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Population divergence with or without admixture: selecting
models using an ABC approach

VC Sousa1,2,5, MA Beaumont3, P Fernandes1, MM Coelho2 and L Chikhi1,4

Genetic data have been widely used to reconstruct the demographic history of populations, including the estimation of migration
rates, divergence times and relative admixture contribution from different populations. Recently, increasing interest has been
given to the ability of genetic data to distinguish alternative models. One of the issues that has plagued this kind of inference is
that ancestral shared polymorphism is often difficult to separate from admixture or gene flow. Here, we applied an approximate
Bayesian computation (ABC) approach to select the model that best fits microsatellite data among alternative splitting and
admixture models. We performed a simulation study and showed that with reasonably large data sets (20 loci) it is possible
to identify with a high level of accuracy the model that generated the data. This suggests that it is possible to distinguish
genetic patterns due to past admixture events from those due to shared polymorphism (population split without admixture).
We then apply this approach to microsatellite data from an endangered and endemic Iberian freshwater fish species, in which
a clustering analysis suggested that one of the populations could be admixed. In contrast, our results suggest that the observed
genetic patterns are better explained by a population split model without admixture.
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INTRODUCTION

The use of genetic data to reconstruct the demographic history of
populations is now well established (see, for example, Goldstein and
Chikhi, 2002; Hey and Machado, 2003). Many inferential methods
have been developed in the past 20 years that allow biologists to detect,
date or quantify population size changes (see, for example, Cornuet
and Luikart, 1996; Storz and Beaumont, 2002), and to estimate the
time at which different populations separated, migration rates (see, for
example, Nielsen and Wakeley, 2001) or the relative contribution of
parental populations in admixture models (see, for example, Chikhi
et al., 2001, 2002). In most studies published to date, a particular
demographic model is assumed and their aim is to determine the most
likely values for the parameters, say the splitting time, conditional
on observed genetic data (Beaumont et al., 2010). The underlying
methods are usually evaluated with simulated data first, but the final
objective is to apply them for the analysis of real data sets. One
important assumption of this approach is that the model chosen is a
reasonable approximation of the main demographic events that have
affected the populations under study (Chikhi et al., 2001; Hey and
Machado, 2003). This general approach has proven to be useful (see,
for example, Marjoram and Tavaré, 2006; Beaumont et al., 2010), but
recent advances in population genetics have now made it easier to
compare alternative models (Estoup et al., 2004; Johnson and Omland,
2004; Fagundes et al., 2007; Beaumont, 2008; Guillemaud et al., 2009).

One example where it is important to distinguish alternative
models is in the study of admixed populations. Among other genetic

signatures, admixed populations are expected to exhibit allele fre-
quencies that appear intermediate in relation with the putative
parental populations (Chikhi et al., 2001). This underlies many of
the model-based clustering algorithms that have become popular to
study and identify admixed populations (see, for example, Pritchard
et al., 2000; Corander et al., 2004). However, most of these clustering
methods do not model explicitly the demographic history, and these
patterns characterized by intermediate allele frequencies could
have arisen simply by drift or some other demographic scenario.
The question is thus whether observed data are better explained
by a past admixture event or an alternative scenario. Model-choice
methods are useful as they quantify the evidence of the data in favor of
different models.

Approximate Bayesian computation (ABC) methods (Beaumont
et al., 2002; Marjoram et al., 2003; Beaumont, 2010; Csilléry et al.,
2010) have seen major recent developments allowing inference of
demographic parameters under complex demographic models, invol-
ving several populations and up to two independent admixture events
in the case of admixture models (Excoffier et al., 2005; Cornuet et al.,
2008; Sousa et al., 2009; Bray et al., 2009b). Here we used the ability of
ABC methods to assess the relative probability of alternative demo-
graphic models (Estoup et al., 2004; Fagundes et al., 2007; Beaumont,
2008; Cornuet et al., 2008; Guillemaud et al., 2009).

Although several studies have used the ABC framework to compare
alternative demographic models, their performance remains poorly
understood. From a theoretical perspective, there has been recent
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debate about the reliability of ABC for model choice (Didelot et al.,
2011; Robert et al., 2011). The question hinges on the potential
sensitivity of the method to the choice of summary statistics. We
revisit this issue in the Discussion, but note that both these studies
stress the importance of performing simulation studies before analyz-
ing real data, in order to characterize ABC performance when
applying it to a particular set of models.

The study of Guillemaud et al. (2009), where ABC was used to
study invasive species and assess the relative probability of different
models of species introduction, was one of the first to perform an
extensive simulation study to assess the performance of ABC as a
model-choice method in population genetics. Their results suggested
that ABC may be a successful tool in comparing alternative models,
confirming previous results with limited simulation studies (Estoup
et al., 2004; Fagundes et al., 2007; Beaumont, 2008).

