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Quantifying children’s aggregate (dietary and residential)
exposure and dose to permethrin: application and evaluation of
EPA’s probabilistic SHEDS-Multimedia model
Valerie Zartarian1, Jianping Xue1, Graham Glen2, Luther Smith2, Nicolle Tulve1 and Rogelio Tornero-Velez1

Reliable, evaluated human exposure and dose models are important for understanding the health risks from chemicals.
A case study focusing on permethrin was conducted because of this insecticide’s widespread use and potential health effects.
SHEDS-Multimedia was applied to estimate US population permethrin exposures for 3- to 5-year-old children from residential,
dietary, and combined exposure routes, using available dietary consumption data, food residue data, residential concentrations,
and exposure factors. Sensitivity and uncertainty analyses were conducted to identify key factors, pathways, and research
needs. Model evaluation was conducted using duplicate diet data and biomonitoring data from multiple field studies, and
comparison to other models. Key exposure variables were consumption of spinach, lettuce, and cabbage; surface-to-skin
transfer efficiency; hand mouthing frequency; fraction of hand mouthed; saliva removal efficiency; fraction of house treated;
and usage frequency. For children in households using residential permethrin, the non-dietary exposure route was most
important, and when all households were included, dietary exposure dominated. SHEDS-Multimedia model estimates compared
well to real-world measurements data; this exposure assessment tool can enhance human health risk assessments and inform
children’s health research. The case study provides insights into children’s aggregate exposures to permethrin and lays the
foundation for a future cumulative pyrethroid pesticides risk assessment.
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INTRODUCTION
Reliable, evaluated exposure models are important for improving
human health risk assessments. They can answer questions such
as: What is the population distribution of exposure, dose, and risk
for particular groups and lifestages? What are the time patterns
of exposure? What are key media, pathways, and factors to inform
how to effectively reduce exposures and address the greatest
uncertainties for assessing risk? Implementation of the Food
Quality Protection Act of 1996 (FQPA) necessitated developing
new methodologies to assess residential exposures as well as
refined dietary estimates. Although historically used ‘‘lower tier’’
modeling approaches may be appropriate for obtaining
conservatively high screening level estimates of exposure, dose,
and risk, higher tier models are needed for more realistic estimates
for which uncertainties can be quantified. Probabilistic models
have been recommended by the National Academy of Sciences1

and the EPA’s Council for Regulatory Environmental Models.2

The Stochastic Human Exposure and Dose Simulation model
for multimedia, multipathway chemicals (SHEDS-Multimedia) is a
model developed by EPA’s Office of Research and Development to
help address these needs.

SHEDS-Multimedia is a physically based probabilistic computer
model that can simulate aggregate or cumulative human
exposure and dose, via dietary and residential routes, to a variety
of environmental chemicals (http://www.epa.gov/heasd/products/

sheds_multimedia/sheds_mm.html). This model can be used to
predict ranges of exposure in a population; to identify critical
pathways, factors, and uncertainties; and to enhance dose model
estimates.3,4 The purpose of SHEDS-Multimedia is to improve the
understanding of aggregate and cumulative exposures over space
and time for enhanced human health risk assessments involving
chemicals such as pesticides, metals, and persistent bioaccumu-
lative toxicants. As it uses 2-stage Monte Carlo sampling, SHEDS-
Multimedia can quantify variability in population exposure and
dose estimates, and the uncertainty associated with different
percentiles. Another key feature of the model is the use of a time
series approach for simulating dietary and residential exposures,
accounting for variability within a day from separate eating
occasions and microactivities. The sequential diary-based
approach overcomes limitations of summing daily exposures
from individual pathways. Tracking sequential dermal hand and
body exposures, and linking hand-to-mouth ingestion time series
with dermal hand exposures, accounts for both replenishment
and removal processes (i.e., surface contact, hand mouthing, hand
washing, bathing, absorption into the skin). The newest version of
SHEDS-Multimedia (version 4) also includes several longitudinal
diary assembly methods, multiple chemical (as well as single
chemical) algorithms for conducting cumulative and aggregate
assessments, and a number of other unique or advanced features.
For example, the model permits correlation of randomly sampled
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inputs, simulates co-occurrence of chemical usage and application
scenarios, includes multiple methods for sensitivity and uncer-
tainty analyses, and is transparent and flexible for simulating
different exposure scenarios. SHEDS-Multimedia exposure profiles
can be linked to physiologically based pharmacokinetic (PBPK)
models for enhanced dose and risk quantification.

