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ABSTRACT

Nitric oxide (NO) formed via endothelial NO synthase (eNOS) plays crucial roles
in the regulation of coronary blood flow through vasodilatation and decreased vascular
resistance, and in inhibition of platelet aggregation and adhesion, leading to the prevention
of coronary circulatory failure, thrombosis, and atherosclerosis. Endothelial function is
impaired by several pathogenic factors including smoking, chronic alcohol intake, hyper-
cholesterolemia, obesity, hyperglycemia, and hypertension. The mechanisms underlying
endothelial dysfunction include reduced NO synthase (NOS) expression and activity,
decreased NO bioavailability, and increased production of oxygen radicals and endogenous
NOS inhibitors. Atrial fibrillation appears to be a risk factor for endothelial dysfunction.
Endothelial dysfunction is an important predictor of coronary artery disease (CAD) in
humans. Penile erectile dysfunction, associated with impaired bioavailability of NO
produced by eNOS and neuronal NOS, is also considered to be highly predictive of
ischemic heart disease. There is evidence suggesting an important role of nitrergic
innervation in coronary blood flow regulation. Prophylactic and therapeutic measures to
eliminate pathogenic factors inducing endothelial and nitrergic nerve dysfunction would be
quite important in preventing the genesis and development of CAD.
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Coronary blood flow is regulated through com-
plex adjustments in the arteriolar tone and resistance of
the microcirculation. Impairment of microvascular func-
tion leads to organ dysfunction in any body system
including the heart. Recent evidence supports the con-
cept that the impairment of endothelial function is an
upstream event in the pathophysiology of atherosclero-
sis, CAD, and myocardial infarction (MI). Nitric oxide

(NO) liberated as a paracrine relaxant from the vascular
endothelium is known to play a pivotal role in the
modulation of microvascular tone and regional blood
flow.1 In addition, NO inhibits platelet aggregation and
adhesion, inhibits leukocyte adhesion and migration,
and reduces vascular smooth muscle proliferation, thus
leading to prevention of atherosclerosis. NO produced
via neuronal NO synthase (nNOS) is released from
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parasympathetic postganglionic (nitrergic) neurons and
participates in vasodilatation, decreasing vascular resist-
ance, and increasing blood flow.2,3

Abundant and varied data from animal and hu-
man studies, performed over the course of more than two
decades, indicate that depression of synthesis and bio-
availability of NO in the endothelium participates in
many cardiovascular diseases, including atherosclerosis,4

coronary heart diseases,5 stroke,3 renal failure,6 and
hypertension5,7 and also in insulin resistance and dia-
betes mellitus.8 Mechanisms underlying impairment of
NO-mediated vasodilatation and blood flow increase
include the downregulation of endothelial NOS
(eNOS) and nNOS expressions, generation of NOS
inhibitors and NO scavengers, and upregulation of vaso-
constrictor substances, such as endothelin-1 (ET-1),
vasoconstrictor prostanoids, and Rho/Rho-kinase.

The literature since the discovery of endothelium-
derived relaxing factor by Furchgott and Zawadzki9

contains numerous reports about the interactions be-
tween NO and coronary arteries/arterioles or blood flow
in health and disease. The present review covers recent
advances in these investigations, including those pub-
lished during these several years, on the roles of endo-
thelial and neurogenic NO in the regulation of coronary
circulation in patients with CAD and in some healthy
subjects.

SYNTHESIS, DEGRADATION,
AND ACTIONS OF NO
NO is produced when L-arginine is transformed to L-
citrulline via catalysis by NO synthase (NOS) in the
presence of oxygen and cofactors, including calmodulin,
tetrahydrobiopterin (BH4), nicotinamide adenine dinu-
cleotide phosphate (NADPH), heme, FAD, and FMN.
Calcium ion (Ca2þ ) is required for the activation of
nNOS (NOS I) and eNOS (NOS III) but not inducible
NOS (iNOS, NOS II). nNOS is constitutively ex-
pressed in the brain, peripheral nerves,10 and kidneys,
and eNOS is constitutively expressed mainly in endo-
thelial cells.11 iNOS is not constitutively expressed but is
induced mainly in macrophages by bacterial lipopolysac-
charide and cytokines.

eNOS binds to caveolin-1 in the caveolae, micro-
domains of the plasma membrane. Caveolin-1 inhibits
eNOS activity, and this interaction is regulated by
Ca2þ/calmodulin.12 The eNOS intracellularly migrates
in response to increased cytosolic Ca2þ in the presence
of calmodulin (Fig. 1) and is activated for NO synthesis.
The transmembrane influx of Ca2þ and its mobilization
from intracellular storage sites are caused via stimulation
of drug receptors located on the endothelial cell mem-
brane by acetylcholine (ACh), bradykinin (BK), and
adenosine diphosphate (ADP) or via mechanical stimuli
such as shear stress and vascular smooth muscle stretch.

