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Insulin regulates many cellular processes, but the full impact of
insulin deficiency on cellular functions remains to be defined.
Applying a mass spectrometry–based nontargeted metabolomics
approach, we report here alterations of 330 plasma metabolites
representing 33 metabolic pathways during an 8-h insulin depri-
vation in type 1 diabetic individuals. These pathways included
those known to be affected by insulin such as glucose, amino
acid and lipid metabolism, Krebs cycle, and immune responses
and those hitherto unknown to be altered including prostaglan-
din, arachidonic acid, leukotrienes, neurotransmitters, nucleoti-
des, and anti-inflammatory responses. A significant concordance
of metabolome and skeletal muscle transcriptome–based path-
ways supports an assumption that plasma metabolites are chem-
ical fingerprints of cellular events. Although insulin treatment
normalized plasma glucose and many other metabolites, there
were 71 metabolites and 24 pathways that differed between non-
diabetes and insulin-treated type 1 diabetes. Confirmation of
many known pathways altered by insulin using a single blood
test offers confidence in the current approach. Future research
needs to be focused on newly discovered pathways affected by
insulin deficiency and systemic insulin treatment to determine
whether they contribute to the high morbidity and mortality in
T1D despite insulin treatment. Diabetes 61:1004–1016, 2012

I
nsulin is critical for regulation of many cellular
processes, although the most extensively studied
effect of insulin is on glucose homeostasis. Absolute
insulin deficiency in type 1 diabetes (T1D) causes

profound alterations in carbohydrate, lipid, and protein
metabolism (1,2). Insulin plays a key regulatory role in the
transcription (3,4), translation (5), and posttranslational
modification of proteins (6,7). Metabolites are the down-
stream end product of genome, transcriptome, and pro-
teome variability of a biological system (8). Therefore, the
metabolite fingerprint should give a direct specific mea-
sure of an altered physiological phenomenon (9–11).

Animal and human studies have shown the effects of the
alterations in glucose tolerance and insulin sensitivity on
plasma and urine metabolites (12–14). Nuclear magnetic

resonance–based nontargeted metabolomic profiling of
human serum failed to distinguish between prediabetic
individuals with impaired glucose tolerance and those
with normal glucose tolerance (12,13). In contrast, an
ultra-performance liquid chromatography quadruple time-
of-flight mass spectrometry (UPLC-ToF MS)–based com-
prehensive metabolomic profiling approach was found to
discriminate between impaired and normal glucose toler-
ance (15). These emerging technologies have enabled re-
searchers to identify biomarkers (14) to predict the risk for
onset of diabetes that will help to develop strategies to
prevent this disease and its complications.

With use of a model of insulin deficiency in T1D, alter-
ations in specific metabolic pathways due to insulin de-
ficiency have been reported (12,16–19). Although systemic
insulin treatment normalizes glucose, it remains unclear
whether other metabolic abnormalities are also corrected.
It is well-known that systemic insulin treatment not only
causes relative hyperinsulinemia but also alters the normal
hepatic:peripheral insulin ratio of 2:1 that is normally
present in nondiabetic (ND) individuals (19). We therefore
sought to determine whether systemic insulin treatment
normalizes all metabolic alterations in T1D.

In the current study, a nontargeted UPLC-ToF MS–based
metabolomics approach was applied to determine the
effects of insulin deficiency on metabolites and pathways
in T1D individuals. We compared plasma metabolites in
T1D during systemic insulin treatment (I+) and following
8 h of insulin withdrawal (I2) in comparison with matched
ND individuals. Since skeletal muscle is a key target organ
of insulin action (4,20,21), we sought to determine whether
pathways based on the skeletal muscle transcriptome have
any concordance with those of plasma metabolites in T1D
during insulin deficiency.