Current and earlier versions of SHEDS-Multimedia have been
used in EPA, academia, government, and industry for a variety of
regulatory and research purposes.5 -- 16 The most recent versions of
SHEDS-Multimedia (versions 3 and 4, respectively) were externally
peer reviewed by the EPA’s Office of Pesticide Programs (OPP)
Federal Insecticide, Fungicide, Rodenticide Act (FIFRA) Scientific
Advisory Panel (SAP).17,18 Evaluation has been conducted on the
separate dietary and residential modules, and the combined
results, with model-to-model comparisons and comparisons of
model estimates against available environmental and biomonitor-
ing data (http://www.epa.gov/heasd/products/sheds_multimedia/
files/SHEDS%20Model%20Evaluation.pdf).

This paper presents the application of SHEDS-Multimedia to an
aggregate permethrin case study for 3- to 5-year-old children,
including variability, sensitivity, and uncertainty analyses, along with
model evaluation results. SHEDS is comprised of both a residential
module (SHEDS-Residential version 4.0)3,19, and a dietary module
(SHEDS-Dietary version 1.0)6,20,21 linked by a methodology pre-
sented below. Permethrin, a synthetic pyrethroid insectide, was
selected for this model application because of (1) potential health
effects,22 -- 26 and (2) its widespread use, according to national
measurement surveys, exposure field studies, National Health and
Nutrition Examination Survey (NHANES) biomonitoring data, and
use/usage data.27 -- 35 It is the most commonly used pyrethroid
pesticide and the first pyrethroid being reviewed under FQPA.

METHODS
The SHEDS technical manuals describe in detail the model algorithms,
methodologies, and input and output capabilities.3,20 This case study
quantifies population aggregate exposures for 3- to 5-year-olds (one of the
EPA-recommended age groups)36 from both dietary ingestion and nine
residential application scenarios of permethrin.

Dietary Exposure Modeling
Model algorithms, key features, and earlier model evaluation efforts of the
SHEDS-Dietary module are presented in Xue et al.6 and Xue et al.20

The United States Department of Agriculture (USDA) Continuing Survey of
Food Intake by Individuals (CSFII) 1994 -- 1996 and 1998 consumption data
and the 1991 -- 2006 USDA Pesticide Data Program (PDP) cis- and
trans-permethrin residue database were used in the SHEDS-Dietary
module to identify permethrin residue concentration ranges, age-related
trends, and foods with higher permethrin residue concentrations. The
Diversity and Autocorrelation (D & A) method37 was used to construct
longitudinal food consumption diaries. This method creates a population
of longitudinal diaries that reproduce target values of the intra- and inter-
person variance ratio (diversity, D) and day-to-day autocorrelation (A) for a
key diary variable most relevant to exposure. Total caloric consumption
was used as the key variable, with D and A statistics set to 0.3 and 0.1,
respectively (based on longitudinal data from Lu et al.38 and Alex Lu,
personal communication).

Residential Exposure Modeling
The SHEDS Residential module is flexible and can be applied to a wide
range of chemical exposure scenarios. For this permethrin case study, nine
residential exposure scenarios were selected based on analyses of usage
information collected in the 2001 -- 2002 Residential Exposure Joint
Venture27 consumer pesticide product use survey provided to the EPA:
indoor crack and crevice (aerosol and liquid), indoor flying insect killer
(aerosol), indoor fogger (broadcast), lawn (granular --- push spreader and
liquid -- hand wand), pet treatment (liquid and spot-on), and vegetable

garden (dust, powder). In addition, all nine of these scenarios were
combined in a single simulation. To address the specific exposure scenario(s)
of interest, we used the input variables and data provided to the 2010 FIFRA
SAP (http://www.regulations.gov/#!documentDetail;D¼ EPA-HQ-OPP-2010-
0383-0015). These model input values are based on peer-reviewed
publications, OPP’s Residential Exposure Standard Operating Procedures,39

recommendations by OPP’s FIFRA SAP, EPA’s Exposure Factors Handbook
and Child-Specific Exposure Factors Handbook,40,41 and best Agency-
derived estimates (http://www.regulations.gov/#!documentDetail;D¼ EPA-
HQ-OPP-2010-0383-0015). To assemble 1 year longitudinal data, the D
(diversity) & A (autocorrelation) method37 was used with indoor awake time
as the key variable (D¼ 0.25, A¼ 0.4).42

