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Deep Resequencing Unveils Genetic Architecture of
ADIPOQ and Identifies a Novel Low-Frequency Variant
Strongly Associated With Adiponectin Variation
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Increased adiponectin levels have been shown to be associated
with a lower risk of type 2 diabetes. To understand the relations
between genetic variation at the adiponectin-encoding gene, ADIPOQ),
and adiponectin levels, and subsequently its role in disease, we
conducted a deep resequencing experiment of ADIPOQ in
14,002 subjects, including 12,514 Europeans, 594 African Amer-
icans, and 567 Indian Asians. We identified 296 single nucleotide
polymorphisms (SNPs), including 30 amino acid changes, and
carried out association analyses in a subset of 3,665 subjects from
two independent studies. We confirmed multiple genome-wide
association study findings and identified a novel association be-
tween a low-frequency SNP (rs17366653) and adiponectin levels
(P = 2.2E-17). We show that seven SNPs exert independent effects
on adiponectin levels. Together, they explained 6% of adiponectin
variation in our samples. We subsequently assessed association
between these SNPs and type 2 diabetes in the Genetics of Diabe-
tes Audit and Research in Tayside Scotland (GO-DARTS) study,
comprised of 5,145 case and 6,374 control subjects. No evidence
of association with type 2 diabetes was found, but we were also
unable to exclude the possibility of substantial effects (e.g., odds
ratio 95% CI for rs7366653 [0.91-1.58]). Further investigation by
large-scale and well-powered Mendelian randomization stud-
ies is warranted. Diabetes 61:1297-1301, 2012

diponectin is an anti-inflammatory adipokine
secreted by adipocytes and is inversely associ-
ated with the risk of type 2 diabetes (1); how-
ever, whether adiponectin is causal or merely
a marker of prediabetes is not yet known. Use of genetics
through Mendelian randomization (2,3) is one approach to
investigate causality; thus the identification of genetic
variation affecting adiponectin levels has drawn much at-
tention. Through linkage and association studies, adipo-
nectin levels have been linked to the ADIPOQ locus on
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chromosome 3q27 (4-8). The majority of adiponectin ge-
netic investigations to date have been limited to common
variants, but with the advent of massively parallel se-
quencing, we can now explore low-frequency variation
within this gene as well. Here, we describe results from a
deep resequencing experiment of the exons and flanking
regions of ADIPOQ in 14,002 individuals. We describe the
genetic variations observed and report genetic asso-
ciations with adiponectin levels in a subset of 3,665 indi-
viduals with adiponectin measurements. For variants
independently associated with adiponectin levels, we fur-
ther evaluated their impact on type 2 diabetes suscepti-
bility in a cohort of 5,145 type 2 diabetic and 6,374 control
subjects.

RESEARCH DESIGN AND METHODS

We sequenced ADIPOQ in 14,002 individuals, including 12,514 Europeans, 594
African Americans, and 567 Indian Asians. Adiponectin levels were measured
in a subset of 3,665 subjects of European origin from two studies: 1,579 from
the Genetic Epidemiology of the Metabolic Syndrome (GEMS) study (9) and
2,086 from the Cohorte Lausannoise (CoLaus) study (10). The GEMS study
is a large multinational study designed to explore the genetic basis of the
metabolic syndrome. Subjects in our resequencing study were selected based on
DNA availability and consisted of 787 dyslipidemic subjects with an elevated
plasma triglyceride and a low serum HDL cholesterol and 792 normolipidemic
control subjects having the combination of an elevated plasma triglyceride, a low
serum HDL cholesterol, and a BMI >25 kg/m?. The CoLaus study is a single-
center, population-based study to assess the prevalence of cardiovascular risk
factors in the population of Lausanne, Switzerland. We included 2,086 subjects
in this experiment based on availability of DNA and phenotype assessment.
Genotyping was conducted in the Genetics of Diabetes Audit and Research in
Tayside Scotland (GO-DARTS) study (11), which includes a total of 12,348
individuals, 5,145 type 2 diabetic subjects and 6,374 normoglycemic, pop-
ulation-based control subjects, all of European U.K. origin.

