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Abstract
This paper presents a geostatistical approach to combine two geographical sets of area-based data
into the mapping of disease risk, with an application to the rate of prostate cancer late-stage
diagnosis in North Florida. This methodology is used to combine individual-level data assigned to
census tracts for confidentiality reasons with individual-level data that were allocated to ZIP codes
because of incomplete geocoding. This form of binomial kriging, which accounts for the
population size and shape of each geographical unit, can generate choropleth or isopleth risk maps
that are all coherent through spatial aggregation. Incorporation of both types of areal data reduces
the loss of information associated with incomplete geocoding, leading to maps of risk estimates
that are globally less smooth and with smaller prediction error variance.
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1. Introduction
For cancer control activities and resource allocation, it is important to be able to compare
incidence and survival rates, risk behaviors, screening patterns, diagnosis stage, and
treatment methods across geographical and political boundaries and at as fine a spatial scale
as possible. With the proliferation of geographic information systems (GIS) and related
databases, it is becoming easier to gather information at the individual-level. The assignment
of a set of spatial coordinates (geocode) to subjects’ residences is the cornerstone of any
analysis of individual-level health data. Direct measurement of these coordinates is rare and
researchers rely on cheaper geocoding methods, such as identification on orthophoto maps,
address matching to a digital street map (automatic geocoding) or the local 911 listing
(Rushton et al., 2006).

According to several studies (Cayo and Talbot, 2003; Ward et al., 2005; Strickland et al.,
2007; Zimmerman and Li, 2010) the magnitude of geocoding errors can be substantial, up to
several hundred meters and even more in rural areas where longer street segments and
uneven spacing between houses increase interpolation errors when placing an address based
on the street numbers assigned to the ends of each street segment. E911 geocodes are more
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accurate but still not available everywhere. Uncertainty about the exact location of a
residence can also result from the aggregation or randomization performed on the resulting
point to protect the identity of the geocoded object, which is often the case in the geocoding
of health data (Goldberg et al., 2007; Wieland et al., 2008). These geocoding errors
frequently hamper the statistical analysis of cancer data by reducing the power to detect
cancer clusters (Zimmerman, 2008a; Jacquez and Rommel, 2009), the ability to identify
relationships with geographically varying risk factors (Mazumdar et al., 2008), and the
accuracy of fine-level cancer maps (Zimmerman, 2008b).

In addition to the uncertainty attached to the residence coordinates, addresses can fail to
geocode. Indeed, the geocoding process is extraordinarily complex and many problems can
affect either the residential address (e.g. spelling errors, post office box addresses, street
suffix, prefix and abbreviation inconsistencies) or the reference files that can contain errors
such as missing, incomplete, and incorrect street segments and address ranges. The end
results are missing or incomplete data where coarser surrogates, such as ZIP code, replace
precise coordinates. The percentage of incomplete encoding tends to increase for cases
diagnosed several decades ago (Han et al., 2005), which hampers the quantification of
temporal trends in health outcomes and the assessment of the benefits of prevention and
control strategies to reduce cancer burden.

Since rural addresses are less likely to be successfully geocoded, a straight forward
exclusion of incomplete data could lead to geographic selection bias and misleading results
(Rushton et al., 2006). Simply assigning the data to the geographical or population-weighted
centroid of the ZIP code is also unsatisfactory because this point could fall into inhabited
areas and it is a crude estimate for large ZIP codes (Hibbert et al., 2009). One common way
to handle incomplete data is through geographic imputation whereby latitude and longitude
coordinates or some other appropriate geographic identifier are assigned to nongeocoded
addresses (e.g. Klassen et al., 2005; Henry and Boscoe, 2008; Curriero et al., 2010). For
example, Hibbert et al. (2009) compared the accuracy of eight deterministic and stochastic
geo-imputation methods to allocate cases of diabetes from zip codes to census tracts. The
allocation was based on either the land area or the population demographics (total
population, population under 19, and race/ethnicity). They found that the imputation
approach should be selected according to the study aims since deterministic approaches
yield greater accuracy at the individual level (i.e. greater percentage of cases allocated
correctly to a tract), whereas stochastic methods better reproduce the true spatial distribution
of cases (greater group level accuracy).