Linkage of Dietary and Residential Exposure Modeling
The methodology used to combine the dietary and residential module
outputs (http://www.regulations.gov/#!documentDetail;D¼ EPA-HQ-OPP-
2010-0383-0023; slides 34 and 35) was externally peer reviewed18 and
tested in this permethrin case study. We used the D & A method,37 with
total caloric consumption as the key variable to extrapolate the cross-
sectional dietary exposure estimates into longitudinal food consumption
patterns, and used waking time at home to extrapolate the residential
cross-sectional activity patterns into longitudinal patterns. The dietary and
residential longitudinal diaries were first binned separately by age and
gender, and then matched by percentiles using additional binning
variables: total caloric consumption weighted by body weight for dietary
and averaged MET (metabolic equivalent of task is an energy expenditure
measure, i.e., the ratio of metabolic or energy consumption rate during a
specific physical activity to the reference metabolic rate at rest) weighted
by body weight for residential. An average of 50 -- 100 data points in each
bin was used as a criterion to select the key variables to ensure a large
enough sample size in each bin for randomization.

Model Application with Permethrin Case Study
The SHEDS residential and dietary modules were each applied to estimate
exposures for 3- to 5-year-olds, including both simulated use and non-use
homes (i.e., where permethrin was or was not applied). The built-in
pharmacokinetic (PK) model in SHEDS3 along with available absorption
rate data (fraction of administered dose) were used for the initial exposure
pathway contribution analysis. A sample size of B4000 individuals was
used for the 1-year variability simulations. Results are reported for an
annual averaging time and for separate and aggregated pathways.
Sensitivity and uncertainty analyses were conducted to identify key
factors, exposure pathways, and data gaps (Glen et al.3 chapters 5 and 6;
Xue et al.20 sections 2.6 and 2.7). Uncertainty analyses were conducted to
assess whether there were sufficient data for consumption and residue
data sources, and to assess which dataset was relatively more important
for exposure (assessing impact of residues vs consumption). We applied
statistical bootstrapping of certain percentages of both datasets with the
SHEDS-Dietary permethrin results.20

Two types of model evaluation were conducted for the permethrin
analysis. First, SHEDS-Dietary modeled exposure predictions were com-
pared against Children’s Total Exposure to Persistent Pesticides and Other
Persistent Organic Pollutants (CTEPP)30 Study duplicate diet data for
cis- and trans-permethrin (data were matched by age and gender, based
on 246 paired comparisons). Second, aggregate modeled SHEDS-PK dose
predictions were compared with NHANES biomonitoring data for the
urinary metabolites, cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclo-
propane-1-carboxylic acid (cis- and trans-DCCA), and 3-phenoxybenzoic
acid (3-PBA) (DCCA and 3-PBA are non-specific metabolites for a number of
pyrethroid pesticides). In addition, SHEDS was evaluated further against
measurements in Tulve et al.5 and Xue et al.6 The SHEDS Residential
module compared well against other probabilistic aggregate residential
exposure models in a model-to-model comparison using a simulated
pyrethroid chemical.43 Dose estimates obtained using SHEDS linked with
an aggregate permethrin PBPK model were compared against NHANES
DCCA data (http://www.epa.gov/heasd/products/sheds_multimedia/files/
SHEDS%20PBPK%20Permethrin%20Case%20Study.pdf).
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RESULTS
Permethrin Population Exposure and Pathway Contribution
Analyses
Table 1 shows summary statistics (in both mg/kg/day and mg/day)
for the total (aggregated across dietary and residential pathways)
annual averaged permethrin absorbed dose population estimates,
based on 3825 simulated individuals: 2.4E�4 mg/kg/day (mean),
8.0E�4 mg/kg/day (95th percentile) and 2.0E�3 mg/kg/day (99th
percentile). Analyses were conducted for the relative contribution
to total absorbed dose by each of the SHEDS exposure routes.
Table 1 and Figure 1 present the contribution to annual average
daily permethrin dose by exposure pathway for 3- to 5-year-old
children. The major exposure pathway for all 3- to 5-year-old
simulated children (i.e., including those residing in permethrin use
and non-use households) in the US population, based on means,
was dietary ingestion (50%), followed by non-dietary ingestion
(41%), inhalation (5%), and dermal (4%). For use households
(i.e., 3- to 5-year-old children living in homes treated with
permethrin). Figure 1 shows that non-dietary ingestion was the
key exposure pathway (61%), followed by dietary (26%), inhalation
(8%), and dermal (5%).