In the present study we apply an ABC approach to select the model
that best fits microsatellite data among a set of alternative splitting and
admixture models. We show that with reasonably large data sets it is
possible to determine with high probability the model that most likely
produced the data. We then apply this approach to data from an
endangered fish species, in which a clustering analysis suggested that a
population could be admixed. Our approach suggests that the
apparent admixture is more likely the result of shared ancestral
polymorphism between differentiated populations. We therefore
show the importance of accounting explicitly for the demographic
history of populations in the case of admixture models.

MATERIALS AND METHODS
Demographic models
Admixture occurs when two or more differentiated populations are brought

together into contact, creating hybrid or admixed populations. For instance,

admixture may occur during the colonization of already occupied areas and

after the domestication of plants and animals (for example, formation of new

breeds; Bray et al., 2009a). Also, these can be particularly common in freshwater

species, when changes in the drainage system of rivers allow for secondary

contact between divergent populations. Admixture events involving more than

two parental populations have been reported in humans (Wang et al., 2008)

and breeds (Bray et al., 2009a). Note that these situations may not be well

modeled by island models or isolation with migration models where an

ongoing gene flow between two or more diverging populations is assumed.

We thus considered two population split models and four admixture models

(Figure 1). Figure 1 shows models with either three or four populations. In all

models it is assumed that an ancestral population of size NA split at tsplit

generations ago into two, three or four populations, depending on the model,

with sizes Ni, i¼(1, 2, 3, H). Under the population split models, the popula-

tions remain isolated from each other after the split event and evolve

independently (with no gene flow; Figures 1a and d). The admixture models

can involve one or two admixture events, and either two or three parental

populations. Under the admixture models with one admixture event there is a

unique admixture event creating a hybrid population tadm1 generations ago

(Figures 1b and e). If there are two parental populations, called P1 and P2, they

will contribute genes to the hybrid population in proportions p1 and p2 such

that p1+p2¼1 (Figures 1b and c). If there is a third parental population P3,

contributing p3, then we will have p1+p2+p3¼1 (Figure 1e). In the models with

two admixture events, the first admixture event will take place tadm1 generations

ago and will only involve two parental populations, P1 and P2, such that

p1+p2¼1. The second admixture event is then assumed to occur tadm2

generations ago. In the model with two parental populations, P2 is assumed

to contribute again to the gene pool of the hybrid a proportion p3 such that

0pp3p1 (Figure 1c). In the model with three parental populations, it is the

third population P3 that is assumed to contribute p3 (Figure 1f). In the

admixture models, the admixed (or hybrid) population is assumed to have an

effective size NH. We note that in all models the loci are assumed to have the

same per locus mutation rate m and to evolve according to the stepwise

mutation model, as is usually assumed for microsatellites (see, for example,

Calabrese and Sainudiin, 2005).

ABC principles
The principle of ABC is to obtain the joint posterior distribution of parameters

using simulations under a demographic model of interest (Beaumont et al.,

2002; Marjoram et al., 2003; Beaumont, 2010; Csilléry et al., 2010). ABC

methods are very flexible as they can be applied to demographic models for

which there are no explicit likelihood functions (Marjoram and Tavaré, 2006).

Data sets are simulated with parameter values drawn from prior distributions.

The corresponding parameters are then accepted if the simulated data are

N

Figure 1 Admixture and population split models. (a) Population split model with three populations and without admixture. (b) Admixture model with two

parental populations and one admixture event. (c) Admixture model with two parental populations and two admixture events. (d) Population split model with

four populations and without admixture. (e) Admixture model with three parental populations and one admixture event. (f) Admixture model with three

parental populations and two admixture events. In all models, the populations are allowed to have different effective sizes Ni, (i¼1, 2, 3, H). The admixture

and split events occurred at tadm1, tadm2 and tsplit generations ago.
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similar to the vectors of observed data, according to a certain distance measure

d(.), and rejected otherwise. The values of the parameters y that generated the

closest data sets to the observed data are then taken as an approximation of the

posterior distribution P(y|d(Dsim,Dobs) od) where Dsim and Dobs are the

simulated and observed data, respectively, and d is an arbitrary tolerance

level. In most ABC methods, instead of using the observed data D directly

(allele or genotype frequencies) the data are summarized by a set of summary

statistics S, such as expected heterozygosity (He), number of alleles or FST.

Therefore, most ABC methods provide an approximate estimate of the poster-

ior P(y|d(Sobs,Ssim) od), where Sobs and Ssim represent the observed and

simulated summary statistics, respectively.