Although geo-imputation methods are easily implemented within GIS and a measure of
uncertainty can be computed for the imputed counts (Curriero et al., 2010), such an
approach does not address the issue of rates instability in sparsely sampled areas and the
limitations associated with the interpretation of choropleth maps when the user tends to
assign more importance to larger polygons although they typically correspond to rural areas
with smaller populations at risk. These effects are particularly important for census tracts
since they typically display a wide range of sizes and shapes. The geostatistical approach
adopted in this paper falls within the areas of change of support (Gotway and Young, 2002)
and disease mapping (Waller and Got way, 2004). Areal data defined over different spatial
supports are interpolated to a fine grid in order to map the underlying risk of developing the
disease as a continuous surface.

Zimmerman and Fang (2011) recently demonstrated through simulation studies that using
coarsened data improves substantially the accuracy of the maps of risk estimates relative to
prediction based only on observations that were successfully geocoded. Their nonparametric
coarsened-data methodology was very straight forward, both conceptually and

Goovaerts Page 2

Spat Spatiotemporal Epidemiol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



computationally, yet no measure of prediction accuracy was provided and the approach
assumes that geocoding errors were negligible. This latter assumption was also inherent to
the geostatistical approach proposed by Goovaerts (2009) to incorporate both point and areal
data in the mapping of health outcomes. This kriging technique however provides a measure
of the variance of prediction errors and its recent generalization as “Area-and-Point kriging”
(Goovaerts, 2010) allows the mapping of attribute values within each sampled geographical
unit under the constraint that the average of point estimates returns the areal data (coherency
constraint).

The kriging approach accounts for the shape and size of geographical units, hence it can
accommodate different spatial supports for the data and the prediction, and it is not restricted
to a single type of areal data at a time (e.g. ZIP code or census tracts). For example, Gotway
and Young (2007) used kriging for mapping the number of low birth weight (LBW) babies
at the census tract-level, accounting for county-level LBW data and covariates measured
over different spatial supports, such as a fine grid of ground-level particulate matter
concentrations or tract population. Such flexibility is needed when geocoded data are either
unreliable or were randomized for confidentiality reasons (Hampton et al., 2010), making
their spatial aggregation desirable before proceeding with any analysis.

This paper presents a geostatistical approach to combine two geographical sets of area-based
data into the mapping of health outcomes. This form of binomial kriging (Goovaerts, 2009),
which accounts for the population size and shape of each geographical unit, can generate
choropleth or isopleth risk maps that are coherent with the noise-filtered real data (i.e. return
the areal data through spatial aggregation). This methodology is here used to combine two
types of areal data in the isopleth mapping of the percentage of prostate cancer that were
diagnosed late across 25 counties of Florida: 1) census tract-level rates computed from
geocoded data that were randomized within each tract for confidentiality reasons, and 2) ZIP
code-level rates calculated using all records, including the ones that failed to geocode.The
impact of incorporating the two types of data is illustrated by comparison to the results
obtained using area-to-area and area-to-point kriging (Kyriakidis, 2004; Goovaerts, 2006)
based only on ZIP code data.