On the basis of the mean estimates, dietary and non-dietary
ingestion routes are comparable (50% vs 41%) considering all 3- to
5-year-old children (i.e., those residing in permethrin use and non-
use households). For permethrin use households, the non-dietary
route is predominant (61% vs 26%). At the 95th and 99th
percentiles, the non-dietary ingestion route is the predominant
route for all 3- to 5-year-old children (use and non-use house-
holds) and for the use households only (http://www.epa.gov/
heasd/products/sheds_multimedia/files/SHEDS%20Residential%
20Module.pdf; slides 39 and 40).

Evaluation of SHEDS Modeled Permethrin Exposure and Dose
Estimates
Table 2 shows that results of SHEDS-Dietary model results and
CTEPP measurements match well at the mean, 95th, and 99th
percentiles for both cis- and trans-permethrin. Model estimates are
much lower than measurements at lower percentiles. The ratio of
mean modeled to measured results is 1.09 and 1.01 for the
cis- and trans- congeners, respectively; the ratio of the 95th
percentile modeled to measured results is 1.06 and 0.99.

Table 1. Summary statistics of longitudinal averaged total permethrin absorbed dose by exposure pathways for 3- to 5-year-old children.

Pathway Unit n Mean SD p95 p99

Dietary mg/day 3825 2.07 1.57 5.15 8.17
Inhalation mg/day 3825 0.22 0.95 1.10 5.56
Non-dietary ingestion mg/day 3825 1.71 6.31 8.97 27.01
Dermal mg/day 3825 0.15 0.70 0.70 2.45
Total mg/day 3825 4.15 7.18 13.62 32.51
Dietary mg/kg/day 3825 1.2E�04 9.3E�05 3.0E�04 4.8E�04
Inhalation mg/kg/day 3825 1.3E�05 5.6E�05 6.5E�05 3.2E�04
Non-dietary ingestion mg/kg/day 3825 1.0E�04 3.8E�04 5.4E�04 1.5E�03
Dermal mg/kg/day 3825 9.0E�06 4.3E�05 4.2E�05 1.4E�04
Total mg/kg/day 3825 2.4E�04 4.3E�04 8.0E�04 2.0E�03

dermal
4%

use and non-use homes use homes

dietary
50%

inhalation
5%

non-dietary 
ingestion

41%

dietary
26%

inhalation
8%

non-dietary 
ingestion 61%

dermal
5%

Figure 1. Average contribution to total permethrin absorbed dose by pathway (3- to 5-year olds).

Table 2. Comparison of SHEDS dietary model using CSFII with CTEPP duplicate food study data for cis- and trans-permethrin (lg/kg/day).

Variable Mean SD p5 p25 p50 p75 p95 p99

SHEDS cis-permethrin 7.1E�02 6.9E�01 4.2E�07 2.7E�05 6.4E�04 8.3E�03 1.8E�01 1.3E+00
CTEPP cis-permethrin 6.5E�02 3.8E�01 4.2E�04 6.8E�04 1.3E�03 5.8E�03 1.7E�01 2.6E+00
SHEDS trans-permethrin 9.1E�02 9.0E�01 3.4E�07 3.0E�05 7.7E�04 9.6E�03 2.2E�01 1.7E+00
CTEPP trans-permethrin 8.9E�02 3.8E�01 1.0E�03 2.2E�03 4.8E�03 2.3E�02 2.2E�01 2.0E+00

Ratio of SHEDS estimates to measured data
cis-permethrin 1.09 0.50 1.44 1.06 0.51
trans-permethrin 1.01 0.16 0.42 0.99 0.85

Abbreviations: CSFII, Continuing Survey of Food Intake by Individuals; CTEPP, Children’s Total Exposure to Persistent Pesticides and Other Persistent Organic
Pollutants.
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Figure 2 compares SHEDS dose estimates, using the built-in PK
model, against NHANES 3-PBA biomarker data. The ratios of
modeled to measured estimates are 0.52, 0.23, 0.87, and 0.70 for
the mean, 75th, 95th, and 99th percentiles, respectively. Model
estimates are lower than measurements at less than approxi-
mately the 90th percentile.