RESEARCH DESIGN AND METHODS

Seven C-peptide–negative T1D subjects were studied on two occasions: one
during insulin treatment and the other following withdrawal of insulin for 8 h
and compared with matched healthy ND participants (Table 1). All study
volunteers were screened with a detailed medical history, physical exam, and
hematological and biochemical profile (22–24). The list of medications taken
by the participants is given in Supplementary Table 1. On the insulin treatment
study day, insulin was infused into a forearm vein to maintain blood glucose
between 4.44 and 5.56 mmol/L overnight until 1200 h the next day. On the
insulin deprivation study day, insulin was discontinued for 8.6 6 0.6 h starting
at 0400 h. ND participants were kept on a saline infusion from the evening
following their meal. Arterialized venous blood was obtained from a cathe-
terized hand vein maintained at 60°C using a hot box for the duration of the
study. Plasma samples were stored at 280°C until analysis. Percutaneous
needle biopsies were performed under local anesthesia as previously de-
scribed (25) with the muscle specimens immediately frozen in liquid nitrogen
and stored at 280°C until analysis.
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Metabolomic profiling

Sample preparation. Plasma quality-control samples used in the study were
prepared from pooled plasma spiked with a selection of metabolites to mimic
elevated levels of metabolites during I2 condition. Plasma was spiked with a
standard mixture (3:1 ratio of plasma to spiking solution) containing 100 mg/mL
niacin, hypoxanthine, leucine, isoleucine, phenylalanine, tryptophan, citric acid,
glucose, hippuric acid, and taurocholic acid dissolved in 1:1 acetonitrile/water. All
plasma samples (200 mL) were thawed on ice at 4°C followed by deproteinization
with methanol (1:4 ratio of plasma to methanol) and vortexed for 10 s, followed
by incubation at 220°C for 2 h. The samples were then centrifuged at 15,871g
for 30 min at 4°C. The supernatants were lyophilized (Savant, Holbrook, NY)
and stored at 220°C prior to analysis. The samples were reconstituted in 50%
H2O/acetonitrile and passed through a Microcon YM3 filter (Millipore Corpo-
ration). The supernatants were transferred to analytical vials, stored in the
autosampler at 4°C, and analyzed within 48 h of reconstitution in buffer.

The liquid chromatography platform consisted of an Acquity UPLC system
(Waters, Milford, MA). Plasma metabolite separation was achieved using both
hydrophilic interaction chromatography (ethylene-bridged hybrid 2.13 150 mm,
1.7 mm; Waters) and reversed-phase liquid chromatography C18 (high-strength
silica 2.1 3 150 mm, 1.8 mm; Waters). For each column, the run time was 20 min
at a flow rate of 400 mL/min. Reverse-phase chromatography was performed
using 99% solvent A (5 mmol/L NH4 acetate, 0.1% formic acid, and 1% acetonitrile)
to 100% solvent B (95% acetonitrile with 0.1% formic acid). The gradient was
0 min, 0% B; 1 min, 0% B; 3 min, 5% B; 13.0 min, 100% B; 16 min, 100% B; 16.5 min,
0% B; and 20 min, 0% B. The hydrophilic interaction chromatography gradient was
as follows: 0 min, 100% B; 1 min, 100% B; 5 min, 90% B; 13.0 min, 0% B; 16 min, 0%
B; 16.5 min, 100% B; and 20 min, 100% B. Other LC parameters were injection
volume 5 mL and column temperature 50°C. Each sample was injected in
triplicate with blank injections between each sample. Quality controls and
standards were run at the beginning and end of the sequence.
Mass spectrometry. A 6220 ToF MS (Agilent Technologies) was operated in
both positive and negative electrospray ionization modes using a scan range of
50–1,200 m/z. The mass accuracy and mass resolution were ,5 parts per
million (ppm) and ;20,000, respectively. The instrument settings were as
follows: nebulizer gas temperature 325°C, capillary voltage 3.5 kV, capillary
temperature 300°C, fragmentor voltage 150 V, skimmer voltage 58 V, octapole
voltage 250 V, cycle time 0.5 s, and run time 15.0 min.
Data preprocessing. All raw data files were converted to compound ex-
change file format using Masshunter DA reprocessor software (Agilent Tech-
nologies). Mass Profiler Professional (Agilent) was used for data alignment and
to convert each metabolite feature (m/z 3 intensity 3 time) into a matrix of
detected peaks versus compound identification. Each sample was normalized
to the median of the baseline and log 2 transformed. Default settings were
used with the exception of signal-to-noise ratio threshold (3), mass limit
(0.0025 units), and time limit (9 s).