In human conduit coronary arteries, ACh causes con-
traction rather than relaxation, whereas substance P and
histamine induce relaxations mediated by endothelial
NO.13 On the other hand, shear stress, BK, or insulin
induce the phosphorylation of Ser1177/1179 of eNOS
through phosphatidylinositol 3-kinase (PI3K) and the
downstream serine/threonine protein kinase Akt, result-
ing in enhanced NO formation.14 This mechanism does
not require the increase in intracellular Ca2þ for NO
production (Fig. 1). The alternative pathway through
extracellular signal-regulated kinases also plays a role in
eNOS activation.15

Endothelial NO causes vasodilatation, increased
blood flow, lowered blood pressure, inhibition of platelet
aggregation and adhesion, inhibition of leukocyte adhe-
sion, and reduced smooth muscle proliferation; and it
acts to prevent atherosclerosis. These NO actions are
mediated by cyclic guanosine monophosphate (cyclic
GMP) from GTP synthesized through soluble guanylyl
cyclase. Nonadrenergic noncholinergic inhibitory re-
sponses to parasympathetic nerve stimulation are mainly
mediated through NO synthesized by nNOS; NO plays
a crucial role as a neurotransmitter from the peripheral
efferent nerves in the blood vessel.2,16

The synthesis of NO by NOS isoforms is inhibited
by L-arginine analogs, including NG-monomethyl-L-
arginine (L-NMMA), NG-nitro-L-arginine (L-NA),
and L-NA methylester (L-NAME). The endogenous
NOS inhibitor asymmetric dimethylarginine (ADMA)17

plays a pathogenic role, particularly in the circulation. 7-
Nitroindazol (7-NI)18 and S-methyl-L-thiocitrulline
(SMTC)19 are promising specific inhibitors of nNOS.
Nitro compounds, such as nitroglycerin (GTN) and
sodium nitroprusside (SNP), are capable of liberating
NO. 1H[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one20 de-
creases the synthesis of cyclic GMP by inhibiting gua-
nylyl cyclase activity. Insufficiency of BH4 makes NOS
uncoupled, which consequentially results in superoxide
anions being produced instead of NO. Superoxide anions
are also generated by NADPH oxidase and xanthine
oxidase. Superoxide dismutase (SOD), catalase, and
dimethyl sulfoxide scavenge free radicals. NO reacts
with superoxide anions, generating highly toxic com-
pounds such as peroxynitrite (ONOO�).

ROLE OF NO IN CORONARY CIRCULATION

Role of eNOS-Derived NO

Endothelial NO functions as a critical modulator of
coronary blood flow by inhibiting smooth muscle con-
traction and platelet aggregation, and also contributes to
angiogenesis and cytoprotection in the heart. The Diet-
ary Approaches to Stop Hypertension (DASH) diet
lowers blood pressure and substantially reduces the risk
of coronary heart disease.21 In hypertensive and obese
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hypertensive patients, endothelial function is improved
by the DASH diet.22,23

Katz et al24 provided evidence that endothelial
dysfunction in patients with chronic heart failure, as
assessed by flow-mediated dilatation in the brachial
artery and exhaled NO production during submaximal
exercise, is associated with an increased mortality risk in
subjects with both ischemic and nonischemic chronic
heart failure. In patients with slow coronary flow,
thrombolysis in myocardial infarction (TIMI) frame
count25 was higher, the plasma NO level was lower,
and brachial artery endothelium-dependent flow-medi-
ated dilatation was smaller than in subjects with normal
coronary flow.26 Endothelial dysfunction appears to
contribute to the pathogenesis of slow coronary flow.

In patients with normal coronary angiograms, flow-
mediated endothelium-dependent vasodilatation in the
brachial artery had a negative relation with the inti-
maþmedia area in coronary artery.27 As the patho-
genesis of acute coronary syndrome has been reported to
involve plaque rupture even in the patients with normal
coronary angiograms, it may be necessary to monitor
patients with impaired flow-mediated vasodilatation
even if their coronary angiograms show no abnormal-
ities. Flow-mediated brachial artery dilatation, but not
GTN-induced vasodilatation, was decreased in children
of hypertensive patients as compared with controls,
suggesting that children of hypertensive parents appear
to have endothelial dysfunction, which may be an early
marker for the development of CAD.28 Forearm blood

Figure 1 Information pathways via NO liberated from endothelial cells and nitrergic neurons to vascular smooth muscle cells.

On the endothelial membrane, receptors (R) responding to chemical and physical stimuli; ADMA, asymmetric dimethylarginine;

Akt, serine/threonine protein kinase Akt; CaM, calmodulin; cGMP, cyclic GMP; CV, caveolin-1; DDAH, dimethylarginine

dimethylaminohydrolase; eNOS*, activated eNOS; GC, soluble guanylyl cyclase; L-Arg., L-arginine; L-Citru., L-citrulline; nNOS*,

activated nNOS; O2-, superoxide anion; ODQ, 1H[1,2,4]oxadiazolo [4,3-a]quinoxalin-o1-one; ONOO-, peroxynitrite; oxyHb,

oxyhemoglobin; PDE-5, phosphodiesterase-5; PI3K, phosphatidyl inositol 3-kinase pool, Ca2þ storage site; SMTC, S-methyl-L-

thiocitrulline; SOD, superoxide dismutase. Solid lines denote stimulation; dotted lines denote inhibition.
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flow increase in response to ACh was smaller in patients
with CAD who had periodontitis than in the nonper-
iodontitis group, SNP-induced vasodilatation was sim-
ilar in both groups, and circulating levels of C-reactive
protein (CRP) and interleukin-6 (IL-6) were higher in
the periodontitis group; periodontal therapy reduced
serum concentrations of CRP and IL-6, and augmented
ACh-induced vasodilatation in patients with periodon-
titis.29 Periodontitis appears to be associated with endo-
thelial dysfunction in patients with CAD through a
decrease in NO bioavailability. In patients without
significant CAD, the gradient of F2-isoprostanes be-
tween arterial levels and coronary sinus correlated with
the change in coronary artery diameter in response to
ACh; isoprostanes net production across the left anterior
descending (LAD) artery territory correlated with a
decrease in SOD activity and a decrease in coronary
artery diameter in response to L-NMMA.30 These
authors concluded that coronary endothelial dysfunction
in humans may be characterized by local enhancement of
oxidative stress without a decrease in basal NO release.