Table 3 presents results of the SHEDS PK dose estimates against
the NHANES cis- and trans-DCCA biomarker data. The ratios of
modeled to measured estimates are 0.5 -- 0.6 for the mean and
upper percentiles.

Modeled Permethrin Exposure Sensitivity Analyses
The most important commodities contributing to dietary exposure
are spinach, lettuce, and cabbage based on total exposure across
the population. Around the 99th percentile, the same three
dominated, but lettuce is most important (http://www.regula
tions.gov/#!documentDetail;D¼ EPA-HQ-OPP-2010-0383-0022).

The key residential exposure variables (based on Sobol
sensitivity analysis; http://www.regulations.gov/#!document
Detail;D¼ EPA-HQ-OPP-2010-0383-0023; slide 42) for this perme-
thrin case study are: usage frequency for crack and crevice aerosol,
surface-to-skin transfer efficiency, usage frequency for crack and
crevice liquid, usage frequency for indoor fogger, and hand
mouthing frequency.

Modeled Permethrin Exposure Uncertainty Analyses
Figure 3a shows the uncertainty for three CDFs based on
bootstrap sampling of 50% of PDP cis-permethrin residues

and 20%, 50%, and 80% of the NHANES food consumption data
(we used the 99th percentile as an indicator). It presents
uncertainty results for daily dietary cis-permethrin exposure,
based on bootstrapping 100 times. The three lines represent
three sampling schemes: the blue line for 50% of residues and
20% consumption data; the pink line for 50% of residues and 50%
residue data; and the black line for 50% residues and 80%
consumption data. The CDF for the 50% of residues and 20% of
consumption data has the biggest uncertainty. The ratio of the
97.5th percentile to the 2.5th percentile (95% confidence interval)
is 15.07/4.63¼ 3.3, reflecting the 97.5th/2.5th percentile ratio for
an uncertainty run that used subsets: 50% cis-permethrin residue
by raw agricultural commodity, and 20% of NHANES dietary
consumption data for 3- to 5-year-old children. In the same way,

Figure 2. Comparison of 3-phenoxybenzoic acid (3-PBA) in urine
from National Health and Nutrition Examination Survey (NHANES)
and SHEDS from permethrin.

Table 3. Comparison of modeled SHEDS-PK estimates with NHANES biomarker data.

Variable Mean SD p50 p75 p95 p99 p100

NHANES cis-DCCA (mg/l) 0.34 556.69 0.00 0.21 1.03 5.11 222.69
NHANES trans-DCCA (mg/l) 0.89 1501.74 0.00 0.49 2.68 14.06 406.34
SHEDS cis-DCCA (mg/l) 0.16 184.87 0.00 0.04 0.64 3.01 125.18
SHEDS trans-DCCA (mg/l) 0.47 688.47 0.00 0.07 1.37 9.11 527.22

Ratio of SHEDS estimates to measured data
cis-DCCA ratio 0.49 0.19 0.62 0.59 0.56
trans-DCCA ratio 0.53 0.14 0.51 0.65 1.30

Abbreviations: cis- and trans-DCCA, cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid; NHANES, National Health and Nutrition
Examination Survey.
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we calculated similar ratios for other bootstrapping schemes to
evaluate the major factors contributing to the overall uncertainty
(Figure 3b). As the sampling rate of consumption data increases,
the ratio decreases until it reaches a plateau at about 60%, but
there is no apparent pattern for residue data. Therefore, these
uncertainty analyses show we have sufficient consumption data.
However, more research is needed on residue uncertainty
analyses. See Xue et al.20 section 2.7 for more details.