2. Data and Methods
2.1 Prostate cancer data

The geostatistical mapping approach will be illustrated using prostate cancer cases who were
diagnosed during the calendar years 1981 through 2008 in Florida. The analysis will be
restricted to non-Hispanic white males aged 40 years or older. Approximately 7.3% of the
293,651 records, which were compiled by the Florida Cancer Data System (FCDS) and
processed by an independent geocoding firm, were not successfully geocoded at residence at
time of diagnosis. This percentage however greatly varies with time and space. Figure 1A
shows that incomplete geocoding is more likely for earlier years of diagnosis: on average
over Florida the percentage decreases from 23% in 1981 to 3.12% in 2008. This percentage
is also greater for counties classified as non-metropolitan (non-metro) on the basis of the US
Department of Agriculture Rural-Urban Continuum Codes (USDA, 2004). This nine-part
county codification distinguishes metro counties by the population size of their metro area,
and non-metro counties by degree of urbanization and adjacency to a metro area or areas.
This information was available for 1983, 1993 and 2003. For 1983 and 1993 codes 0 and 1
were combined to make these classifications comparable to the 2003’s codification. These
codes were linearly interpolated over the periods 1983–1993 and 1993–2003.

Discrepancies between both metro and non-metro counties were particularly large in the
early nineties when the introduction of PSA screening caused a surge in the number of
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diagnosed cases. The frequency of incomplete geocoding was then more than four times
larger for cases diagnosed in non-metro counties (Fig. 1A).This greater likelihood for rural
addresses to be unsuccessfully geocoded has been well documented and is caused by various
factors, such as disproportionate number of rural route addresses, post office box addresses,
unofficial street names and streets missing from geocoding reference files (Whitsel et al.,
2006; Kravets and Hadden, 2007). The county-level map of time averaged percentage of
incomplete geocoding (Fig. 1B) reveals substantial geographical disparities that go beyond
the dichotomy between metropolitan and non-metropolitan counties. Except for two
Southern counties that include the Florida key Islands (Monroe County) and part of the
Everglades (Glades County), most geocoding problems occurred in Northern Florida, in
particular in the Panhandle.

The 21,365 incomplete records were assigned to their ZIP code centroids, whereas the
geographical coordinates of the geocoded records were randomized within each census tract
for confidentiality reasons. Data thus exist over two overlapping and non-nested sets of
geographical units: ZIP codes and census tracts.

The present study will focus on 25 counties of Northern Florida where the largest percentage
of incomplete geocoding was recorded and that are highlighted using thick white borders in
Fig. 1B. This region (Fig. 2A) includes the centroids of 273 ZIP codes (Fig. 2B) and 222
census tracts (Fig. 2C) that form the two geographies available for mapping the percentage
of late-stage diagnosis. Within these 25 counties 7,958 patients had their residence geocoded
whereas 1,666 records were incomplete. The spatio-temporal analysis of health data
aggregated at the ZIP code-level is challenging since the definition of these geographical
units changes with time (Krieger et al., 2002) and shape files with ZIP code boundaries are
not readily available prior to 2000. In addition, USPS ZIP codes represent postal delivery
routes without true geographic boundaries. Since this paper is primarily concerned with the
development of a new methodology instead of a detailed analysis of prostate cancer late-
stage diagnosis in Florida, the ZIP code geography was simply based on the shape file of
ZIP Code tabulation area (ZCTA) from the 2000 Census. US Census Bureau’s ZCTAs are
aggregates of 2010 Census blocks, whose addresses use a given ZIP Code. Each resulting
ZCTA is then assigned the most frequently occurring ZIP Code as its ZCTA code. In the
remaining part of this paper, the terms ZIP codes and ZCTA will be used interchangeably.
Out of the 1,666 incomplete records, 82 could not be assigned to one of these ZIP codes and
were discarded.