In patients with paroxysmal atrial fibrillation, in
whom the atrial fibrillation was induced by burst atrial
pacing, local (coronary sinus sample) cardiac platelet
activation and thrombin generation increased and NO
production decreased. However, there was no change in
inflammatory markers, suggesting that atrial fibrillation
may contribute to the hypercoagulable state within
minutes.31 Guazzi and Arena32 summarize evidence
that atrial fibrillation is a risk factor for endothelial
dysfunction as documented by impaired ACh-induced
blood flow increase, reduced plasma nitrite/nitrate levels,
and additive impairment of flow-mediated vasodilata-
tion by morbidities causing endothelial dysfunction.

Nitrite levels were increased in the anterior inter-
ventricular vein after an anastomosis between the left
internal mammary artery and the LAD artery compared
with those before the anastomosis, suggesting that the
increased production of NO by the internal mammary
graft may provide a perpetual vasodilator response.33 The
effect of L-NMMA on coronary blood flow, coronary
artery diameter, and coronary vascular resistance was
attenuated in cyclosporine-treated heart transplant recip-
ients with normal coronary angiograms compared with
controls.34 Cardiac allograft epicardial coronary endothe-
lial function is abnormal and may have an impaired
endogenous NOS pathway and reduced endothelial
NO production in transplant recipients. In cardiac trans-
plant recipients with diabetes mellitus, postprandial hy-
perglycemia acutely doubled circulating levels of the
oxidation product malondialdehyde, but did not affect
the ability of ACh to dilate conduit coronary artery
segments or accelerate coronary blood flow, suggesting
that the oxidative stress associated with an acute episode
of hyperglycemia affects neither ACh-mediated coronary
endothelial NO release nor subsequent bioavailability.35

Progressive worsening of functional coronary cir-
culatory abnormalities of NO-mediated, endothelium-
dependent vasodilatation occurs with increasing severity
of insulin resistance and carbohydrate intolerance.36 The
levels of homocysteine, ET-1, and circulating endothe-
lial cell in patients with coronary lesions were increased
in comparison with patients with no recognizable plaque
and/or stenosis, whereas the NO level was lower in those
with coronary lesions, suggesting that homocysteine
appears to be a predictor for preliminary or active
coronary lesion.37

In studies on patients with chronic CAD, it was
noted that macrophage-colony stimulating factor
(MCSF) and CRP levels were increased in those with
T-786C at the promotor region of eNOS or variable
nucleotide tandem repeat (VNTR) allele; patients with
the combination of VNTR and T-786C had higher
MCSF and CRP levels than patients with one or none
of these alleles; patients with MCSF >262 pg/mL had
lower flow-mediated dilatation of the brachial artery.38

The intron 4-VNTR and T-786C mutation of eNOS
appear to enhance the inflammatory process in patients
with chronic CAD.

In summary, endothelial dysfunction is a predic-
tor and also one of the important risk factors for CAD.
Impaired endothelial function in coronary vasculatures is
recognized by attenuated endothelium-dependent vaso-
dilatation induced by chemical stimulation (ACh, BK,
and ADP) and physical stimuli, such as flow and shear
stress, without affecting the response to NO donors
GTN and SNP. Forearm blood flow responses to chem-
ical or physical stimuli and plasma nitrate/nitrite levels
appear to reflect coronary arterial/arteriolar endothelial
functioning. Decreased production of NO in endothelial
cells would be associated with reduced eNOS protein
expression and/or activity that might result from patho-
genic factors, including smoking,39 chronic alcohol in-
take,40 high salt intake,41 hyperhomocysteinemia,42

diabetes mellitus,8 hypertension,43 and increased pro-
duction of endogenous NOS inhibitors such as ADMA.
Increased activations of NADPH oxidase and xanthine
oxidase, eNOS uncoupling due to BH4 depletion, and
SOD deprivation appear to participate in generation of
oxidative stress. Table 1 summarizes the synthesis and
actions of NO and the possible mechanisms underlying
endothelial dysfunction in patients with CAD. Atrial
fibrillation may be a risk factor for coronary endothelial
dysfunction.

Involvement of ADMA in Blunted

NO Availability

ADMA, an endogenous NOS inhibitor, has been
known to be a risk factor for cardiovascular diseases17

through impairment of NO synthesis by eNOS and
nNOS. Plasma ADMA is accumulated, because the
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degradation of ADMA through dimethylarginine dime-
thylaminohydrolase (DDAH)44 and alanine-glyoxylate
aminotransferase 2 (AGXT2)45 is reduced.

Patients with slow coronary flow were detected to
have higher levels of plasma ADMA and lower L-
arginine/ADMA ratio compared with participants with
normal coronary flow; both ADMA and L-arginine/
ADMA ratio were correlated with coronary flow, as
assessed by the TIMI frame count methods, suggesting
that endothelial dysfunction may be an important factor
in the pathogenesis of slow coronary flow.46 The level of
ADMA is suggested to predict survival in patients with
chronic heart failure.47 The plasma ADMA levels were
higher in patients with typical exertional angina, positive
exercise test, and normal coronary arteries diagnosed as
cardiac syndrome X than in the control group, whereas
plasma L-arginine levels were similar in both groups;
patients with abnormal myocardial tissue perfusion had
increased plasma ADMA levels compared with those
with normal tissue perfusion.48 In the patients with
cardiac syndrome X, increased plasma ADMA levels
may be associated with impaired myocardial tissue per-
fusion. Wang et al49 provided evidence suggesting that
ADMA, symmetric dimethylarginine (SDMA), and the
integrated quantification of arginine methylation pro-
vided independent risk prediction for both obstructive
CAD and incident major adverse cardiac events in stable
patients undergoing cardiac evaluation, and that factors
beyond direct NOS inhibition contribute to the clinical
association between methylarginines and CAD out-
come. Patients with obstructive CAD had a lower global
arginine bioavailability ratio (defined as arginine/[orni-
thineþ citrulline] versus plasma L-arginine levels) than
those without obstructive CAD.50 After adjusting for
Framingham risk score, the lower global arginine avail-
ability ratio (but not L-arginine levels) and higher
L-citrulline levels remained associated with the preva-
lence of obstructive CAD; global arginine availability
ratio and ADMA showed a negative correlation. The
global arginine availability ratio appears to serve as a

more comprehensive concept of reduced NO synthetic
capacity compared with systemic L-arginine levels.
Therefore, Tang et al50 suggested that diminished argi-
nine bioavailability ratio and high citrulline levels are
associated with development of obstructive CAD and
heightened long-term risk for major adverse cardiovas-
cular events.