Residential exposure uncertainty analysis results show that the
97.5th and 2.5th percentiles of the 99th percentile total dose
permethrin profile are 119.5 and 17.2, respectively, with a ratio of
17 (http://www.regulations.gov/#!documentDetail;D¼ EPA-HQ-
OPP-2010-0383-0023; slide 43).18 The ratio of the 97.5th to 2.5th
percentile of the 95th percentile total dose profile is 6. The ratio of
the 97.5th to 2.5th percentile of the 75th percentile total dose
profile is 20. Thus, with current inputs, the 75th, 95th, and 99th
percentile uncertainty ratios are B20, 6, and 17, respectively
(from parameter uncertainty). See Glen et al.3 section 6.2, for more
details.

DISCUSSION
Real-world data are needed for model inputs and to evaluate
model estimates. For example, biological measurements, in
combination with other multimedia measurements and support-
ing information, may be used to estimate aggregate and
cumulative exposures and doses, and to compare model
predictions. Recent research efforts have collected critical data
on potential exposures of young children (o6 years of age) in
their homes and child care centers to the current-use pyrethroid
pesticides.30,33,34 Applying SHEDS to estimate urinary 3-PBA
concentrations resulted in a mean and 95th percentile of 0.8
and 3 mg/l; the estimated aggregate absorbed dose of permethrin
accounted for B50% of the urinary 3-PBA (Figure 2). These
modeled estimates compare well with measured results reported
from an observational pilot study of 127 young children in Ohio.30

The mean and 95th percentile for measured urinary 3-PBA
concentrations were 0.9 and 1.9 mg/l, respectively, and the authors
estimated that the aggregate absorbed doses of permethrin
accounted for about 60% of the excreted amounts of 3-PBA found
in the children’s urine.30 PBA is a common metabolite of several
pyrethroid compounds.

Using Tulve et al.34 multimedia measurement data as inputs to
SHEDS, we compared the measured and predicted urinary 3-PBA
metabolite concentrations to further evaluate the ability of SHEDS
to estimate urinary 3-PBA concentrations.5 In general, the
modeled urinary concentrations compared well with the mea-
sured concentrations from this study. SHEDS accurately estimated
both the high and low urinary 3-PBA concentrations found in the
children’s urine samples.5

As presented in the Results section, SHEDS dietary exposure
estimates compared well at upper percentiles to the CTEPP
duplicate diet data, and SHEDS aggregate (residential þ dietary)
dose estimates of 3-PBA compared well to the measured NHANES
biomarker data at upper percentiles. The lower percentiles (p5 and
p25) for SHEDS model estimates in Table 2 are orders of
magnitude lower than CTEPP measurements because we used
zeroes for non-detect values in SHEDS permethrin residue inputs.
In the future, we will use pesticide usage information and
detection limits to fill in non-detects, which should yield closer
exposure results at lower percentiles; in this paper we focus on
higher percentiles. We attribute the higher NHANES concentra-
tions of urinary 3-PBA than SHEDS modeled estimates at lower
percentiles to other pyrethroid pesticides besides permethrin.
In addition, comparison of linked SHEDS-PBPK modeled estimates
to the NHANES cis- and trans-DCCA data showed good agreement
at upper percentiles (http://www.epa.gov/heasd/products/
sheds_multimedia/files/SHEDS%20PBPK%20Permethrin%20Case

%20Study.pdf).18 These simulations suggest that permethrin
accounts for B50% of the cis- and trans-DCCA measured in the
urine of the NHANES participants at the 75th percentile, and
B90% of the cis- and trans-DCCA at the 95th percentile. Such
results suggest that permethrin exposure accounts for the higher
exposures among pyrethroids bearing a DCCA moiety (i.e.,
cypermethrin, cyfluthrin, and permethrin). This finding is consis-
tent with what is known for real-world dietary and residential/
daycare exposures to these three pyrethroids.30,32--34 A cumulative
pyrethroids assessment is needed to determine the contribution
of other pyrethroid pesticides to the cis- and trans-DCCA levels,
and 3-PBA levels found in urine samples.