2.2 Area-to-point (ATP) binomial kriging
The key idea of this paper is to map health outcomes using two sets of rate data resulting
from the aggregation of individual records over different geographical units because of
confidentiality and incomplete geocoding. Let z(vα), α = 1,…,K and y(vβ), β = 1,…,L denote
the two sets of rates which are computed as the ratio of the number of late-stage cases over
the total number of cases within each unit. Without loss of generality, assume that the total
number of cases over units vα exceeds the number of cases recorded in the second set of
units vβ:

(1)

The geographical units vα and vβ are denoted primary and secondary units, hereafter In the
present application, they correspond to ZIP codes and census tracts.
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The creation of an isopleth map requires the estimation of the noise-filtered rate, called risk,
at every node u of an interpolation grid. This estimate, denoted r ̂(u), is computed as a linear
combination of rates z(vα) and y(vβ):

(2)

where vα′ and vβ′ are the primary and secondary units that include u, and the other K′
primary units are neighbors of vα′. Thus, the estimation is based mainly on rates recorded in
the primary units which are on average the most densely populated (i.e. more stable rates)
according to assumption (1). Only the secondary unit in which u lies is used in the
estimation to reduce the number of neighbors and the associated smoothing effect. The
prediction error variance associated with the ATP estimate (equation 2), commonly known
as kriging variance, is computed as:

(3)

The weights λi in Equations (2) and (3) are computed by solving the following system of
linear equations; known as area-to-point “binomial kriging” system (Webster et al., 1994;
Goovaerts, 2009):

(4)

where μ(u) is a Lagrange multiplier accounting for the unit sum constraint on the weights.
The Kronecker delta δij is 1 if i=j and 0 otherwise. The term a is defined as a = m * (1–m*)
−C̄ (vi, vi), where m* is the population-weighted average of the K rates recorded in primary
units. The quantity a/n(vi) is an error variance term that increases the variance C̄ (vi, vi) of
the units with small population size n(vi) the most. Thus, smaller weights are assigned to less
reliable late-stage rates based on fewer cases (small number problem).

Under the assumption of second-order stationarity, the area-to-area covariance C̄ (vi, vj) is
numerically approximated by averaging the point-support covariance C(h) computed
between any two locations discretizing the areas vi and vj. Likewise, the area-to-point
covariance C̄ (vi, u) is estimated as the average of the point-support covariance C(h)
computed between u and a series of locations discretizing the area vi. The point-support
covariance C(h), or equivalently the point-support semivariogram γ(h) = C(0) - C(h), cannot
be estimated directly from the observed rates, since only areal data are available. Only the
regularized semivariogram can be estimated using the following population-weighted
estimator (Goovaerts, 2005):

(5)
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where N(h) is the number of pairs of primary units (vα, vβ) whose centroids are separated by
the vector h. The different spatial increments [z(vα)-z(vβ)]2 are weighted by the product of
their respective population sizes to assign more importance to the more reliable rates.
Derivation of a point-support semivariogram from the experimental semivariogram γ ̂ (h)
computed from areal data is called “deconvolution”, an operation that is conducted using an
iterative procedure (Goovaerts, 2008).

2.3 Binomial kriging using only primary units
The impact of incorporating a second set of geographical units in the prediction will be
assessed by comparison to the following estimate that is based only on primary units:

(6)

An important property of the ATP kriging estimator is its coherency: the average of all n(vα′)
point estimates within an area vα′ is equal to the following area-to-area (ATA) estimate:

(7)

The weights ω are computed using a set of linear equations similar to the binomial kriging
system (equation 4), except that the area-to-point covariance C̄ (vi, u) is replaced by the
area-to-area covariance C̄ (vi, vα′):

(8)

The coherency constraint is met only if the same (K′+1) rates are used to estimate all the
point estimates within the unit vα′. The ATA kriging variance is computed as:

(9)

where the within-area covariance C̄ (vα′, vα′) is computed as the average of the point-support
covariance C(h) calculated between any two locations discretizing the area vα′.

3. Results
Percentage of prostate cancer late-stage diagnosis was mapped over a region of Northern
Florida that in cludes 25 counties, 273 ZIP codes and 222 census tracts (Fig. 2). All three
choropleth maps in Fig. 2 display different spatial patterns, which illustrates the modifiable
areal unit problem (MAUP) whereby the interpretation of a geographical phenomenon
within a map depends on the scale and partitioning of the areal units that are imposed on the
map (Waller and Got way, 2004; Gregorio et al., 2005; Meliker et al., 2009). In particular,
zones with higher rate of late-stage diagnosis seem to shift east as the size of geographical
units decreases. Such influence of the aggregation level (i.e. county, ZIP code or census
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tract) on the results highlights the need for filtering the noise due to the small number
problem and mapping results as continuous surfaces (isopleth maps) without subjective
administrative boundaries.