Studies on high-risk diabetic men with CAD
indicated that plasma ADMA levels were a strong and
independent predictor of all-cause mortality; in addition,
baseline ADMA values were also an independent pre-
dictor of the outcome of all-cause mortality for MI,
suggesting that elevated baseline levels of ADMA are
an independent predictor of cardiovascular outcomes in
patients with diabetes mellitus.51 Coronary flow reserve
was reduced in patients with early rheumatoid arthritis
compared with that in healthy volunteers; higher levels of
plasma ADMA were associated with decreased coronary
flow reserve; common carotid intima-media thickness
was negatively associated with coronary flow reserve.52

In patients with stable angina, plasma levels of
ADMA were related to the severity of CAD and
correlated inversely with the number of circulating
endothelial progenitor cells (EPCs) and endothelial
colony forming units; ADMA repressed in vitro differ-
entiation of EPCs and reduced EPC incorporation into
endothelial tube-like structures, suggesting that ADMA
is an endogenous inhibitor of mobilization, differentia-
tion, and function of EPCs.53 Surdacki et al54 obtained
evidence suggesting that elevated ADMA and EPC
deficiency may synergistically contribute to accelerated
renal dysfunction and that impairment of the EPC-
dependent endothelial renewal may be associated with
decreased bioavailability of NO.

Coronary angiogenesis and collateral growth are
chronic adaptations to myocardial ischemia to restore
coronary blood flow, and increased plasma ADMA levels
are related with poor coronary collateral development.55

Collateral development was lower in patients with the
Asp variant.56 This may be explained by the decreased

Table 1 Endothelial Dysfunction in Patients with Coronary Artery Disease

Author, Year Disease Change in Responses Mechanism

Katz et al, 2005 Chronic heart failure FMD# exhaled NO# E-dysfunction

Sezgin et al, 2005 Slow coronary flow FMD# plasma NO# E-dysfunction

Khalil et al, 2008 Child of HT parents FMD# GTN-D! E-dysfunction, No change in NO response

Higashi et al, 2009 Periodontitis ACh-D# SNP-D! CRP " E-dysfunction, No change in NO response

Levy et al, 2009 Coronary artery dis. ACh-R# SOD# E-dysfunction, Oxidative stress "
Guazzi and Arena, 2009 Atrial fibrillation ACh-D# plasma NO# E-dysfunction

Selcuk et al, 2007 Slow coronary flow ADMA " L-arg./ADMA# E-dysfunction, NOS inhibition by ADMA "
Okyay et al, 2007 Syndrome X ADMA " L-arg.! E-dysfunction, NOS inhibition by ADMA "
Tang et al, 2009 Obst. coronary dis. L-arginine availability# L-citrulline " Global arginine availability ratio#

FMD, flow-mediated vasodilatation; NO, nitric oxide; E-dysfunction, endothelial dysfunction; HT, hypertension; GTN-D, glyceryl trinitrate-
induced dilatation; ACh-D, acetylcholine-induced dilatation; SNP-D, sodium nitroprusside-induced dilatation; !, no change; CRP, C-reactive
protein; dis., disease; Ach-R, acetylcholine receptor; SOD, superoxide dismutase; ADMA, asymmetric dimethylarginine; L-arg., L-arginine;
NOS, nitric oxide synthase; obst., obstructive.
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eNOS activity in patients with this variant. Patients
without CAD, who underwent coronary angiography
alone, responded to the angiography with an increase in
plasma ADMA, SDMA, and L-ornithine levels,
whereas the stent implantation to diseased coronary
artery, independent of the stent type used, reduced
plasma ADMA levels.57 Plasma ADMA activity in
patients, who had diseased saphenous vein grafts was
higher than in those with nondiseased saphenous vein
grafts; mean platelet volume was also higher in patients
with diseased vein grafts, suggesting that increased
ADMA activity leads to the acceleration of saphenous
vein graft disease and that ADMA may be a precious
marker for detecting late saphenous vein graft patency.58

Role of nNOS-Derived NO

Despite the fact that extensive studies have been per-
formed to determine the functional role of autonomic,
nitrergic nerves innervating cerebral,2,3 renal,59 and
systemic vasculatures,60 there is still a paucity of infor-
mation concerning the role of nitrergic nerves in the
regulation of coronary arterial and arteriolar tone and
coronary hemodynamics.

