and the same density when
the dynamics takes place (in isolation) on the k-core of highest index
(maximum k-core) and on the star-graph centered around the hub of
the network, with degree qmax.

In Figure 2 we show the evolution of the recorded densities as a
function of time for different values of the spreading rate l, in net-
works with large and small degree exponents, namely c 5 2.75 and
c 5 2.1. Our results show a remarkable dependence on the degree
exponent: For large c, the onset of a global stationary state takes place
for the same values of l for which the star-graph centered around the
hub starts to be active, while the maximum k-core remains subcrit-
ical, with exponentially decaying activity. This behavior is a proof of
the leading role of the hub as the main activation mechanism for
large c. For small values of c, instead, the picture is opposite: For
values of l corresponding to a globally active network, the maximum
k-core is in an active state, while the star-graph centered around the
hub is inactive, indicating that now the maximum k-core is the
trigger activating the whole system. Two observations are in order:
The maximum k-core is the heart of the nucleus of most densely
connected vertices in the network but it does not sharply coincide
with it. Other nodes, belonging to k-cores of index slightly smaller,
are also densely connected. The transition in the whole network is
influenced also by these other nodes and therefore only approxi-
mately coincides with the transition of the maximum k-core. This
explains why in Fig. 2 the whole network is fully active for l 5 0.01,
while the maximum k-core is still around the transition. The second
observation is that in uncorrelated networks the hub usually belongs
to the maximum k-core. Yet the two activation mechanisms for
epidemics are clearly distinct. In one case (hub triggered activation)
the hub alone is able to sustain activity in the set of its neighbors and
then propagate it to the rest of the system. In the other (maximum k-
core triggered activation) the hub alone is not able to sustain activity:
Only the presence of all densely connected vertices in the k-core
allows them to collectively turn into the active state and propagate
to the rest of the system.

This change of behavior with the degree exponent, which we have
confirmed for different values of c above and below 5/2 (see
Supplementary Information Figure S1 online), can be made more
physically transparent by linking it analytically with the different
thresholds in equation (1). To do so, we estimate the threshold
associated to the active maximum k-core, whose index is denoted
as kS. The maximum k-core has a degree distribution which is

Figure 1 | Visual representation of the k-core decomposition of a small
network of size N 5 30 and maximum degree qmax 5 10. Blue vertices

belong to the k 5 1 shell and green vertices to the k 5 2 shell. The

maximum k-core, with kS 5 3, is composed by the red vertices. The hub

(vertex with largest degree) is represented as a square.

www.nature.com/scientificreports
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bounded and narrow, with minimum (kS), average, and maximum
degree scaling with size in the same way (see Supplementary
Information Figure S2 online). Hence its epidemic threshold is well
approximated by lK

c ~1= qh i*1=kS. On the other hand, in Ref.31 the
maximum k-core index kS was determined as a function of the net-
work topology, yielding for scale-free networks with 2 , c , 3

kS< c{2ð Þ 3{cð Þ 3{cð Þ= c{2ð Þqmax
qmin

qmax

� � c{2ð Þ
, ð2Þ

where qmin is the minimum degree. Introducing this result into the
formula for lK

c we obtain lK
c *qc{3

max . It is most noteworthy that the
scaling behavior of the maximum k-core threshold lK

c takes the exact
same form as the eigenvalue threshold for c , 5/2 in equation (1).
This observation provides a physical interpretation of the different
activation mechanisms and associated thresholds in uncorrelated
scale-free networks: When c , 5/2, the epidemic transition is collec-
tively triggered by the vertices in the innermost core and the thresh-
old is correspondingly given by lc*1

�
q2h i*qc{3

max , as in HMF
theory. On the other hand, for c . 5/2, the hub triggers the global
activity, and the threshold is given by lc^1

� ffiffiffiffiffiffiffiffiffi
qmax
p

. An additional
inspection of the numerical values of the different thresholds (see
Supplementary Information Table S1 online) shows that the thresh-
olds computed from the numerical estimation of the largest eigen-
value of the adjacency matrix are in very good agreement with the
predictions of Eq. (1), perfectly accounting for the results observed in
Figure 2.