The resulting metabolites were identified against the METLIN metabolite
database using a detection window of #5 ppm. Putative identification of each
metabolite was made based on mass accuracy (m/z) Chemical Abstracts
Service (CAS), Kyoto Encyclopedia of Genes and Genomes (KEGG), Human
Metabolome Project (HMP) database, and LIPID MAPS identifiers (26,27).

Method performance was evaluated for the ten metabolite standards with
respect to limit of detection, linearity, reproducibility, and mass accuracy.
Linearity was evaluated using the linear regression of the observed signal
with respect to concentration, with a lower limit of 10 ng/mL set as the limit
of detection. In addition, the 10 ng/mL mix was run three times each day over
5 days during a period of 1 month to determine inter- and intra-assay variation.

Analysis of gene transcripts using GeneChips. RNA was extracted from
frozen muscle samples (50 mg) using the RNeasy Fibrous Tissue kit (Qiagen)
following the manufacturer’s instructions. Gene transcript profiles were
measured using high-density oligonucleotide microarrays containing probes
for 54,675 transcripts and expressed sequence tags (HGU133 plus 2.0 GeneChip
arrays; Affymetrix, Santa Clara, CA). GeneChip data were subjected to in-
variant probe set normalization (24). Differences between the I2 T1D and I+

T1D/ND groups were evaluated by paired t test (24,28). We opted to focus on
significantly altered pathways and functional gene sets rather than individual
genes.

To validate the findings of the gene array results and to quantify other genes
of interest, transcript levels of selected genes were analyzed by real-time
quantitative PCR (Applied Biosystems 7900) as previously described (24,29).
The primers and probes used were cytochrome c oxidase (COX) subunits
COX5B and COX10, ubiquinol cytochrome c reductase 6.4-kDa subunit, and
uncoupling proteins (UCP 2/3) and ATP5F1 subunit (25). The abundance of
the target gene was normalized to 28S (29).
Statistical analysis. One of the challenges in the analysis of metabolomics
data resides in the substantial missing values in the dataset. The compounds
detected in at least $50% of the samples in any treatment group were selected
for differential expression analyses. Then, two approaches based on two dif-
ferent assumptions were used to handle missing values. First, missing values
were assumed to be of very low abundance (at the limit of experimental de-
tection) or zero abundance and were replaced by 1.0 before applying log 2
transformation. The second approach involved the use of parametric impu-
tation models to provide estimates of the missing values. Imputation leverages
the pattern of expression between a set of correlated metabolite features to
predict the missing values of metabolites. In order to reduce the uncertainty
associated with estimating missing values, only metabolites present in at least
50% of all the samples and at least five samples in each study group were used
for imputation. Each metabolite feature was independently imputed from the
10 most closely correlated metabolites from the same experimental mode.
Missing value estimation was carried out using Markov Chain Monte Carlo
methods included in R software with 100 imputations and 50 iterations. Im-
putation models were set to account for treatment groups and replicate
samples.

The complete datasets resulting from both approaches were analyzed using
random intercept models to account for the multiple measurements that were
taken from each sample. Separate models were fitted for each pairwise
treatment group comparison. Results from multiple imputations were com-
bined with methods proposed by Rubin (30). All statistical calculations were
performed using the statistics software package R. In particular, the mi and
lme4 packages were used for multiple imputation and random-effect model
fitting, respectively. Identified compounds that were differentially expressed
across treatment groups were used for pathway analysis.