Nerve cell bodies and perivascular neurons con-
taining nNOS immunoreactivity or NADPH diaphor-
ase have been reported in the heart of several species
including the rat,61–63 guinea-pig,62 and dog.64 How-
ever, functional roles of neurogenic NO in the regulation
of coronary arterial tone have not been determined.
Isolated dog conduit coronary arteries respond to trans-
mural field stimulation and nicotine with relaxations that
are abolished by treatment with b-adrenoceptor antag-
onists. This is in contrast to the findings obtained from
isolated cerebral arteries, which respond to electrical and
chemical stimulations with relaxations that are sensitive
to NOS inhibitors but resistant to b-adrenoceptor
blockers. Despite the histological demonstration of
NOS-containing neurons in the adventitia of large
coronary arteries, evidence for the functional role of
nitrergic neurons has not been provided64; however,
possible roles of nitrergic nerves in the regulation of
coronary arteriolar tone and vascular resistance have been
suggested.2

In patients with angiographically normal coronary
arteries, intracoronary infusion of the nNOS-selective
inhibitor SMTC reduced basal coronary blood flow and
epicardial coronary diameter but had no effect on in-
creases in flow evoked by intracoronary substance P that
stimulated the release of NO from the endothelium,
whereas L-NMMA infusion reduced basal coronary
flow and inhibited substance P-induced increases in
flow.65 Local nNOS-derived NO, possibly from nitrer-
gic neurons innervating coronary arteries and arterioles
(Fig. 1), appears to regulate basal coronary blood flow in
humans. Recent studies on anesthetized pigs treated

with selective NOS isomer blockade66 and on mice
deficient in eNOS, nNOS, and iNOS genes67 provided
evidence that NO derived from nNOS alone or in
combination with eNOS plays a role in protecting
against fatal coronary circulatory disorders, whereas
iNOS-derived NO appears to participate in impaired
cardiac perfusion and contractility. Whether nNOS
involved in the beneficial action is from autonomic
nitrergic neurons or other organs and tissues remains
to be determined.

Apart from nNOS in nitrergic neurons, Han
et al68 provided evidence suggesting that estrogen opens
Ca2þ-activated Kþ channels in human coronary artery
smooth muscle cells by stimulating nNOS via a trans-
duction sequence involving PI3K and Akt. This may be a
mechanism underlying the estrogen-induced enhance-
ment of coronary blood flow in patients with diseased or
damaged coronary arteries.

Role of iNOS-Derived NO

Activation of iNOS during immunological reactions and
NO overproduction cause circulatory shock and neuro-
toxic actions.

Dover et al69 provided evidence that selective
iNOS inhibition by intrabrachial infusion of 1400 W
{N-[3-(aminomethyl)benzyl]acetamidine} did not influ-
ence forearm blood flow in patients with New York
Heart Association class II–V heart failure. iNOS activity
does not seem to participate in peripheral vascular tone
in patients with symptomatic heart failure. On the other
hand, patients with heart failure from idiopathic dilated
cardiomyopathy, who suffered from adverse events, had
a diminished forearm blood flow response to ACh,
compared with patients without adverse events. Intra-
brachial infusion of aminoguanidine (another selective
iNOS inhibitor) decreased forearm blood flow in pa-
tients with adverse events, but not in patients without
adverse events, indicating that congestive heart failure
patients with vascular iNOS activation, as evidenced by a
greater vasoconstrictor response to aminoguanidine, had
poor outcomes.70 Whether the discrepancy in the actions
of iNOS inhibitors is due to different severity or etiology
of heart failure, different selectivity of so-called selective
iNOS inhibitors used, and different doses of the NOS
inhibitor used remains to be determined.

Kawasaki Disease and NO

In Kawasaki disease, a systemic vasculitis of unknown
etiology, the intense inflammatory process has a predi-
lection for the coronary arteries and abnormalities of
myocardial blood flow appears to be associated with
endothelial dysfunction.

Intracoronary infusion of ACh increased the
LAD coronary artery area to a lesser extent in Kawasaki
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disease patients with a normal left coronary artery and
patients with a persistent or regressed aneurysm than
control subjects, whereas increases in coronary blood
flow were similar in these groups, suggesting a persistent
endothelial dysfunction in the epicardial but not resist-
ance coronary arteries in patients with Kawasaki dis-
ease.71 Long-term coronary artery lesions, even after
aneurysm regression, in patients with Kawasaki disease
have impaired endothelial function.72 Kurio et al73

obtained evidence suggesting that the endothelial injury
in Kawasaki disease is confined to the endothelium of
medium-sized arteries and that microvascular endothe-
lial cells are normal after acute Kawasaki disease.

The number of EPCs was higher, the migratory
response of EPCs was decreased, and the proliferative
and adhesive activities were decreased in patients with
Kawasaki disease compared with those in controls: the
plasma NO, tumor necrosis factor-a (TNF-a), and high
sensitivity CRP levels in the Kawasaki disease group
were higher.74 The number of circulating EPCs pos-
itively correlated with the level of NO, and the functions
of EPCs negatively correlated with the levels of TNF-a

and CRP. The two-way regulation of circulating EPCs
(an increase in the number and a decrease in the
function) in Kawasaki disease patients may be associated
with the disorders of cytokines or messengers in these
patients.

Neutrophils from patients with the early phase of
Kawasaki disease produced higher amount of NO com-
pared with controls; the amount of NO produced by
neutrophils in the patients decreased after immunoglo-
bulin treatment; increased production of reactive oxygen
species (ROS) was found in both Kawasaki disease and
non-Kawasaki disease febrile children.75 The abnormal
immune system in Kawasaki disease may be character-
ized by an overproduction of NO.

PENILE ERECTILE AND CORONARY
ENDOTHELIAL DYSFUNCTION
There is growing evidence that erectile dysfunction is a
sentinel for future CAD. Erectile dysfunction is associ-
ated with impairment of nitrergic neuronal and endo-
thelial functions.76,77 Therefore, interactions between
vasculogenic erectile dysfunction and coronary endothe-
lial dysfunction/hemodynamic disorder are inferred.