The SIR model. We turn now our attention to the SIR model, which,
contrarily to the steady-state dynamics of the SIS model, exhibits
transient outbreaks characterized by the number of infected

individuals, totaling a finite fraction of the system only above the
epidemic threshold. Evidence that the hub plays no special role in SIR
dynamics comes from considering this process on a star network of
size qmax 1 1. For an epidemics starting from a randomly chosen
vertex, the average final density of infected nodes takes the form (see
Methods)

R~l2z
1z2l

qmax
: ð3Þ

Hence the threshold in a star network, defined by the value of l above
which R takes a given fixed finite value, is a constant independent of
qmax, in the limit of large qmax. The hub cannot therefore be the
ultimate trigger of global outbreaks in the SIR model, and this role
must instead be played by the maximum k-core for any value of c, in
accordance with Ref.24. Additional support for this view comes from
extending to the SIR case the maximum k-core threshold argument
presented for the SIS model. Approximating again the maximum k-
core as a narrowly distributed graph of average degree Æqæ , kS, a
threshold is obtained from MF theory of the form lSIR,K

c *1=kS.
Given the form of kS in equation (2), this threshold scales in the
large network limit in exactly the same form as the HMF pre-
diction, namely lSIR

c ~ kh i= k2h i{ kh i½ �32,33. The conclusion is that in
the SIR model it is always the maximum k-core which controls
epidemic spreading and sets the threshold to the HMF value. This
picture is substantiated in Figure 3, where we consider the SIR model
on UCM networks with different values of c, keeping track, as a
function of l, of the density of infected individuals in the global
network, in the maximum k-core and in the star-graph centered
around the hub. As we can see, the position of the transition to a
finite fraction of infected vertices is closely correlated in the whole

Figure 2 | Average density of infected vertices as a function of time, r(t), in the SIS model on uncorrelated scale-free networks generated by means of
the UCM algorithm. We consider networks with widely separated degree exponent and different size, namely c 5 2.75, N 5 33107 and c 5 2.1, N 5 106.

The different columns correspond to the average density computed when the dynamics runs over the whole network (left), only over the maximum k-core

of the network (center), and only over the largest hub (right), considered as an isolated star network. The different colors correspond to different values of

the spreading rate l. For small c 5 2.1 (bottom row), the onset of the global steady state is correlated with the active state of the epidemics on the

maximum k-core, while it corresponds to a subcritical state for the hub. This observation indicates that in this case the maximum k-core is responsible for

the overall activity in the network. For large c 5 2.75, on the other hand, the global active state is linked to an active hub and a subcritical maximum k-core,

signaling that it is the former mechanism the one keeping activity on a global scale.

www.nature.com/scientificreports
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network and the maximum k-core, while the behavior of the hub
conforms to the prediction of equation (3).

Effects of correlations. The scenario discussed so far applies to the
case of uncorrelated networks, where the probability that a random
edge is connected to a vertex of degree q is proportional to qP(q)5.
Real networks, however, present in most cases some level of degree
correlations10, as measured by the Pearson coefficient34 or by the
average degree of the nearest neighbors (ANN) of the vertices of
given degree, �qnn qð Þ35. In order to ascertain their effect on the
relevant epidemic mechanisms, we have considered the SIS process
on several instances of correlated real networks (see Methods): An
Internet map at the autonomous system (AS) level, the social
network of pretty-good-privacy (PGP), and the network of actors
co-starring in Hollywood movies (Movies). All these networks have a
degree distribution compatible with a power law, with an exponent
close to 2 (see Supplementary Information Figure S3 online) and a
range of degree correlations (see Supplementary Information Figure
S4 online). In this case, according to our arguments above and
neglecting correlations, one would expect the transitions to be
ruled by the corresponding maximum k-cores. This fact is
confirmed for the Movies and PGP networks, by the SIS
simulations presented in Figure 4, showing that the transition
occurs simultaneously for the maximum k-core and the whole
system, while the star-graph centered around the hub remains
inactive. In the case of the AS network, instead, the picture is
surprisingly the opposite, and it is apparently the hub the
responsible of the epidemic transition, see Figure 4. The situation
is still more complex when one considers other, larger AS maps (see
Supplementary Information). In fact, as it turns out from the analysis
of numerical simulations (see Supplementary Information Figure S5
online), the general situation in AS maps is that we can reach in the
network an active, infected state for values of l for which both the
hub and the maximum k-core are apparently subcritical. This
observation hints towards a mixing of activation mechanisms for
the particular case of AS networks. This discrepancy between the
AS and the other networks, confirmed by the inspection of the

values of the different thresholds (see Supplementary Information
Table S2 online) can be attributed to the presence of strong degree
correlations. Measuring them by means of the auxiliary ANN
function �qnn, we can observe that the AS network is strongly
correlated, with �qnn decaying as q20.5. Moreover, these correlations
are so strong that they do not wash away even after randomizing the
network, as they do in the PGP and Movies networks (see Sup-
plementary Information Figure S4 online). Strong disassortative
correlations reduce the interconnections of vertices of high-degree,
suppressing in this way the index kS of the maximum k-core and
reducing the number of vertices that compose it. This situation, i.e. a
very large hub coupled with a relatively small maximum k-core, leads
to a mixing of both mechanisms that does not allow to make explicit
prediction about the most relevant one. Similar or opposite effects
(i.e. strong assortativity enhancing the role of the maximum k-core)
can be found in networks generated by means of the Weber-Porto
algorithm36, a modification of the configuration model that generates
graphs with prescribed degree distribution and correlations of
tunable strength (see Supplementary Information Figure S6 and
Table S2 online).