Hierarchical cluster analysis of metabolites was performed to reveal
associations between replicate biological samples within a group based on the
similarity of their mass abundance profiles. Hierarchical cluster analysis was
performed on the log 2–transformed, one-way ANOVA data set. A heat map
was generated, wherein each column depicts a sample and each row repre-
sents a metabolite, with the relative change color coded (Fig. 1).
Pathway analysis. The differentially expressed metabolites were analyzed for
pathway enrichment using MetaCore (Genego, St. Joseph, MI) (31). Metabolite
identifiers (CAS and KEGG) were used for each metabolite including name
and molecular weight in addition to fold change and differential P value. The
P value from the hypergeometric test, generated by Metacore, represents the

TABLE 1
Characteristics of study participants

Variables ND T1D (I2) T1D T1D (I+)

n 7 7
Age (years) 29.7 6 3 30 6 3
Weight (kg) 81 6 6.4 78.2 6 5
BMI (kg/m2) 25 6 1.1 26.2 6 1.3
Fat mass (%) 33.2 6 4 31.6 6 4.1
HbA1c (%) 5.0 6 0.05 7.2 6 0.5*
Type 1 diabetes
duration (years) 18.7 6 4
Glucose (mmol/L) 4.9 6 0.1 17.0 6 0.6a,b 5.2 6 0.2
Glucagon (ng/L) 99.0 6 19.0 82.6 6 17.3 50.3 6 6.8a

Insulin (pmol/L) 23.4 6 4.52 3.9 6 1.36a,b 69.8 6 17.8a

*Data are means 6 SE for seven participants (three women and four men)/group. aP # 0.05 vs. ND. bP # 0.05 vs. T1D (I+).
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enrichment of certain metabolites in a pathway. A P value #0.05 is in-
dicative of significant enrichment. The ratio of significantly changed
metabolites in the pathway to total number of metabolites in a pathway was
also calculated. A false discovery rate of ,0.15 was also applied. A com-
parison of canonical pathways was also made between the metabolome and
transcriptome studies.

RESULTS

Clinical and biochemical characteristics of participants
are given in Table 1. Significantly higher levels of HbA1c
were noted in T1D. Plasma glucose levels remained sig-
nificantly higher in I2, but insulin concentration was

FIG. 1. Heat map analysis of plasma metabolites in T1D during insulin deficiency (I
2
) and insulin treatment (I

+
) and comparison with ND. Me-

tabolite perturbations in plasma were calculated based on the median for each metabolite level of three independent biological replicates of
plasma samples from each study participant. Each row represents a metabolite, and each column depicts a subject. The study groups are color
coded as follows: insulin-deprived (I

2
) T1D is denoted in blue, insulin-treated (I

+
) T1D is denoted in red, and ND groups are denoted in maroon.

The fold change in metabolite levels is color coded: red pixels, upregulation; blue, downregulation; yellow, no significant change. Metabolites such
as acetate, lactate, acetoacetate, hydroxybutyrate, gluconate, hydroxy adipate, carnitines, glucosamine, and taurocholate including amino acid
(e.g., leucine, isoleucine, valine, N-methyl histidine, keto glutarate, glutamate, alanine, phenylalanine) were all found to be elevated in I

2
T1D

(Supplementary Table 4). A consistent decrease was observed in other metabolites, e.g., hydroxypyridine, nicotinamide, hydroxyl nicotinic acid,
adipate, methylthioribose, uridine, xanthine, hypoxanthine, methylguanosine, N-acetyl tryptophan, pipecolate, homoserine, aldosterone, arachidonyl
lysolecithin, phosphoethanolamine, etc.

METABOLIC PROFILING OF ALTERED METABOLITES
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FIG. 2. A: The effect of differential regulation of metabolites on the canonical pathways during I
2
in T1D in comparison with I

+
T1D and ND. The

significance of the pathways was evaluated using P values and false discovery rate <0.05. B: Altered canonical pathways following insulin
treatment in T1D in comparison with ND. *Metabolic pathways that were observed exclusively after systemic insulin treatment. The significance of
the pathways was evaluated using P values and false discovery rate <0.05. nNOS, neuronal nitric oxide synthase; PDGF, platelet-derived growth
factor; TCA, tricarboxylic acid; GPCR, G protein-coupled receptor; FM, function and metabolism.
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significantly lower. Insulin concentration was higher in I+