Significant correlation has been demonstrated
between erectile function and the number of occluded
coronary vessels in patients with ischemic heart disease
in early studies by Greenstein et al.78 The prevalence of
erectile dysfunction was relatively high in patients with
CAD, and it was related to the extent of CAD.79 The
authors suggest that erectile dysfunction may occur
before CAD. There was a positive correlation between
the severity of erectile dysfunction and coronary artery
calcification in men with erectile dysfunction.80,81 As

compared with patients without erectile dysfunction,
those with erectile dysfunction exhibited higher proba-
bility of having coronary atherosclerosis, higher number
of coronary stenoses, and higher prevalence of a triple-
vessel disease, suggesting that the coincidence of CAD
and erectile dysfunction identifies patients at increased
risk of severe forms of CAD.82 Erectile dysfunction is
also strongly predictive of atherosclerotic cardiovascular
events; this is even more striking when erectile dysfunc-
tion presents at a younger age.83 According to Böhm
et al,84 erectile dysfunction is a potent predictor of all-
cause death and the composite of cardiovascular death,
MI, and heart failure in men. Vlachopoulos et al85

summarized the pathophysiologic links between erectile
dysfunction, endothelial dysfunction, and CAD.

The possible beneficial effect of PDE-5 inhibi-
tors, regarded as promising therapeutics for male sexual
dysfunction, in conditions such as MI and endothelial
dysfunction has been reviewed by Kapur et al.86 Clinical
evidence supports the use of PDE-5 inhibitors as first-
line therapy in men with CAD.87

Taken together, pathogenic mechanisms under-
lying endothelial dysfunction in the corpus cavernosum
appear to contribute to impairment of coronary arterial
endothelial function; therefore, early signs of penile
erectile dysfunction are regarded as an important pre-
dictor of CAD. It is hypothesized that neurogenic NO
derived from parasympathetic nitrergic nerves plays a
pivotal role in the intracavernous pressure increase and
immediate penile erection, and endothelially generated
NO and neurogenic NO act together to maintain penile
erection.76,77 Despite this fact, only little information is
available about the role of nitrergic nerves in the regu-
lation of coronary blood flow and its dysfunction in
human subjects.

THERAPEUTIC MEASURES

L-Arginine and BH4

In patients with CAD, the intracoronary application of
L-arginine (150 mmol/min) increased the luminal diam-
eter of the stenotic segment without affecting other
coronary artery segments and also increased the postste-
notic coronary blood flow; the NO donor isosorbide
dinitrate dilated all segments with a predominance of
the stenotic coronary artery segment, suggesting a ther-
apeutic potential of L-arginine in patients with coronary
stenosis.88 Compared with that in preischemia, the
endothelium-dependent vasodilatation induced by ACh
was reduced by reperfusion when saline was infused, but
not following intrabrachial infusion of L-arginine (20
mg/min) and BH4 (500 mg/min) in patients with type II
diabetes mellitus and CAD; vasodilatation induced by
SNP was unaffected by ischemia/reperfusion, suggesting
that L-arginine and BH4 supplementation may be a
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novel treatment strategy to limit ischemia/reperfusion
injury in these patients.89 On the other hand, in patients
with noncritical CAD or following percutaneous coro-
nary intervention, coronary microvascular endothelial
function, as assessed by intracoronary infusions of ACh,
was not improved by administration of BH4 (250 and
500 mg/min).90

Abnormal zone myocardial blood flow reserve
treated with adenosine and sildenafil exceeded that
with adenosine and placebo, suggesting that PDE-5
inhibition appears to improve the myocardial blood
flow response to adenosine in abnormal zones, possibly
by augmenting NO-mediated increase in cyclic GMP.91

Antioxidants

Inhibition of xanthine oxidase activity by oxypurinol
attenuated ACh-induced coronary vasoconstriction and
increased coronary blood flow in patients with CAD
compared with patients with preserved coronary endo-
thelial function; flow-mediated dilatation of the brachial
artery was also increased.92 Xanthine oxidase-derived
ROS may contribute to impaired coronary NO bioavail-
ability in CAD. In patients with chronic heart failure,
allopurinol lowered ROS and ADMA concentrations
and improved postischemic vasodilatation and endothe-
lium-dependent vasodilatation.47 Recent studies by
Noman et al93 on patients with chronic stable angina
showed that high-dose (600 mg/d) alloprinol increased
the mean time to ST depression, median total exercise
time, and the time to chest pain from the baseline.
Alloprinol seems to be a useful, inexpensive, well-
tolerated, and safe anti-ischemic drug for patients with
chronic stable angina.

Folic Acid

According to Moat et al,94 both 400 mg/d and 5 mg/d of
folic acid (for 6 weeks) increased plasma folate and
decreased plasma homocysteine in patients with CAD;
flow-mediated vasodilatation of the brachial artery was
improved after treatment with 5 mg/d folic acid, but this
did not correlate with the reduction of homocysteine;
there was no change in flow-mediated vasodilatation in
the 400 mg/d folic acid or placebo group; folic acid
promoted eNOS dimerization in cultured porcine aortic
endothelial cells. Folic acid appears to improve endo-
thelial function in CAD via a promotion of eNOS
dimerization but not through a mechanism dependent
on homocysteine lowering. On the other hand, Shiro-
daria et al95 obtained evidence that low-dose folic acid
treatment (400 mg/d for 7 weeks) improved vascular
function via an increase in enzymatic coupling of eNOS
through availability of BH4 and a decrease in vascular
oxidative stress in patients with CAD undergoing cor-
onary artery bypass grafting surgery and that high-dose

(5 mg/d) treatment provided no additional benefit.
Despite the similar study designs used by these groups
(Moat et al94 versus Shirodaria et al95), there is quite a
difference in the effective doses of folic acid. Whether
this is due to the use of patients with bypass grafting by
the latter group remains to be determined. According to
Dragoni et al,96 treatment of healthy volunteers with
folic acid (10 mg/d for 7 days) did not protect the
vascular endothelium from ischemia/reperfusion injury.