An important step in any geostatistical study is the estimation and modelling of the
semivariogram which describes how the attribute under study varies in space. Figure 3
(dashed curve) shows the experimental semivariogram computed from ZIP code-level rates
using the population-weighted estimator (equation 5). Since the spatial variability does not
change with the direction, an omni directional semivariogram was computed and spherical
model with a range of 81 km was fitted using least-square regression. This model was then
deconvoluted using the iterative procedure described in Goovaerts (2008) and, as expected,
the point-support model (solid curve) has a higher sill since the point process has a larger
variance than its aggregated form. Its regularization (dotted line) yields a semivariogram
model that is close to the one fitted to experimental values, which validates the consistency
of the deconvolution.

The deconvoluted model was used to estimate the risk of late-stage diagnosis at the ZIP
code-level (ATA kriging) and to map the spatial distribution of that risk within the region
(ATP kriging) using either ZIP code and census tract data (Fig. 4C) or only ZIP code data
(Fig. 4B). In all cases, the geographical units were discretized using a regular grid with a
spacing of 2km which is also used as interpolation grid for ATP kriging. The K′ neighbors in
equations (2) and (6) are here defined as ZIP codes sharing a common border or vertex with
the unit vα′ (1-st order queen adjacencies). The map of ZIP code-level estimates (Fig. 4A)
reveals two zones of high risk of late-stage diagnosis which stretch NS and correspond to the
clusters of counties with higher percentage of late-stage diagnosis detected on Fig 2A.
Interestingly, the ZIP codes with the highest percentages of late-stage diagnosis in Fig. 2B
do not stand out after noise filtering using binomial kriging (Fig. 4A), which indicates that
these rates were unreliable and likely based on a few cases. This illustrates a common pitfall
of choropleth maps where unwarranted attention is devoted to a few oversized geographical
units located in low population density areas.

Area-to-point kriging allows the mapping of the risk of late-stage diagnosis across arbitrary
ZIP code boundaries and increases the amount of details in the map (Figs. 4B–C). The
impact of incorporating census tract data on the spatial variability of the isopleth map was
explored using the semivariogram (Fig. 5A). The cross-over of the two curves indicates that
this impact varies with the spatial scale. Whereas the map based on census tract and ZIP
code data is globally more variable (i.e. higher sill of the semivariogram), the variability at
distances shorter than 15 km is smaller than in the map created using only ZIP code data.
The median extent of the census tracts in these 25 counties is approximately 17 km
assuming a square shape. Thus, this greater spatial continuity at short distances is the direct
result of the search strategy: the same census tract rate is used for interpolating all grid
nodes within that tract.

Differences between the two sets of ATP kriging estimates are mapped in Fig. 5B, overlaid
by the census tract boundaries. Positive differences are balanced by negative differences,
resulting in a mean difference that is close to zero. Several spatial features in this map bear
similarities with the patterns displayed by the choropleth maps of original rates (Fig. 2B–C).
To quantify this similarity each grid node was assigned the original rates of the census tract
and ZIP code in which it lies. The difference between these two rates was then correlated
with the difference between ATP kriging estimates at these same nodes. The strong rank
correlation coefficient (r=0.618) indicates that incorporating census tract data influences the
most the risk estimate wherever ZIP code and census tract-level rates differ the most.
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In absence of reference values, one cannot state that one map of estimated risks is more
accurate than the other. However, following Zimmerman and Fang (2011) one should expect
the incorporation of additional information to lead to better predictions. In addition, the
incorporation of census tract data reduces the kriging variancebyan average of 10% (Figs.
6B-C). As expected, the smallest kriging variances are obtained for ZIP code-level estimates
(Fig. 6A) since predictions are always more accurate at the area-level compared to the point-
level.