Model choice and ABC
As first suggested by Pritchard et al. (1999), it is possible to use ABC to

compute the posterior probability of a given demographic model among a set

of alternatives. Performing the ABC rejection algorithm, the posterior prob-

ability of a model is given by simply counting the proportion of corresponding

simulated statistics that lie within the tolerance region (defined by d(Sobs,Ssim)

od). Beaumont (2008) suggested an improvement on this simple approach by

using a weighted multinomial logit regression. The principle of the multinomial

regression is to obtain the relation between categorical variables Y¼1, 2,y

indicating different demographic models k and the corresponding accepted

summary statistics Ssim. By using a logit function, the regression describes the

dependence of the posterior probability of a given model pk as a function of the

accepted summary statistics (Fagundes et al., 2007; Beaumont, 2008; Cornuet

et al., 2008). Therefore, after performing the regression with the summary

statistics accepted in the rejection step it is possible to assess the posterior

probability of model k given the observed summary statistics P(Y¼k|S¼Sobs).

It is noteworthy that assuming equal prior probabilities for the alternative

models, the ratio of the posteriors obtained with the ABC approximates the

Bayes factor (Didelot et al., 2011), which is defined as the ratio of the marginal

likelihoods of data Dobs under models M1 and M2 (BF¼p(Dobs|M1)/p(Dobs|M2)).

For simplicity, all our model comparisons were performed by comparing two

models at a time (for example, no-admixture versus one-admixture event,

see below).

Summary statistics
The different models for which the ABC approach was performed were

compared using the following summary statistics, averaged over loci:

(1) expected heterozygosity (He) estimated following Nei (1978) for each

population and overall populations; (2) number of private alleles for each

population (pa); (3) number of alleles for each population (na); (4) micro-

satellite allele range for each population and overall populations (ar) and

(5) pairwise FST and overall populations FST, with the FST value computed as

(Htotal�Hlocal)/Htotal, where Hlocal is the mean He of the populations considered

and Htotal is computed by pooling together the different population samples.

Altogether, models with three and four parental populations were summarized

by 18 (4 He, 3 pa, 3 na, 4 ar and 4 FST) and 25 (5 He, 4 pa, 4 na, 5 ar and 7 FST)

summary statistics, respectively.

Simulation study
The performance of our ABC-based model-choice approach was assessed with

simulated data sets under known models. Data sets simulated under a

particular model were used as test data sets and two different models were

chosen (the true model and an alternative one) to determine whether the ABC

method was able to identify the true model as the most likely. We tested our

ABC approach under the following cases: (1) single admixture vs no admixture;

(2) two admixture events vs no admixture and (3) single admixture vs two

admixture events. This was done with three and four parental populations,

making a total of six pairwise comparisons. For each pair of models, we

analyzed 10 000 independent simulated test data sets generated for each of the

two alternative models, corresponding to 12 model comparisons and 120 000

data sets in total. The values of the parameters used to simulate these data sets

were sampled from the prior distributions. The aim was to explore the entire

parameter space rather than focusing on particular parameter values. Each data

set consisted of 25 diploid individuals sampled from each population and typed

at 20 independent microsatellite loci. For the models with two parental

populations, the effect of varying the number of loci was investigated

by repeating the analyses with 5 loci, hence making a total of 180 000 analyzed

data sets.

For each set of model pairs the ABC rejection step was performed simulating

106 data sets under each model, accepting the closest 25 000 simulations

(tolerance level¼0.0125). The regression step of Beaumont (2008) was per-

formed on these accepted simulations, and a point estimate for the probability

of a given model was obtained for each simulated test data set. We thus

obtained 10 000 such estimates for each model, for each set of model pair

comparison. These 10 000 values were used to produce the distribution of the

posterior probability of each model, allowing us to quantify whether a

particular model was correctly identified (Figure 2).

In addition, we performed a receiver operating characteristic (ROC) curve

analysis, assuming that the ABC model-choice procedure can be seen as a

classifier, as in Bazin et al. (2010). The method ranks the posterior probabilities

for one model, say the no-admixture model, from highest to lowest. For each of

these posterior probabilities we know whether or not the data actually came

from the no-admixture model. If we had set a posterior probability of 1.0 as

the threshold for deciding whether to classify the data as coming from the

no-admixture model, we would then have a proportion 0.0 of the simulated

no-admixture cases correctly classified (true positives), but also a proportion

0.0 of admixture cases incorrectly classified (false positives). We would plot this

as a point on the lower left corner of the ROC curve. On the other hand, if we

set 0.0 as the threshold, then we would have a proportion 1.0 of all the

no-admixture instances classified correctly (true positives) and a proportion 1.0

of all the admixture case incorrectly classified (false positives), and this would

be plotted as a point on the top right corner of the ROC curve. The ROC curve

is constructed by successively taking the posterior probabilities in the list from

highest to lowest and plotting the proportion of no-admixture cases that are

correctly classified (true positives) and the proportion of admixture cases

that are incorrectly classified (false positives). The ideal case occurs when all the

no-admixture cases occur first in the list, followed by all the admixture cases,

in which case the area under the ROC curve (AUC) would be 1. A random

classifier would fluctuate around the diagonal and have an AUC of 0.5.

The ROC curves in Figure 3 are based on 10 000 simulations, which is why

they are quite smooth. The sampling error is very small (of the order of the

line thickness), and error bars are omitted from the plots. The ROC

analysis was done using the method implemented in the ROCR R package

(Sing et al., 2005).