Discussion
The rationalization of the different mechanisms that keep an epi-
demic process alive in a heterogeneous substrate turns out to be a
more complex issue than previously believed. In fact, two different
subsets of vertices (either the hub or the innermost core of the net-
work) can take the role of ‘‘super-spreaders’’ of the infection, depend-
ing on the nature of the epidemic process and on the topological
features of the underlying network. In processes with no steady state,
such as the SIR model, the innermost core is the main trigger activ-
ating infection and setting the value of the epidemic threshold. On
the contrary, in processes allowing an endemic steady-state, the
actual activation mechanism depends essentially on the degree of
heterogeneity of the network. This simple picture, valid for uncorre-
lated networks, can be however modified by the presence of strong
degree correlations, which can shift the weight towards one or the
other mechanism. These observations call for further theoretical

Figure 3 | Total density R of infected vertices, as a function of the spreading rate l, computed after an epidemic outbreak in the SIR model on
uncorrelated scale-free networks generated by means of the UCM algorithm. The degree exponents considered are c 5 2.25 (left) and c 5 2.75 (right),

with network sizes N 5 106. The line colors correspond to the SIR dynamics restricted to the maximum k-core (black), to the largest hub (green), and on

the whole network (red). The value of l after which a macroscopic fraction of the network becomes infected is correlated in the whole network and in the

maximum k-core, while the infection pattern on the hub conforms with the theoretical expression in equation (3). These results indicate the crucial role of

the maximum k-core in keeping the SIR activity on a large scale in networks, independently of the behavior of the hub.

www.nature.com/scientificreports
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research on epidemic processes on strongly correlated networks. On
the other hand, our results might find practical applications in the
implementation of optimized immunization strategies, which can be
designed to target the actual ‘‘super-spreaders’’ of a given contact
network. Moreover, our work could turn out to be relevant to other
types of spreading processes, such as information, behavior or rumor
spreading, and more in general, to dynamical processes whose beha-
vior and possible transitions are ruled by the value of the largest
eigenvalue of the adjacency matrix, such as, for example, synchron-
ization phenomena. Also, for these latter dynamics, our results call
for additional investigations on the existence and interplay of the
relevant activation mechanisms.

Methods
The SIS and SIR epidemic models. In the SIS model, individuals can be in one of two
states, either susceptible or infected. Susceptibles become infected by contact with
infected individuals, with a rate equal to the number of infected contacts times a given
spreading rate l. Infected individuals on the other hand become healthy again with a
rate m that can be taken arbitrarily equal to unity, thus setting the characteristic time
scale. This model allows thus individuals to contract the infection time and again,
making possible, in the infinite population limit, a sustained infected steady state
(endemic state). This occurs for values of l larger than the epidemic threshold lc,
while for l , lc the epidemics lasts only for a finite time and asymptotically all
individuals are healthy.

In the SIR model, on the other hand, individuals can be in one of three different
states: susceptible, infected and recovered (or removed). The dynamical rule for
susceptible individuals is the same as for SIS. With a rate m (again set to unity) infected
individuals change their state and recover. Recovered individuals are completely inert
and cannot become infected again. With this dynamics the system always reaches
asymptotically an absorbing state with only susceptible or removed individuals and
no infected ones. A threshold lc separates a regime where outbreaks reach a finite

fraction of the individuals (i.e. the final density of removed individuals is finite) from a
regime l , lc where only an infinitesimal fraction of individuals is hit.

The k-core decomposition. The k-core decomposition is an iterative procedure to
classify vertices of a network in layers of increasing density of connections. Starting
with the full graph one removes the vertices with only one connection (degree q 5 1).
This procedure is then repeated until only nodes with degree q $ 2 are left. The
removed nodes constitute the k 5 1-shell and those remaining are the k 5 2-core. At
the next step all vertices with degree q 5 2 removed, thus leaving the k 5 3-core. The
procedure is repeated iteratively. The maximum k-core (of index kS) is the set of
vertices such that one more iteration of the procedure removes all of them. Notice that
all vertices of the k-core of index k have degree larger than or equal to k. Figure 1
shows an example of the k-core decomposition performed on a small network of size
N 5 30 and largest degree qmax 5 10.