4. Conclusions
A common issue in spatial interpolation is the incorporation of data measured at various
scales and over different spatial supports. This situation is frequently encountered in health
studies where data are typically available over a wide range of scales, spanning from
individual-level to different levels of aggregation. In particular this paper focused on the
case where individual-level data are assigned to different types of geographical unit based
on the success of the geocoding and the need to protect patient privacy. The objective was to
combine both sources of information and create maps where disease rates vary continuously
in space, reducing the visual bias associated with the interpretation of choropleth maps.

The analysis of prostate cancer data in Florida showed that incomplete geocoding is a
widespread problem, in particular for cases diagnosed several decades ago and in rural
communities. For example, in 1981 one fifth of cases were not geocoded and this percentage
doubled in non-metropolitan counties. The allocation of these cases to ZIP codes, combined
with the randomization of geocodes conducted by the cancer registry, created two sets of
geographical units that can potentially lead to different conclusions when interpreted
separately and without proper handling of the small number problem.

Geostatistics provides a framework to model the spatial correlation among health outcomes
measured over geographic units of irregular size and population density, and to compute
noise-free risk estimates over the same units or at much finer scales. A measure of the
variance of prediction errors is also available to identify large and sparsely populated areas
where risk estimates are less reliable. The noise-filtering accomplished by binomial kriging
generated risk maps with a regional pattern that is closer to the one displayed by the more
reliable county-level rates than by the original ZIP code-level rates. Incorporation of census
tract information decreased the kriging variance and the within-tract spatial variability while
increasing the global variability. The impact of using the two sets of rates was particularly
marked wherever they differed the most. The greater accuracy of the risk maps produced by
the proposed methodology will need to be confirmed by future simulation studies.
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Fig. 1.
Temporal change in the percentage of prostate cancer cases that failed to geocode on
average over Florida and for metropolitan versus non-metropolitan counties (A). The bottom
map shows the county-level percentage of incomplete geocoding averaged over the period
1981–2008 (B). Thick white borders highlight the subset of 25 counties used for the
geostatistical analysis.
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Fig. 2.
Information available for mapping the percentage of prostate cancer late-stage diagnosis
across 25 counties of Florida’s Panhandle and Northern Florida (A): Zip code-level rates (B)
and census tract-level rates (C). The former were computed from all cases diagnosed
between 1981 and 2008, whereas the census tract-level rates are based only on cases that
were successfully geocoded. Shaded polygons denote geographical units where no case was
diagnosed over the 28-year time period. Maps (B) and (C) share the same legend that is not
documented for confidentiality reasons.
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Fig. 3.
Semivariogram of the risk of late-stage diagnosis computed from ZIP code-level rate data
(dashed curve) using the population-weighted estimator (Equation 3), and the results of its
deconvolution (top solid curve). The regularization of the point-support model yields a curve
(dotted line) that is very close to the experimental one.
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Fig. 4.
Choropleth maps (ZIP code-level) and isopleth maps of the percentage of late-stage prostate
cancer diagnosis estimated bybinomial kriging using: ZIP code-level rates (A,B) or ZIP code
and census tract-level rates (C). All maps share the same legend that is not documented for
confidentiality reasons.
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Fig. 5.
Impact of incorporating census tract data into ATP kriging: (A) semivariograms of estimates
based on ZIP code-level rates (dashed curve) or ZIP code and census tract-level rates (solid
curve), (B) differences between estimates obtained with and without census tract-level rates.
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Fig. 6.
Maps of the binomial kriging variance corresponding to the choropleth and isopleth maps of
Figure 4 that were createdusing: ZIP code-level rates (A,B) or ZIP code and census tract-
level rates (C).
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