All the simulations performed here were done using a modified version of

the code developed for the program 2BAD, which allows simulating data under

different models of population split and admixture described here and perform

ABC (for details, see Bray et al. (2009b)). We also used 2BAD at the latest stages

of this study to test the consistency between the two codes and identify bugs.

The results between the two versions were identical and were used for the real

freshwater fish data.

Prior distributions
The prior probabilities of the two alternative models were set as 0.5, meaning

that a priori both models were equally likely to explain the data. For all models,

the effective sizes Ni, i¼(1, 2, 3, H) of all populations were taken from a

uniform U[103, 104], the mutation rates (per locus per generation) were

sampled from U[10�5, 10�3], and tsplit (in generations) from U[103, 104].

For the models with admixture, the times of admixture events (in generations)

were drawn from U[102, 103] for tadm1 and U[1, 102] for tadm2. In the case of

models with a single admixture event, tadm1 was assumed to be sampled from a

uniform U[1, 103]. The prior distributions for p1, p2 and p3 were sampled from

a uniform U[0, 1], such that the sum of all admixture contributions was one.

Iberochondrostoma lusitanicum data
The data consisted of 129 individuals sampled in three rivers (one from the

Samarra drainage, SM1 n¼43, and two from the Tejo drainage, TJ1 n¼48, and

TJ2 n¼40) and genotyped at five microsatellite loci (see details in Sousa et al.,

2008). I. lusitanicum (Cyprinidae) is a critically endangered freshwater fish

species only found in lower Tejo, Sado and other small drainages in Portugal.
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In a recent study we found that most populations were highly differentiated

from each other with medium to large pairwise FST between the three samples

analyzed here. The Weir and Cockerham (1984) estimates ranged from 0.22 to

0.41 and Nei (1978) pairwise GST ranged from 0.09 to 0.21. Moreover, by

performing a genetic clustering analysis using the STRUCTURE program

(Pritchard et al., 2000) we found that one population of the Tejo drainage

(TJ1) could potentially be the result of admixture between populations from

the Tejo (TJ2) and the Samarra (SM1) drainages. The estimates obtained

indicated an admixture contribution of 0.31 from SM1 and 0.69 from TJ2. The

STRUCTURE analysis suggested that the three samples could also correspond

to three independent clusters but this appeared less likely than the admixture

model with only two clusters. Given that STRUCTURE makes no explicit

assumptions regarding demographic history of the species analyzed, it was

unclear whether the genetic patterns found were due to an ancient admixture

event or simply due to the differentiation of populations without admixture,

that is, shared ancestral polymorphism. The same data sets were thus

re-analyzed using the ABC approach described here to assess the most likely

scenario: single admixture event versus population split without admixture.

We performed 106 simulations under each model with uniform prior distri-

butions. The priors were specified according to previous estimates obtained

with the MSVAR program (Storz and Beaumont, 2002). The results of this

analysis suggested a recent population decrease from an ancestral effective size

larger than 104 to current sizes of B10–100. We also allowed for both recent

and ancient admixture and population split events. The effect of the priors

used was tested repeating the analysis with two sets of priors. In the first,

the priors were U[10, 104] for N1, N2, NH and NA, U[5�10�5, 5�10�4]

for the mutation rate m, U[10, 5�104] for tsplit, U[10, 104] for tadm1 and U[0, 1]

for p1. In the second analysis, smaller effective sizes for current populations

and mutation rates were allowed, with the priors U[1, 103] for N1, N2 and NH,

U[1, 104] for NA, U[10�6, 10�4] for the mutation rate m, U[1, 105] for tsplit,

U[1, 103] for tadm1 and U[0, 1] for p1. In both cases, the same priors were

used for the population split model without admixture. In addition to the

point estimates of the posterior probability for each model obtained with the

regression, the 95% confidence intervals were computed following Cornuet

et al. (2008).

RESULTS

As shown in Figure 2, the method is able to identify the correct model
with high posterior probabilities in the case of single or two admixture
events versus population split without admixture (Figures 2a and b).
This can be seen by the fact that the posterior probabilities are close to
one when the no-admixture model is true, or close to zero when the
admixture model is true. In other words, for most simulated test data
sets we were able to determine with extremely high confidence
whether the data came from a pure split model or from a model
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Figure 2 Distribution of the posterior probabilities for the population split without admixture model (NO admixture; a, b, d, e), and for the two-event
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models. In (c) and (f), black lines correspond to data sets generated under the single-admixture models (single adm), and gray lines correspond to data sets

generated under the two-event admixture models (two adm). Solid lines correspond to the four-population models and dashed lines to the three-population