than in ND. Glucagon concentration was significantly
lower in I+ than in ND with similar glucose levels. Bi-
carbonate levels were not significantly different between
the two groups, indicating that I2 T1D subjects were not
in metabolic acidosis, although b-hydroxy butyrate con-
centration was higher in I2 than in I+, showing that fatty
acid metabolism was elevated. No difference was detected
in the other physiological parameters reflecting kidney
function, total protein, and albumin (data not shown) in
plasma.
Plasma metabolome. The coefficient of variation of re-
tention times of the standard compounds was ,5%, and
the mass accuracy was #5 ppm (Supplementary Tables 2
and 3). Metabolic profiling identified a total of 402 com-
pounds including metabolites, peptide fragments, and drug
molecules (data not shown). Of these, 330 metabolites
were detected and identified in all three study groups: I2, I+,
and ND (Supplementary Table 4). Sixty-nine metabolites
that were confirmed based on comparison with standards
and retention time are listed in Supplementary Table 3. The
identification of the other 261 metabolites (Supplementary
Table 4) was based on accurate mass measurements using
database searches.

A heat map was generated using identified and un-
identified metabolites (Fig. 1). The heat map revealed
considerable differences between I2, I+, and ND, showing
alterations in the natural abundance of several metabo-
lites in plasma. The heat map demonstrated that replicate
samples belonging to the different study groups were
clustered.
Impact of insulin deprivation. The comprehensive pro-
filing approach of paired analysis (I2 vs. I+ and I2 vs. ND)

showed alterations of 302 known plasma metabolites in
T1D (I2) individuals, of which 176 were significant (P ,
0.05) (Supplementary Table 5). The metabolite classes that
were found to be significantly altered between I2 and I+

include plasma amino acids, branch-chain amino acids
(BCAAs), lipid metabolites, bile acids, purines, pyrimidines,
Krebs (tricarboxylic acid) cycle and carbohydrate metab-
olites, transcription of peroxisome proliferator–activated
receptor (PPAR), and vitamins including steroids and
ecosanoids. Consistent changes were also observed when
the metabolite plasma levels in I2 were compared with ND
(Supplementary Table 6).
Pathway-enrichment analysis. Analysis of identified
metabolites showed that.33 canonical pathways (P# 0.05)
were perturbed during insulin deficiency (Fig. 2A). Table 2
shows a short list of selected metabolic pathways that were
affected by differential regulation of metabolites during in-
sulin deficiency in comparison with I+ and ND. A comparison
of pathway-enrichment analysis before and after multiple
imputation analysis of paired study groups was also per-
formed and showed that the overall pathway findings
remained the same but the statistical inference was changed.
The P values of the pathways involving andamide, prosta-
glandin, g-amino butyrate (GABA), cortisone biosynthesis, and
metabolism were decreased, whereas hydroxyeicosatetraenoic
acid (HETE) and hydroperoxyeicosatetraenoic acid (HPETE)
biosynthesis, leukotriene metabolism including tryptophan,
and butanoate metabolism were increased significantly
after imputation (data not shown).
Effect of systemic insulin treatment. In order to
identify whether insulin treatment ameliorates the meta-
bolic pattern in T1D, the metabolic fingerprint of I+ was
compared with that of ND. Paired analysis of I+ versus

FIG. 2. Continued
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ND identified 241 altered metabolites, of which 71 were
significant (P , 0.05) (Supplementary Table 7). This
perturbation of pathways included ecosanoid metabo-
lism, BCAA, immune response, prostaglandin-2 response,
and the corresponding signaling pathways (Fig. 2B). The
abnormalities in these pathways indicated that insulin
treatment in T1D did not restore the metabolic alterations
completely. In addition, systemic insulin treatment in T1D
compared with ND showed a differential effect on seven
metabolic pathways, which was not observed in com-
parison with the I2 state (Fig. 2B).
Correlation of metabolomics and transcriptomics in
altered insulin action. Consistent differences between I2

and I+ T1D individuals based on quantitative PCR–based
mRNA levels of COX5B, COX10, ubiquinol cytochrome c
reductase, and ATP5F1 and mRNAs based on gene array
have previously been reported (27). A total of 40,438
transcripts from gene array were included in the analysis,
of which 2,355 and 1,775 transcripts were differentially
expressed between I2 versus ND and I+ versus ND sub-
jects, respectively (P , 0.05) (24). These genes were used
as focus genes for pathway analysis.