The SHEDS modeling assessment in this paper reveals that
considering all homes (i.e., with and without permethrin use) the
dietary pathway contributes the most to exposure for 3- to 5-year-
old children, followed by non-dietary ingestion, inhalation, and
dermal routes. This finding of relative pathway contribution is
consistent with the CTEPP OH study.30 SHEDS modeled dermal
exposures could be under-predicting based on low skin residue
loadings and use of a dermal absorption fraction44; future SHEDS
research could adjust the absorption rate as a function of skin
loading. Considering only children in homes with residential
permethrin use, non-dietary ingestion was found to be more
important than dietary and the other routes. The most important
food commodities for dietary exposure were found to be lettuce,
spinach, and cabbage. Uncertainty analyses show we have
sufficient food consumption data for the SHEDS-Dietary module,
but more research is needed on residue uncertainty analyses.
Uncertainty for the residential module is much greater than
for the dietary module. We believe this is because a greater
number of inputs are needed for residential exposure modeling,
especially for those key variables shown in the sensitivity analyses
that are lacking data. These include surface-to-skin transfer
efficiency, fraction of hand mouthed, saliva removal efficiency,
hand-mouthing frequency, fraction of house treated, and usage
frequency. More data collection of these inputs (e.g., updated
usage information, mouthing frequencies for different lifestages)
would be helpful for refined model estimates.

The focus of SHEDS is exposure, but the model does include a
simple PK dose module. Ongoing research involves linking SHEDS
exposure time series results with class-oriented PBPK models17

that estimate tissue burden and urinary concentrations, and
tissue-based relative potency factors. The results from the linked
models (i.e., outputs from SHEDS used as inputs to external PBPK
models), various measurement studies, and corresponding data
analyses will be used to quantify the cumulative exposure, dose,
and risks to populations from pyrethroid mixtures in real-world
scenarios. Initial dose estimates with the SHEDS-PK model, and
linking SHEDS to a prototype PBPK dose model, have been tested
using annual simulations of exposure (by pathway and aggregate)
for single chemicals, including permethrin.18 Specific plans for
applying SHEDS for a cumulative pyrethroids assessment will
include linking it with PBPK pyrethroid dose models, apportioning
dietary and residential pathways, and considering the relative
contribution of permethrin, cypermethrin, and cyfluthrin to
exposure and dose. Further testing of the linkages along with
additional model evaluation using NHANES and measurement
study data is underway and planned for a combined assessment
of these three pyrethroids.

Additional future research activities and planned model
refinements include the following: refine algorithms as needed
to accommodate new research and regulatory applications,
possible incorporation of source-to-concentration module (e.g.,
fugacity), enhance residential/dietary merging algorithms, refine
to allow estimates at local (e.g., census tract) level, and improve
cumulative algorithms. More longitudinal activity data from
measurement studies are needed for evaluating and refining
the D & A method to simulate longitudinal consumption and
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residential activity patterns, used in these SHEDS analyses. Future
modeling efforts could incorporate other pathways, for example,
food preparation and handling could contribute to exposures of
children who have frequent mouthing behavior in a permethrin-
contaminated residential environment. Future case studies may
consider different populations, lifestages, chemicals/chemical
classes or mixtures, seasons, and regions, and will include PBPK
linkage, sensitivity and uncertainty analyses, and further model
evaluations. Through these applications of the model, identifica-
tion of key factors and data gaps will inform future data collection
efforts. The methods and models developed through integrated
modeling and measurements research will provide new insights
and data that will inform and support aggregate and cumulative
risk assessments for pyrethroids and other chemical classes.

CONCLUSIONS
This paper presents an aggregate permethrin exposure and dose
assessment for 3- to 5-year-old children, using EPA’s probabilistic
SHEDS-Multimedia model. Close comparison of model estimates
against measured duplicate diet and biomarker data provided
multifaceted evaluation of the SHEDS algorithms and approaches
used. Through model sensitivity and uncertainty analyses, we
identified key factors and research needs to inform exposure
measurement researchers and environmental health decision-
makers. Collecting data for key inputs, such as consumption of
specific commodities, surface-to-skin transfer efficiency, hand
mouthing frequency, fraction of hand mouthed, saliva removal
efficiency, fraction of house treated, and residential pesticide
usage frequency, will reduce uncertainty for enhancing SHEDS
model predictions in future applications. We conclude that the
case study presented in this paper provides insights into children’s
residential and dietary exposures to the insecticide permethrin,
illustrates the SHEDS aggregate exposure modeling methodology,
and lays the foundation for a future cumulative pyrethroid
pesticides risk assessment.
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