models. The simulated test data sets were simulated with parameters sampled from the priors of each model.
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with at least one admixture event. It also appears to be easier to
identify a two-admixture event against a split model as compared with
a single-admixture event (Figures 2a versus b). Another result shown
in this figure is that it is usually easier to separate splitting from
admixture models when there are three rather than four populations
involved (dashed versus solid lines). Also, we found that the separation
of admixture from no admixture is not symmetrical (black versus gray
lines). Indeed, it is easier to identify a sample generated by a
population split model (gray lines), than a sample generated under
an admixture model (black lines). This figure also shows that the
regression method of Beaumont (2008) greatly improved our ability
to identify the correct models (Figures 2d and e compared with
Figures 2a and b, respectively). After the use of the regression step,
there is still an asymmetry between admixture and no-admixture
models but it is much more limited. When we compared the
admixture models (Figures 2c and f) we found that the posteriors
are shifted toward the value of 0.5, suggesting that in most simulations
the data sets could not be clearly attributed to one admixture model or
the other. Thus, it indicates that it is difficult to separate models
involving one or two admixture events. This effect was more pro-
nounced in the model involving four populations (solid versus dashed
lines in Figures 2c and f).

The results obtained with the ROC analysis are shown in Figure 3.
Each plot corresponds to the comparison of two alternative models,
and the curves obtained with the rejection and regression steps are
shown. A good classifier is characterized by a true positive rate close to

one, and a false positive rate close to zero. This is reflected by a ROC
curve close to the upper left corner (Fawcett, 2006). Thus, our results
indicate that ABC performs well as a classifier to identify the model
that most likely generated the data, especially for the cases of
admixture versus no admixture (Figures 3a, b, d and e). The AUC
values ranged from 0.924 to 0.999 for the case of admixture versus
no admixture. Moreover, we found that with 20 loci the AUC was
higher than 0.993 when the regression step was applied. For the
comparison of single admixture versus two admixture events, the
AUC ranged from 0.726 to 0.860. Overall, these results are in
agreement with the distribution of the posterior probabilities shown
in Figure 2.

Tolerance, logit regression and the number of loci
Figure 4 shows the effect of the tolerance (that is, accepting data sets
that are increasingly closer to the simulated test data sets), of the
number of loci, and of the regression step on the ability to identify the
correct model. This is represented by the average posterior probability
(that is, the mean of the posterior distributions similar to those shown
in Figure 2). Figure 4a compares the population split model with no
admixture with a single-admixture model. This figure shows that
using the rejection method (dashed lines) the average accuracy of the
method increases when the tolerance decreases, as the posterior
probabilities tend to one (when the no admixture is true) and zero
(when there was admixture). When the logit regression is applied the
dependence on the tolerance is much weaker and good results can be
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Figure 3 ROC analysis of the ABC method for the different scenarios tested. The top panel shows the ROC curves for the comparison of alternative models

with three populations (a–c), and the bottom panel for models with four populations (d–f). The curves compare the results obtained with a pure ABC

rejection (dashed lines) and applying the logistic regression step (solid lines). For the three-population models, the curves obtained with 5 and 20 loci are

shown as gray and black lines, respectively. (a) Single admixture versus no admixture (two parental); (b) two admixture events versus no admixture (two

parental); (c) single admixture versus two admixture events (two parental); (d) single admixture versus no admixture (three parental); (e) two admixture versus

no admixture (three parental); (f) single admixture versus two admixture (two parental).
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obtained with larger tolerance levels, and hence with fewer simula-
tions. However, we note that even with small tolerance levels, the
regression step improves the results (solid versus dashed lines). We
also see that with 5 loci the average accuracy decreases in comparison
with the results obtained with 20 loci (open versus filled symbols), but
they still provide accurate estimates that are usually good enough to
identify the most likely model. Figure 4b shows similar results for the
comparisons between the splitting and two-admixture events. The
main difference with Figure 4a is that the identification of the correct
model is even better than in the single-admixture model, and provides
good results even with only five loci (average posterior probability
40.80). In Figure 4c, we also find the same trend for the comparison
between the two admixture models. However, the results are not as
good, with average probabilities o0.80 even with 20 loci, and using
the logistic regression and low tolerance levels.

Application to the critically endangered Iberian minnow
I. lusitanicum
As Figure 5 shows, our analysis indicates that, after the regression step,
the probability of the admixture model ranged from 0.10 to 0.40,
depending on the tolerance level and prior set. Thus, data favor the
population split model without admixture over a model with admix-
ture, independently of the priors used. However, the posterior
probabilities obtained for the higher tolerance level correspond to
Bayes factors in favor of no admixture of 0.73/0.27¼2.7 (first prior
set), or 0.77/0.23¼3.35 (second prior set), where 0.73 and 0.77 refer to
the posterior of the model without admixture, and 0.27 and 0.23 refer
to the posterior of the admixture model, for the two prior sets,
respectively. These Bayes factors values are low and, according to the
Jeffrey’s classification, are on the borderline between ‘barely worth a
mention’ and ‘substantial’ (see, for example, Didelot et al., 2011).
Moreover, we note that the results obtained have wide confidence
intervals with an upper limit that goes beyond 0.50 for some tolerance
levels. Hence, these results are not completely conclusive.