Both transcriptome and metabolome levels were found to
be affected by insulin deprivation in T1D. Therefore, the
muscle gene transcriptome was compared with the plasma
metabolome of the same participants under identical study
conditions. Analysis of I2 versus ND for microarray and
metabolomics profile identified several canonical pathways
indicating similar directional changes, as shown in Fig. 3A.
These implicated pathways, namely, transcription of PPAR,
immune response related to prostaglandin-2, muscle con-
traction, lipid and carbohydrate metabolism, and inhibitory
actions of lipoxins, showed a direct correlation of metabo-
lites with transcriptome and their differential regulation
during low insulin action. These pathways are clustered
based on the gene-metabolite pathway associations.

In general, many pathways agreed between the ones
based on metabolomics and transcriptome (Fig. 3A and B).

TABLE 2
Implicated canonical pathways affected by differential regulation of
metabolites during I2 in T1D in comparison with I+ T1D and ND

Maps Regulation P Ratio

Leucine, isoleucine, and
valine metabolism (BCAA) Up 3.036e29 10:54

Prostaglandin, HETE,
and HPETE biosynthesis
and metabolism Up 6.892e28 12:80

Histidine-glutamate-glutamine
metabolism Up 5.862e25 8:96

Aminoacyl-tRNA biosynthesis in
cytoplasm/mitochondria Up 6.315e25 8:97

Propionate metabolism Up 6.459e25 7:72
Neurophysiological process:

GABAergic neurotransmission Up 6.680e25 6:50
GABA biosynthesis and

metabolism Up 1.151e24 6:55
Proline metabolism Up 1.022e23 5:55
(L)-Alanine, (L)-cysteine, and

(L)-methionine metabolism Up 1.109e23 5:56
b-Alanine metabolism Up 1.412e23 4:35
Galactose metabolism Up 1.758e23 5:62
Fructose metabolism Up 3.608e23 5:73
Anandamide biosynthesis

and metabolism Up 3.906e23 4:46
Glycolysis and gluconeogenesis Up 3.906e23 4:46
Tyrosine metabolism Up 8.347e23 5:89
Cortisone biosynthesis

and metabolism Up 1.187e22 4:63
N-Acylethanolamines:

N-Acyltransferase pathway Up 1.195e22 3:34
Phenylalanine metabolism Up 1.539e22 4:68
Regulation of lipid metabolism:

PPAR regulation of
lipid metabolism Up 2.114e22 3:42

Methionine-cysteine-glutamate
metabolism Up 2.250e22 3:43

Regulation of lipid metabolism:
insulin regulation of fatty
acid metabolism Up 3.561e22 4:88

Taurine and hypotaurine
metabolism Up 3.802e22 3:22

Mitochondrial ketone bodies
biosynthesis and metabolism Up 5.521e22 3:27

Muscle contraction: eNOS
signaling in skeletal muscle Up 5.521e22 3:27

Butanoate metabolism Up 6.385e22 3:65
Pyruvate metabolism Up 6.623e22 3:66
Acetylcholine biosynthesis

and metabolism Up 7.457e22 2:32
Regulation of lipid metabolism:

a-1 via arachidonic acid
adrenergic receptors
signaling Up 7.614e22 3:70

Urea cycle Up 7.614e22 3:70
Fatty acid v oxidation Up 8.284e22 2:34
Aspartate and asparagine

metabolism Up 8.398e22 3:73
Nitrogen metabolism Up 8.708e22 5:35
Aminoacyl-tRNA biosynthesis

in cytoplasm/mitochondria Down 5.104e24 6:97
Catecholamine metabolism Down 2.100e21 2:74
CTP/UTP metabolism Down 4.537e22 3:108
Regulation of lipid metabolism:

a-1 via arachidonic acid
adrenergic receptor signaling Down 7.636e23 6:34

TABLE 2
Continued

Maps Regulation P Ratio

Glycine, serine, cysteine, and
threonine metabolism Down 6.482e23 3:122

GTP-XTP metabolism Down 2.758e23 3:90
Histidine-glutamate-glutamine

metabolism Down 3.664e22 3:96
Neurophysiological process:

role of CDK5 in presynaptic
signaling Down 8.510e22 3:28

Niacin-HDL metabolism Down 1.388e22 3:47
Pentose phosphate pathway Down 1.525e22 3:52
Bile acid biosynthesis Down 5.23e22 4:94
Phenylalanine metabolism Down 2.268e23 3:68
Tryptophan metabolism Down 4.238e22 4:104
Tyrosine metabolism Down 2.552e22 3:64
Glutathione metabolism Down 4.25e22 3:72
Ubiquinone metabolism Down 2.264e22 3:74

The regulation was calculated on log 2–scaled values of I2 with re-
spect to I+ and ND individuals. P value is the significance of the
pathway, and ratio is the number of compounds identified to the total
number of metabolites present in a pathway. eNOS, endothelial nitric
oxide synthase; CTP, cytidine triphosphate; UTP, uridine 59-triphosphate;
GTP, guanosine 59-triphosphate.
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As expected, many substrate metabolism pathways showed
more clear-cut alterations based on metabolomic analysis.
In contrast, the pathway analysis based on transcriptome
showedmore robust changes than those noted for many other
pathways, such as prostaglandin, PPAR, immune response,
and muscle contraction.

To obtain further information on the effect of such altered
pathways on the biological processes during insulin de-
ficiency, metabolomics data were overlaid with the tran-
scriptomics data to depict a metabolic network, as illustrated
in Fig. 4. The network model was built using canonical
pathways (Fig. 3A and B). The association of genes and
metabolites involved in PPAR transcription pathway was
found to be one of the significant pathways affected at both
the metabolic and the transcript levels during insulin de-
ficiency (Figs. 3A and 4A.). PPAR network showed dif-
ferential expression of transcripts of cAMP-dependent
protein kinase (PKA), protein kinase B (Akt), prosta-
glandin 12 synthase, X-linked inhibitor of apoptosis, mi-
togen-activated protein kinase kinase kinase 7 (TAK1),
and metabolites such as long chain fatty acids, prosta-
glandin-2, leukotriene, and hydroperoxylinoleic acid (Fig.
4A). The associations of prostaglandins, HEPTE, fatty acid

metabolites, and arachidonic acid biosynthesis are all
interconnected, thus affecting other metabolic responses,
such as carbohydrate, lipid homeostasis, insulin re-
ceptor signaling, and transforming growth factor-b signal-
ing. A molecular network was also generated for the insulin
signaling pathways, which also showed coclustering of gene
transcripts, e.g., PKA, PDE3B, Akt, and ACSL1 and metab-
olites, such as glucose, glucose-6-phosphate, citric acid, and
others (Fig. 4B).

DISCUSSION

A nontargeted mass spectrometry–based metabolic pro-
filing in T1D showed that insulin deficiency altered several
known and unknown metabolites and various putative met-
abolic pathways. Many but not all of these alterations were
normalized by insulin treatment. Moreover, additional metab-
olites and pathways were found to be affected by insulin
treatment. The confirmation of previously reported met-
abolic pathways affected by insulin based on multiple
analytical approaches supports the validity of the metab-
olomic analysis of plasma samples. The revelation of
previously unknown pathways affected by insulin is likely

FIG. 3. Comparison of plasma metabolome with transcriptome of I
2
versus ND (A) and I

+
versus ND (B). The coclustering between the metabolomic

changes and the transcripts of the corresponding muscle genes showed similar directional changes on the canonical pathways, although the statistical
significance was different. The microarray/transcriptome data and the metabolome data are marked with an orange bar and blue bar, respectively.
*Pathways used to build metabolic networks, as shown in Fig 4. EGF, epidermal growth factor; ERK, extracellular signal–related kinase; nNOS, neuronal
nitric oxide synthase; PDGF, platelet-derived growth factor; TGF, transforming growth factor; GPCR, G protein-coupled receptor; LTD4, leukotriene
receptor D4; HGF, hepatocyte growth factor; EMT, epithelial mesenchymal transition; VDR, vitamin D3 receptor; fMLP,N-formylated peptides like fMLP.
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to stimulate novel hypotheses-based research. The inte-
grated analysis of the altered metabolic pathways based on
plasma metabolomics and skeletal muscle microarray–
based gene transcriptomics showed significant concor-
dance.