DNA sequencing and genotyping. All three exons of ADIPOQ (NM_004797)
plus 50 bases of flanking sequence (NCBI build 36.3) were selected for capture
using a custom Roche NimbleGen (Madison, WI) HD2.1M sequence capture
array. Paired-end sequencing was conducted for each 48-sample indexed pool.
Variants were called using SOAPsnp (12) at a minimum depth of 7 and a min-
imum consensus quality of 20. Genotyping in the GO-DARTS study was per-
formed using a Kaspar assay (http:/www.kbioscience.co.uk/).

Adiponectin measurement. Plasma adiponectin levels were measured using
the ELISA assay (R&D Systems, Minneapolis, MN).

Statistical methods. Linear regression analyses were carried out in the GEMS
and CoLaus studies separately under an additive genetic model adjusted for
significant covariates (P < 0.05) in each study, including dyslipidemia status,
age, sex, collection site, waist and hip circumference in GEMS, and age, sex,
waist and hip circumference, BMI, smoking, and alcohol usage in CoLaus.
Adiponectin levels were log transformed and the extreme outliers were set to
the 99.9 percentile of the distribution. Single nucleotide polymorphisms
(SNPs) with at least 10 copies of the minor allele were analyzed individually,
whereas nonsynonymous SNPs with <10 copies were aggregated (13). SNPs
and subjects with >20% missing data were excluded from analysis. Multiple
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testing corrections were made by adjusting for the total number of tests per-
formed in each study. Meta-analysis was performed using the inverse-variance
method (14).

To identify the number of independent SNPs in and around ADIPOQ, we
conducted variable selection by both frequentist and Bayes methods. In the
frequentist approach, both criteria for a SNP to enter or leave the stepwise
regression model were set as P < 0.005. Bayes variable selection analysis was
conducted using the BTAS WinBUGs toolkit (15,16). In both frequentist and
Bayes variable selection, missing genotype data were imputed by BEAGLE (17).
We further conducted haplotype analysis using Haplo Stats (18) for the
set of independent SNPs identified from the aforementioned variable selection
analyses to determine whether any of the independent SNPs resided on the
same shared haplotype.

In the GO-DARTS study, we tested for association under an additive model

using logistic regression for the seven SNPs individually and also in conjunction
by analyzing the linear combination of allele dosage data weighted by the effect
estimates obtained from linear regression analysis.
Bioinformatics analysis. We used PolyPhen2 (19) and SIFT (20) software to
predict impact of nonsynonymous SNPs on the protein function, and PhyloP
scores to measure conservation of a base pair across many species (21). Our
most strongly associated SNP (rs17366653) is intronic, located 24 nucleotides
upstream of the beginning of exon 3. The sequence flanking this position was
submitted to a number of splice site or splice branch point bioinformatics
prediction tools, including NetGene2 (22), MaxEnt (23), and the Alternative
Splicing Desktop (ASD) (http://www.ebi.ac.uk/asd-srv/wb.cgi?method=6).

RESULTS

Observed variants. Resequencing of ADIPOQ in 14,002
subjects achieved an average depth of 27 reads and an
average quality score of 84 (Supplementary Fig. 1). A total
of 296 SNPs were observed (Supplementary Table 1).
Among them, 52 (18%) were within the coding regions, con-
sisting of 1 nonsense, 30 nonsynonymous, and 21 synony-
mous variants. Most SNPs were rare, including 169 (57%)
singletons and 46 (16%) doubletons, each observed once or
twice in 14,002 individuals (Table 1). There were no common
nonsynonymous SNPs [minor allele frequency (MAF) >5%]
and only two had MAF > 0.1%. The only nonsense variant
detected was observed in two European individuals for
whom adiponectin measurements were not available.

We compared the frequencies of nonsynonymous SNPs
observed in 12,518 European Caucasians, 588 African
Americans, and 574 Indian Asians (Supplementary Table 1).
Of the 30 nonsynonymous SNPs, 13 were unique to
Europeans, 2 to African Americans, and 6 to Indian Asians.
Only two, R55C and Y111H, were observed in all three
populations. Overall, these variants were extremely rare,
and a majority of them were private to each of the three
populations included in our study.