3-Hydroxy-3-Methylglutaryl Coenzyme:

A Reductase Inhibitor (Statin)

Beneficial pleiotropic effects of statins including im-
provement of endothelial dysfunction, increased NO
bioavailability, antioxidant properties, and stabilization
of atherosclerotic plaques have been summarized in
previous review articles.97,98 In patients with nonischemic
chronic heart failure, the area under the curve ratio during
ACh infusion increased in resistance vessels to a greater
extent with atorvastatin treatment (40 mg/d for 6 weeks)
compared with that without treatment; in conduit ar-
teries, flow-mediated vasodilatation increased more with
statin.99 Young et al100 noted that short-term (6 weeks)
atorvastatin treatment in patients with nonischemic
chronic heart failure improved endothelial function but
had no effect on ADMA or the L-arginine/ADMA
ratio. In 35 out of 46 patients with CAD, EPCs and
EPC colony-forming units increased after a cardiac
rehabilitation program and treatment for 1 month with
statin compared with before the program and therapy,
but the remaining 11 patients had no increase in either
measure; those patients whose EPCs increased from
baseline showed increases in plasma nitrite and decreases
in annexin-V staining, a marker of apoptosis, in EPCs;
over the course of the program, EPCs increased before
the nitrite increase in the blood.101 Most, but not all,
patients responded to the cardiac rehabilitation and statin
therapy with increases in EPC number, EPC survival,
and endothelial differentiation potential, possibly associ-
ated with increased NO in the blood. In patients with
established CAD, abrupt discontinuation of simvastatin
treatment led to a rebound of serum total cholesterol and
low-density lipoprotein (LDL) cholesterol levels and
decreased endothelial dependent flow-mediated dilata-
tion of the brachial artery; in human umbilical vein
endothelial cells, the NO production and eNOS expres-
sion were decreased after stopping statin treatment.102

Abrupt withdrawal of simvastatin treatment appears to
not only abrogate its beneficial effects on endothelial
function but also induce further vascular injury.

Angiotensin II Type 1 Receptor Blocker (ARB)

In patients with type II diabetes, serum ADMA con-
centrations decreased and coronary flow velocity reserve
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increased after a 4-week treatment with temocapril, an
angiotensin-converting enzyme inhibitor.103 Decrease
in ADMA may be related to improvement of coronary
circulation. Oral administration of the ARB losartan
tended to improve endothelium-dependent brachial
artery flow-mediated vasodilatation compared with
the baseline (although statistically insignificant), while
combination therapy with losartan and intravenous
L-arginine significantly improved flow-mediated vaso-
dilatation; urinary NO excretion after losartan alone
and combined therapy was correlated with improved
hemodynamic variables.104 According to Koh et al,105

ARBs decrease the incidence of CAD, because they
inhibit angiotensin II-induced increases in superoxide
anion generation and oxidative stress, leading to acti-
vation of nuclear transcription factor and endothelial
dysfunction.

Vasodilating b-Adrenoceptor Blockers

(b-Blockers of the Third Generation)

b-Adrenoceptor blockers with vasodilatory action asso-
ciated with the release of NO (celiprolol, nebivolol, and
nipradilol) or the suppression of ROS (carvedilol) are
expected to counteract the possible b-blockade-induced
coronary vasoconstriction.106 Celiprolol was suggested
to be potentially useful in patients with angina pectoris
and hypertension, complicated by other conditions asso-
ciated with advanced age, impaired glucose tolerance or
diabetes mellitus, peripheral vascular disease, and hyper-
lipidemia.107,108 Coronary flow reserve at rest was less in
patients with CAD than in control individuals; intra-
coronary administration of nebivolol increased coronary
flow reserve both in the controls and patients; collateral
flow index decreased with nebivolol and correlated to
changes in heart rate.109 It appears that intracoronary
nebivolol is associated with an increase in coronary flow
reserve due to an increase in maximal coronary flow and
that the collateral flow index decreases with nebivolol
parallel to the reduction in myocardial oxygen consump-
tion. Changes of coronary flow reserve due to vasodilator
b-blockers improve microvascular angina pectoris or
silent ischemia in patients without epicardial artery
stenosis.110 Akçay et al111 provided evidence suggesting
that nebivolol is beneficial for improving oxidative stress
parameters in patients with slow coronary flow.

Herbal Agents

During aged-garlic extract supplementation, flow-medi-
ated endothelium-dependent brachial artery dilatation
increased from the baseline in patients with CAD that
were currently being treated with aspirin and a statin;
markers of oxidative stress (plasma oxidized LDL and
peroxides), systemic inflammation, and endothelial acti-
vation did not change during the study.112 Intravenous

administration of Ginkgo biloba extract to patients with
CAD increased LAD coronary artery blood flow and
brachial artery flow-dependent dilatation.113 In addi-
tion, plasma NO increased and ET-1 decreased after 2
weeks of ginkgo extract treatment; a linear correlation
was obtained between the percentage change in LAD
coronary artery blood flow and in NO, ET-1, or NO/
ET-1 ratio following extract treatment, suggesting that
the ginkgo extract led to an increase in coronary blood
flow, which may be related to improvement of NO/ET-
1 imbalance.114

Exercise and External Counterpulsation

After 8 weeks of exercise training in patients with
congestive heart disease, forearm blood flow responses
to ACh and SNP increased as compared with the control
group (usual living); the clearance of L-arginine also
increased in the training group.115 The authors suggested
that an increase in the transport of L-arginine may
contribute to the augmentation of endothelial function
by exercise. In addition, increased NO actions appear to
be involved, since endothelium-independent NO-medi-
ated vasodilatation was also augmented. According to
Duncker and Bache,116 exercise training augments endo-
thelium-dependent vasodilatation through the coronary
microcirculation, possibly through an increased expres-
sion of NOS; during exercise, endothelium-derived NO,
prostanoids, and b-adrenergic activity exert vasodilator
influences on coronary collateral vessels.