DISCUSSION

Disentangling admixture from ancestral polymorphism
In this study we examined the ability of ABC methods to infer the
relative probability of alternative models involving admixture events
and population splits. We performed a simulation study showing that
it is possible to identify the model that generated the data from a pair
of alternative population split or admixture models (Figure 1). In
particular, the accuracy of our approach to separate scenarios with
admixture events from scenarios with population split without
admixture was very high in the simulation study. We believe that it
is a significant result, as it suggests that populations that are thought
to be the result of admixture events can be identified as the result of
splitting events without admixture with high probabilities, and vice
versa. This suggests that it is possible to distinguish genetic patterns
due to past admixture events from those due to shared ancestral
polymorphism.

At the same time, our results showed that it is much more difficult
to provide conclusive posterior distributions when comparing pairs of
alternative models comprising one or two admixture events (Figure 2).
This is not very surprising as our comparisons were made across a
wide range of parameter combinations, and given that these two
scenarios can be seen as nested models. In particular, we used priors
for tadm1 and tadm2 such that the two times could be close from each
other. Also, our ability to determine that there had been a second
admixture event increased with the contribution of population P3.
Indeed, when p3 is low, a two-event admixture model is similar to a
single-event admixture. We also found that our ability to identify the
correct model was dependent on the time since the last admixture
event (tadm2) (Supplementary Figure 1). Finally, increasing the number
of loci was also shown to be crucial to separate single- and two-event
admixture models.

For all the pairs of models compared we found that the use of the
logistic regression provided better results than the rejection method,
significantly increasing the posterior probability of the correct model
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(Figure 2). We also found that applying the regression step decreased
the dependence on the tolerance level d (Figure 4). This limited
dependency on d was also found when using ABC algorithms to
estimate parameters within a single model (Beaumont et al., 2002;
Excoffier et al., 2005; Sousa et al., 2009; Wegmann et al., 2009). The
fact that the regression step decreases the dependence on the accep-
tance rate means that the number of simulations needed to separate
models can be significantly reduced without losing much power
(Figure 4).

Although our results were much better with 20 loci compared with
5 loci, the method was able to distinguish admixture from splitting

models even with 5 loci (Figures 4a and b). This result was surprising
as previous ABC methods developed to estimate admixture propor-
tions required relatively large numbers of loci to provide precise
estimates (Excoffier et al., 2005; Sousa et al., 2009). This indicates
that a limited number of loci may be enough to assess the relative
probability of alternative models, but that more loci are needed to
estimate with precision the parameters of the models, once the latter
have been identified. This should clearly be better investigated as this
depends on the models that are compared. For instance, the separation
of the two admixture models was not very good, even with 20 loci.
Also, when full-likelihood methods were used to estimate admixture
parameters for admixture models, it was found that good results could
be obtained with between 5 and 10 loci (Chikhi et al., 2001;
Choisy et al., 2004). At this stage, more work is needed to
determine the conditions under which small data sets can be
useful for model comparisons, and also when they are likely to be
misleading.

Another parameter that seemed to be important is the effective size
of the hybrid or admixed population (Supplementary Figure 2). When
its effective size is small, genetic drift will be very important and it will
become difficult to estimate the original contributions of the parental
populations and hence to determine whether the data were generated
with or without admixture. This is in agreement with the results found
in several studies (Chikhi et al., 2001; Wang, 2003; Choisy et al., 2004)
reporting that increasing drift since the admixture event increases the
uncertainty around the admixture estimates (see also Bray et al., 2009a
for an application to breeds). Also related with the amount of drift, we
found that the tadm and tsplit were also correlated with the ability to
distinguish models with admixture from models without admixture
(Supplementary Figure 2). Therefore, it is expected that population
bottlenecks and expansions that affect the hybrid population, and
hence its effective size, may influence the ability of this ABC method
to separate admixture from population split models (see below).