Genetic association analyses. We identified three SNPs
significantly associated with adiponectin levels. Details of
the three SNPs and their effect on adiponectin levels are
shown in Table 2. Two of them were previously described,

Y111H (rs17366743) and a 3’ untranslated-region SNP
(rs6773957). The third (rs17366653), which is the most
significantly associated SNP, is previously unreported (P =
1.02E—07, MAF = 0.015 in GEMS; P = 1.48E—12, MAF =
0.020 in CoLaus; meta-P = 2.20E—17). The minor allele was
estimated to decrease adiponectin levels by 0.24 pg/mL in
the combined samples. Conditional analyses on rs17366743
and rs6773957 yielded highly significant results for rs17366653
(P < 1.L1IE—06 in GEMS and P < 2.0E—09 in CoLaus), indi-
cating its effect is independent of the other two significant
associations in the gene. Four rare nonsynonymous SNPs
were found in GEMS and eight in CoLaus. Aggregation
analysis gave no interesting results (P > 0.5) in GEMS and
yielded a modest association in CoLaus (P = 0.02) (Sup-
plementary Figs. 2 and 3).

Recently, genome-wide association studies (GWAS) have
identified associations between SNPs in and around ADIPOQ
with adiponectin levels in European populations (7,8,24).
For subjects included in our resequencing study with
adiponectin measurements, Affymetrix 500 K genotype
data were also available. We subsequently analyzed the
353 GWAS SNPs within 2 megabases (Mb) of ADIPOQ
together with the 15 resequence SNPs with at least 10
copies of the minor allele. Results corresponding to
analyses in GEMS, CoLaus, and meta-analysis are shown in
Fig. 1. The novel association remained the most statistically
significant. The effect of the variant was the largest among
all the SNPs being evaluated. Conditional analyses on all
other SNPs in this region showed that it was an independent
signal from GWAS findings. Furthermore, imputation in a 2-
Mb region based on different GWAS panels and data from
the 1000 Genomes Project revealed this SNP could not be
well imputed (¥ < 0.3). We thus conclude this novel as-
sociation was previously missed by GWAS and its discovery
is due to resequencing a large number of samples.

Seven independent associations (rs17366653, rs17366743,
151354091, rs3774261, rs3821799, rs16848727, and rs1868146)
were identified from the stepwise regression analysis in
the GEMS and CoLaus combined dataset. Together, they
explained 6% of the adiponectin variation. MAF's of these
SNPs ranged from 0.02 to 0.46 (Supplementary Table 2).
Bayes variable selection gave very similar results to the
frequentist analysis above, with a posterior for the number
of independent signals concentrated around 7 and 8 (Sup-
plementary Fig. 4). Haplotype-specific tests corresponded
well with individual SNP tests. We thus conclude that
these SNPs exert independent effect on adiponectin levels.
To examine whether any of the independent SNPs asso-
ciated with adiponectin levels were contributing to type 2
diabetes risk, we carried out association analyses for the

TABLE 1
Single nucleotide variants observed in ADIPOQ in 14,002 individuals by frequency and type

Nonsense Nonsynonymous Synonymous UTR Intron I<’lanking4 Total
Singleton’ 0 17 10 131 10 1 169
Doubleton® 1 5 4 32 2 1 46
(0,0.001)? 0 6 6 33 1 1 47
(0.001,0.005] 0 1 0 12 0 0 13
(0.005,0.05] 0 1 0 9 1 0 11
(0.05,0.5] 0 0 1 9 0 0 10
Total 1 30 21 226 14 3 296

UTR, untranslated region. ISingle nucleotide variants observed once in 14,002 individuals. 2Single nucleotide vanants observed twice in 14,002

1nd1V1duals
upstream or downstream of gene.
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TABLE 2

Characteristics of three significant variants identified in analysis of resequencing data

Effect size (SE)

SNP Position (NCBI 36.3) Study MAF Minor/major allele (log pg/mL) P value

rs17366653 188053510 GEMS 0.015 C/T —0.460 (0.086) 1.02E—-07
rs17366743 188054783 GEMS 0.031 C/T 0.174 (0.064) 6.45E—03
rs6773957 188056399 GEMS 0.391 A/G 0.121 (0.023) 1.70E—07
rs17366653 188053510 CoLaus 0.021 C/T —0.211 (0.030) 1.48E—12
rs17366743 188054783 CoLaus 0.026 C/T 0.098 (0.027) 2.7TTE—04
rs6773957 188056399 CoLaus 0.416 A/G 0.035 (0.009) 7.74E—05
rs17366653 188053510 Meta-analysis 0.018 C/T —0.238 (0.028) 2.20E—17
rs17366743 188054783 Meta-analysis 0.028 C/T 0.109 (0.025) 9.82E—06
rs6773957 188056399 Meta-analysis 0.404 A/G 0.046 (0.008) 2.12E—08

seven SNPs in the GO-DARTS study including 5,145 type 2
diabetic and 6,374 control subjects. None of the tests was
statistically significant (P > 0.1) (Table 3). However, based
on the effect estimate of adiponectin level change on type
2 diabetes risk (1), our statistical power to detect associ-
ation between these SNPs and type 2 diabetes risk was
estimated to range from 6 to 17% for an individual SNP and
was at 42% for all seven SNPs combined (Supplementary
Table 3).