SIR model on a star-graph. Let us consider the SIR process on a star network of size
qmax 1 1. The process starts from a randomly infected vertex, and proceeds till all
infected vertices become eventually removed. We want to compute the average final
density of removed vertices at the end of an outbreak, which is given by R 5 r/(qmax 1

1), where r is the total number of removed vertices. Let us define r 5 1 1 r*, where r*
is the number of removed vertices from secondary infections. The outcome of the
process will depend on whether the initial infected site is the hub or a leaf (a vertex of
degree 1). If the infection starts in the hub, which will happen with probability ph 5 1/
(qmax 1 1), the average number of secondary infected vertices will be Ær*æh 5 lqmax.
On the contrary, the infection can start in a leaf with probability pl 5 qmax/(qmax 1 1).
In this case, the hub can become infected with probability l, and from there, spread
the infection to the remaining qmax 2 1 susceptible leaves. Therefore, in this case the
average number of secondary infections is Ær*æl 5 l[1 1 l(qmax 2 1)]. The average
total number of removed sites at the end of the spreading process will therefore be

rh i~1z r�h i~1zph r�h ihzpl r�h il~1z
lqmax

qmaxz1
z

qmax

qmaxz1
l 1zl qmax{1ð Þ½ �

~1z
lqmax

qmaxz1
2zl qmax{1ð Þ½ �^1z2lzl2qmax ,

Figure 4 | Average density of infected vertices as a function of time, r(t), for the SIS model on three instances of real correlated networks: The network
of actors co-starring in Hollywood movies (Movies), the social network of pretty-good-privacy (PGP), and an Internet map at the autonomous system
level (AS); see Methods for further details of the networks. As in Fig. 2, columns refer to the activity on the whole network (left) and restricted to the

maximum k-core (center) or the largest hub (right). Line colors indicate different values of the spreading rate considered in the networks. In the Movies

and PGP networks, the maximum k-core dominates the transition, as expected due to the small degree exponent of all three networks (c , 2).

Surprisingly, in the AS network it is the activation of the hub the dominant mechanism setting in the steady state. This different behavior must be

attributed to the very strong correlations present in the AS map (see main text).

www.nature.com/scientificreports
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where the last expression is valid in the limit of large qmax. From here it follows the
expression for the average final density of infected vertices, equation (3), valid also in
the limit of large qmax.

Quantitative features of the real networks considered. We consider in our analysis
the following three real networks datasets:

Internet map at the Autonomous System level (AS). Map of the Internet collected
at the Oregon route server. Vertices represent autonomous systems (aggregations of
Internet routers under the same administrative policy), while edges represent the
existence of border gateway protocol (BGP) peer connections between the corres-
ponding autonomous systems37.

Pretty-good-privacy network (PGP). Social network defined by the users of the
pretty-good-privacy (PGP) encryption algorithm for secure information exchange.
Vertices represent users of the PGP algorithm. An edge between two vertices indicates
that each user has signed the encryption key of the other38.

Actor collaboration network (Movies). Network of movie actor collaboration
obtained from the Internet Movie Database (IMDB). Each vertex represents a movie
actor. Two actors are joined by an edge if they have co-starred at least one movie39.

The relevant topological features of the different maps are summarized in Table 1.
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11. Boguñá, M., Pastor-Satorras, R. & Vespignani, A. Epidemic spreading in complex
networks with degree correlations. In Statistical Mechanics of Complex Networks,
Pastor-Satorras, R., Rubı́, J. M. & Dı́az-Guilera, A., editors, volume 625 of Lecture
Notes in Physics. Springer Verlag, Berlin (2003).

12. Lloyd, A. L. & May, R. M. How viruses spread among computers and people.
Science 292, 1316–1317 (2001).

13. Newman, M. E. J. Spread of epidemic disease on networks. Phys. Rev. E 66, 016128
(2002).

14. Pastor-Satorras, R. & Vespignani, A. Epidemic spreading in scale-free networks.
Phys. Rev. Lett. 86, 3200–3203 (2001).
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Table 1 | Topological features of the real network datasets consid-
ered. Network size N, average degree Æqæ, degree of the largest
hub qmax, and index of the maximum k-core, kS

N Æqæ qmax kS

Movies 81860 89.532 3789 359
PGP 10680 4.554 205 31
AS 11174 4.190 2389 17
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