Application to I. lusitanicum
When we applied our model-choice approach to the I. lusitanicum
data we found that the most likely model was a population split
model. This is particularly interesting, as in our original study (Sousa
et al., 2008) the results obtained with the STRUCTURE program were
suggesting the existence of individuals with admixed genotypes in one
of the Tagus population (TJ1, Sousa et al., 2008). The STRUCTURE
result was very surprising based on the fact that the potential parental
populations are located in two different river drainages that do not
communicate and the fact that I. lusitanicum has very limited dispersal
ability. The conclusion of the Sousa et al. (2008) study was that this
admixture was either due to an ancient admixture event when the
rivers were connected, to ongoing migration between the populations
(perhaps through undocumented human-driven translocations) or
due to shared ancestral polymorphism. The current results suggest
that the latter is the most likely explanation. This was further
examined by analyzing data sets simulated under the population
split models with and without admixture with STRUCTURE. As
can be seen in Supplementary Figure 3, the STRUCTURE results
indicate admixture when data were actually simulated without admix-
ture, whereas the ABC model-choice approach identifies the correct
model. In fact, we note that STRUCTURE identifies admixed indivi-
duals in the parental populations, even though they cannot be
admixed in any of the models used. However, for the I. lusitanicum,
the estimates of the posterior probabilities obtained with the ABC
approach were not completely conclusive, and more loci would be
required to confirm them. Also, other factors not considered in the
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models may favor the no-admixture model, such as local selection and
demographic events such as bottlenecks. Thus, some of the model
assumptions may not hold for this specific data set. In particular,
variation of mutation rate among loci and demographic events such as
bottlenecks are not included in any of the alternative models. Given
that field observations (Alves and Coelho, 1994) and genetic data
(Sousa et al., 2008) indicated that I. lusitanicum populations suffered
recent declines, it is possible that none of the two alternative models is
a good enough approximation of the demographic history of this
species (see below). As a simple test we simulated data sets under a
two-phase mutation model, allowing for variation of the mutation
rate among loci and population bottlenecks. The analyses of these data
sets suggest that the ABC model choice is to some extent robust to
these deviations, and that our conclusion that there was no admixture
should hold for I. lusitanicum (Supplementary Figure 4).

Limitations
Although the model-choice approach used in this paper provides a
way to separate the effects of admixture from those of pure divergence
of populations, the interpretation of the results may be influenced by
the following caveats.

Specification of models. First, in all our comparisons, the data were
always generated under at least one of the two models compared.
Thus, when analyzing real data our method will tend to identify one
of the models as the most likely, even when none of the alternative
models fit the observed data. This could be the case with the
I. lusitanicum data analyzed here. One useful approach to assess the
fit of the data to the model is to compare the distances obtained with
data sets that fit the model (simulated data sets) with the distance
distribution obtained with real data (see, for example, Sousa et al.,
2009). When the real data distances are much greater than those of
the simulated data sets, it suggests that the model identified as the
most likely might not be appropriate, and other models should be
investigated. This principle is similar to the one used by Ratmann
et al. (2009) to perform model criticism. We applied this approach to
the
I. lusitanicum data by obtaining the distribution of distances between
the observed data and 10 000 data sets simulated according to the
no-admixture model, with parameter values sampled from the prior.
This distribution was then compared with 100 distributions obtained
for data sets simulated according to the no-admixture model, whose
distances were measured against the same 10 000 data sets used with
the observed data. We found that the observed data are within the set
of distributions obtained with simulated data sets (Figure 6a). We
repeated this procedure with the second set of priors used and, as
Figure 6b shows, the distribution of observed distances is very
different from the distances obtained with the model without
admixture using these new priors. Although this cannot be consid-
ered as a proof that the true model has been found, this is a strong
suggestion that the population split without admixture model of
Figure 6a captures important aspects of the I. lusitanicum demo-
graphic history. As a further analysis, we looked at the posterior
distributions for the demographic parameters. These have peaks
within the prior limits for all parameters except the ancestral
population size, which has a peak close to the upper limit (Supple-
mentary Figures 5 and 6), suggesting that the most likely parameter
values are within the prior limits.

Deviations from model assumptions. A second caveat is that the
current implementation of the method is based on a varied but still

limited set of demographic models and simplifying assumptions (Bray
et al., 2009b). For instance, the models assume that all loci evolve
according to the stepwise mutation model and have the same muta-
tion rate, which may be unrealistic for certain real data sets. Also, the
models do not take into account other demographic events such as
bottlenecks and expansions, which are likely to have occurred in many
species and which may influence our ability to separate scenarios. The
analysis of data sets generated under a two-phase mutation model,
with variation of the mutation rate among loci and including
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population bottlenecks, suggest that the ABC model-choice procedure
is robust, at least, to the deviations tested here. It would require a
further study to determine under which conditions the models
examined here are robust, and when increasing the complexity of
the models would be useful and necessary. It is noteworthy that, in
principle, the ABC model-choice framework allows the inclusion of
more complex microsatellite mutation models, such as the generalized
stepwise mutation model, which were shown to work well (Guille-
maud et al., 2009).

Prior distributions. The third caveat is related with the specification
of the prior distributions, which is a general problem in
Bayesian model choice. This is a critical point that has been recently
discussed and studied by Guillemaud et al. (2009). Different
models may appear as more or less likely depending on the range of
the parameter values and the weight given to different parameter
values specified by the priors. However, in most ABC algorithms
there is a tradeoff between the width of the priors and the number of
simulations needed to obtain a good approximation for the
posterior. Thus, the analysis should be repeated with different sets
of priors to assess its effect on the posterior. This is exemplified here,
as the data set from I. lusitanicum was analyzed under two
different prior sets. Both prior sets lead to posteriors that favored
the population split without admixture model (Figure 5).
However, when we performed the distance analysis (Figure 6) we
found that the range of parameters specified by one of the prior sets
did not fit the observed data. These results illustrate that more work is
required on this general issue of selection of priors in model-choice
approaches.