Testing for association between the seven independent

SNPs associated with adiponectin levels and a host of
metabolic and cardiovascular-related traits did not yield
any significant findings in GEMS and CoLaus (Supplemen-
tary Table 4).
Bioinformatics analysis. ASD, MaxEnt, and marginally
NetGene2 predicted the minor allele of our most strongly
associated SNP (rs17366653) to weaken the scores for
splicing at the intron/exon 3 junction. This could lead to
aberrant splicing at this site, resulting in an alternative
transcript. Further experimental validation is required to
validate this hypothesis.

DISCUSSION

By conducting a deep resequencing experiment, we iden-
tified a novel association between a low-frequency SNP in

ADIPOG@ and adiponectin levels in 3,665 individuals from
two independent studies, and confirmed several associa-
tions previously identified via GWAS. However, all seven
independent SNPs identified only explained about 6% of
adiponectin variation in our samples. The unexplained
phenotypic variation could be due to structural variations,
infrequent noncoding variants, and environmental factors.

Our study provides the most complete assessment of
genetic variation in ADIPOQ to date. Despite the large
number of sequenced subjects, the vast majority of puta-
tively functional variants detected were extremely rare
(MAF <0.02%) and likely to be population specific. Re-
cently, a rare (1.1%) nonsynonymous variant G45R of large
effect was found in 1,240 Cuban Hispanics (25). This var-
iant is not observed in our samples. The frequency of our
most strongly associated SNP was ~1.5% in Europeans,
but only 0.3 and 0.6% in African Americans and Indian
Asians, respectively. These observations illustrate the
limited distribution of such low-frequency variants in dif-
ferent populations and underscore the importance of ethnic-
ity in genetic association studies. An additional challenge of
studying very rare variants is the difficulty of replication at
the variant level. In CoLaus, we observed a nonsynon-
ymous variant (P91R) of large effect, but only once in 14,002
sequenced subjects.
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FIG. 1. Association analysis results based on joint analysis of GWAS and resequence SNPs. The red and black symbols represent resequence and

GWAS SNPs, respectively.
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TABLE 3

Analysis of the seven independent SNPs associated with adiponectin levels in the GO-DARTS study

Odds ratio (95% CI)

SNP P value (adiponectin) Minor allele Effect estimate (adiponectin) P value (type 2 diabetes) (type 2 diabetes)
rs17366653 2.90E—17 C —0.24 0.21 1.19 (0.91-1.58)
rs1354091 3.12E—08 G —0.05 0.21 0.96 (0.90-1.02)
rs3774261 4.66E—08 A 0.04 0.97 1.00 (0.95-1.06)
rs17366743 1.06E—05 C 0.11 0.68 1.03 (0.89-1.21)
rs16848727 0.002 G 0.03 0.11 0.95 (0.89-1.01)
rs1868146 0.05 A 0.03 0.14 1.06 (0.98-1.15)
rs3821799 0.07 T 0.02 0.70 1.01 (0.96-1.07)

Combined 0.43 1.28 (0.69-2.38)

The inverse association between adiponectin levels and
type 2 diabetes risk has been well established in epide-
miology studies. By focusing on the adiponectin-encoding
gene ADIPOQ, we were able to rule out concerns over
pleiotropic effect of genetic variants associated with other
traits. However, all the independent SNPs in ADIPOQ only
explained 6% of the adiponectin variation in our samples.
The estimated statistical power to detect a causal effect of
adiponectin on the risk of type 2 diabetes through ADIPOQ
was only 42% based on our study of 5,145 type 2 diabetic
and 6,374 control subjects. Thus our negative finding is
inconclusive to tease out the causal relationship between
adiponectin and type 2 diabetes. Further investigation by
large-scale and well-powered Mendelian randomization
studies is warranted.
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