Enhanced external counterpulsation (EECP) is a
noninvasive, pneumatic technique that provides benefi-
cial effects for patients with chronic, symptomatic angina
pectoris. EECP elicited increases in intracoronary pres-
sure with a decrease in systolic pressure, intracoronary
Doppler flow velocity, and coronary flow, as assessed by
TIMI frame count, suggesting that EECP may serve as a
potential mechanical assist device.117 During the course
of EECP therapy in patients with CAD, plasma nitrate/
nitrite progressively increased and plasma ET-1
decreased, suggesting that EECP improves endothelial
function.118 In symptomatic patients with CAD, EECP
increased flow-mediated vasodilatation and plasma levels
of nitrate/nitrite and 6-keto-prostaglandin F1a, whereas
it decreased plasma levels of ET-1, ADMA, and proin-
flammatory cytokines.119

Miscellaneous

Treatment with the a-adrenoceptor antagonist urapidil
improved coronary flow, myocardial perfusion, and left
ventricular function following percutaneous coronary
intervention in patients with ST-elevation acute coro-
nary syndrome; myocardial NO concentrations in the
urapidil group was higher than that of the control
group.120 These beneficial effects appear to be associated
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with an enhanced biosynthesis of NO. Patients with
coronary vasospasm had lower endothelium-dependent
flow-mediated vasodilatation as compared with normal
individuals; benidipine, but not diltiazem and verapamil,
increased flow-mediated vasodilatation and plasma cy-
clic GMP levels; none of the treatments affected GTN-
induced vasodilatation, suggesting that upregulation of
the NO-cyclic GMP system by benidipine may partly
contribute to the improvement of endothelial dysfunc-
tion.121 Short-term (4 weeks) trimetazidine therapy
improved heart rate variability parameters and endothe-
lial products such as NO and ET-1 as well as anginal
symptom in patients with slow coronary artery flow; this
improvement was correlated with increased NO and
decreased ET-1 levels.122 The Rho kinase inhibitor
fasudil increased endothelium-dependent vasodilatation
in patients with CAD but not in healthy controls and
also reduced Rho kinase activity in the patients, suggest-
ing that inhibition of the Rho/Rho kinase pathway
appears to provide a useful strategy to restore NO
bioavailability in humans with atherosclerosis.123

In patients with symptomatic coronary disease and
long-term aspirin therapy, vascular function tests showed
improvement of ACh-induced vasodilatation and L-
NMMA responses in the clopidogrel-added group, while
SNP-induced vasodilatation was not altered; urinary
excretion of 8-iso-prostaglandin F2a and plasma levels
of inflammation products were reduced in patients on
additional treatment with clopidogrel but not in patients
on placebo.124 Beyond inhibition of platelet aggregation,
adenosine diphosphate–receptor blockade may have
promising vasoprotective effects, such as improvement
of endothelial NO bioavailability and diminishment of
biomarkers of oxidative stress and inflammation in these
patients. The increase in leukocyte-derived myeloperox-
idase plasma content on bolus heparin was higher in
patients with CAD; heparin treatment improved endo-
thelial NO bioavailability, as evidenced by flow-mediated
vasodilatation and by ACh-induced increase in forearm
blood flow, suggesting that mobilization of vessel-
associated myeloperoxidase may represent a mechanism
by which heparins exert anti-inflammatory effects and
increase vascular NO bioavailability.125

Aldehyde dehydrogenase-2 may confer cardiopro-
tection through metabolism of reactive aldehydes and
through its role in the bioconversion of nitrates to NO.
Therefore, Budas et al126 suggest that aldehyde dehydro-
genase-2 is a key mediator of endogenous survival signal-
ing in the heart and its agonists, such as an aldehyde
dehydrogenase-2 activator 1, may lead to novel thera-
peutics, which limit injury during MI or bypass surgery.

SUMMARY
This review article summarizes information concerning
recent advances in research on coronary blood flow

regulation by NO generated mainly through eNOS
and also nNOS or iNOS in patients with CAD. The
mechanisms underlying endothelial dysfunction in
CAD cannot be fully discussed because of limited
information from studies on healthy and diseased
individuals, in which ethical problems must be avoided.
Endothelial dysfunction is undoubtedly one of the
important risk factors for CAD. In addition, the
imbalance between vasodilator factors, such as NO,
endothelium-derived hyperpolarizing factor, and pros-
tacyclin, and vasoconstrictors, including ET-1, throm-
boxane A2, Rho-Rho-kinase, and endothelium-derived
contracting factors, must be kept in mind for treatment
of CAD. Studies on the physiological role of nitrergic
neurons in the coronary blood flow regulation in
humans are still insufficient; however, together with
neurogenic coronary vasodilatation mediated by the
b-adrenergic mechanism, the nitrergic vasodilatation
is expected to play a role in the control of coronary
circulation. Penile erectile dysfunction of both nitrer-
gic neural and endothelial origins is an independent
predictor of coronary insufficiency and the severity of
erectile dysfunction appears to reflect the extents
of coronary dysfunction and histological damage.
Maintenance of healthy endothelial cells through
controlled daily life, including quitting smoking, bal-
anced diet, decreasing body weight to a healthy level,
and adequate physical exercise, together with prophy-
lactic and therapeutic measures to augment constitu-
tive NOS expression, increase NO availability,
degrade oxygen radicals, and inhibit the production
of endogenous NOS inhibitors would provide us with
an important way to prevent or treat impairments of
endothelial and nitrergic neural functions and then
CAD.
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