Choice of summary statistics. As mentioned earlier, Robert et al.
(2011) and Didelot et al. (2011) have noted that model choice under
ABC may be sensitive to the summary statistics (see also Grelaud et al.,
2009). Didelot et al. (2011) point out that for summary statistic S,
computed from data x, to be sufficient one needs the distribution of
the data conditioned on the summary statistic to be independent of
the parameters (p(x|S,y)¼p(x|S)). In the context of model choice, for
any S (sufficient or not)

pðxjMÞ ¼ Pðx; SjMÞ ¼ PðSjMÞPðxjS; MÞ

The Bayes factor is then

pðxjM1Þ
pðxjM2Þ

¼ PðSjM1ÞPðxjS;M1Þ
PðSjM2ÞPðxjS;M2Þ

Standard ABC model choice ignores the ratio P(x|S,M1)/P(x|S,M2),
and will therefore only be accurate if this is 1, that is, for a given
summary statistic S, the distribution of data sets consistent with it is
the same under both models (a similar treatment is in Robert et al.,
2011). Of course, there is no guarantee that this is the case, given that
for most cases the probabilities P(x|S,M1) and P(x|S,M2) are unknown,
and therefore one should be cautious. However, if one regards
Bayesian model choice as a classifying procedure, as implied in our
ROC analysis, then a purely pragmatic argument behind the use of
the ABC approach is that we can examine its performance, and
compare it with other classifiers (not necessarily Bayesian),
simply through simulation. Our results (and those of Guillemaud
et al., 2009; Beaumont, 2010; and Bazin et al., 2010) indicate that it
works quite reliably, at least for the models under consideration.
However, it may well be the case that our estimated Bayes factors are
not identical to those that would be obtained under a full-likelihood
analysis.

Other approaches to Bayesian model choice have been suggested. It
should be noted that the Bayesian Information Criterion (BIC)
is an asymptotic approximation to the Bayes factor (Robert, 2007).
Although convenient in simple cases where only maximum likelihood
estimates are available, there are a number of drawbacks to the use of
BIC (Robert, 2007). In particular, it requires unimodal distributions,
and the dependence on the priors for parameters within the models is
lost. Recently, an ABC model choice using the Deviance Information
Criterion has been suggested by François and Laval (2011), and
appears to work well. In addition, classification and calibration
methods in machine learning could be useful to predict the correct
model for real data. In that case, the training sets would comprise data
sets simulated under alternative models. Further work would be
necessary to understand whether such approaches would be reliable
using the full data sets or selecting a set of summary statistics as in the
ABC framework.

Conclusion
In conclusion, we believe that this study contributes to a better
understanding of the power of ABC methods as model-choice
procedures, which is crucial as ABC methods are starting to be widely
used in population genetics and other areas (Ratmann et al., 2009;
Bertorelle et al., 2010; Beaumont, 2010; Csilléry et al., 2010). We
focused on models with either one or two admixture events and with
up to four different populations. Our results suggest that it is possible
to separate the effect of admixture from that of shared polymorphism.
This is particularly important as admixture events are likely to have
occurred in many species after the last glaciations during the coloniza-
tion of new regions from several refugia or when populations
encountered habitats that were already occupied (see, for example,
Chikhi et al., 2002; Fraser and Bernatchez, 2005). Admixture is also
likely to have happened during the domestication of plants and
animals and is still an ongoing process between breeds (see, for
example, Bray et al., 2009a). Moreover, admixture has been invoked
in a number of genetic studies based on clustering methods. These
methods (Pritchard et al., 2000; Corander et al., 2004) are very useful
and have been very popular in the last decade to group individuals
according to their genotypes under relatively simple population
genetic models. However, the admixture parameter provided by
these methods is in most cases of difficult biological interpretation,
and currently it cannot discriminate shared polymorphism from
proper admixture, as we saw here for the I. lusitanicum data. The
main reason is that the demographic and evolutionary history of the
populations is not explicitly modeled. For instance, the fact that
populations may have different effective sizes is not taken into account
in clustering methods. More work is required to find the situations
where clustering and ABC methods are best applied. The former
appears to be more suited for cases of ongoing gene flow, and the
latter when ancient admixture and population split events have been
important and hence need to be explicitly modeled. Regarding the
detection of admixture events, some improvements are likely to come
from the information about linkage disequilibrium, as admixture is
known to generate linkage disequilibrium (Nordborg and Tavaré,
2002). The use of summary statistics based on the statistical associa-
tion of alleles at different loci may thus prove very useful to separate
scenarios with different numbers of admixture events, and perhaps to
separate admixture from gene flow models. We clearly look forward to
seeing these improvements in the next few years.
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