Insulin withdrawal in T1D caused elevation of levels of
many known metabolites such as ketogenic and gluconeo-
genic amino acid, BCAA, glycerol, and b-hydroxybutyrate
suggesting an increased rate of proteolysis, lipolysis, and
ketogenesis. These results are consistent with previous
reports based on both nuclear magnetic resonance spec-
troscopy and LC coupled with tandem mass spectroscopy
in T1D and the insulin resistance state (23,32). The current
approach also showed that major molecular and cellular
functions affected by insulin deficiency, as expected, were
carbohydrate (P , 0.00001), lipid (P , 0.0004), molecular
transport and amino acid (P , 0.0004), and nucleic acid
metabolism (P , 0.04). In addition, many other known
pathways such as tricarboxylic acid cycle and mitochon-
drial ketone bodies biosynthesis and degradation were
found to be affected. In general, many altered pathways
that switch from anabolic to catabolic mode, whereas in-
sulin secretion after a glucose meal exhibited a reverse
effect (32).

The current study showed various metabolites and
pathways that were previously not recognized as affected
by insulin action. Among such affected pathways is pros-
taglandin metabolism with its wide range of impacts on
various functions including platelet aggregation that may
lead to vascular complications. A previous study reported
high levels of plasma prostaglandin-E2 and prostaglandin-
F2 and low levels of serum dihomo-g-linolenic acid and
arachidonic acid in association with increased platelet
aggregation in diabetic children (33). The oxidative

metabolism of arachadonic acid was found to promote
insulin release from pancreatic b-cells (34,35), and pros-
taglandin was postulated to play a potential role in the
pathophysiology of type 2 diabetes (36,37). A recent re-
port showed that insulin deficiency affected the arachi-
donic metabolism pathway (38,39). Arachidonic acid is
converted to prostaglandins, leukotrienes, and lipoxins,
of which prostaglandin-E and leukotrienes are potent
proinflammmatory lipid mediators and are also linked to
hepatic steatosis (40,41). Altered regulation of the oxi-
dized lipids such as eicosatetraenoic acid and its hy-
droxylated form HETE was observed in insulin deficiency
in the current study. 5-eicosatetraenoic acid is an inter-
mediate product of leukotriene-A4 and might alter im-
mune response and leuokotiene b4 biosynthesis. They are
also involved in mediating inflammation and induced the
adhesion and activation of leukocytes on the endothe-
lium, allowing them to bind to and cross into tissue (41).
The complications of diabetes involving inflammation and
endothelial dysfunction may be mediated by alterations in
the prostaglandin pathways (37,42).

The lipoxin pathway was also found to be affected by
insulin deficiency and inhibitory action of lipoxins and
superoxide production in the neutrophil, which might be
manifested by a diminished inflammatory response in T1D
(43). The current study also noted a substantial upregula-
tion of aldosterone biosynthesis and metabolic pathways.
This is of considerable interest, as aldosterone excess has
been extensively studied, shown to be a major cause of
cardiovascular complications in many insulin resistance
conditions, and may contribute to vascular complications
in T1D.

The current metabolomics approach measures not only
metabolites derived from endogenous cellular metabolism

FIG. 3. Continued
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FIG. 4. Integration of the metabolomics with transcriptomics data and their superimposition to build metabolic networks. A: Metabolic network of PPAR
transcription pathway, which is connected to other metabolic processes such as lipid homeostasis, glucose, fatty acid metabolism, and inflammatory response.
B: Network model of downstream of insulin-signaling pathways. The metabolites and the gene names shown in red are upregulated, and the same shown in blue
are downregulated during insulin deficiency. B, binding; C, cleavage; CoA, coenzyme A; Erk, extracellular signal–related kinase; HPODE, hydroperoxylinoleic
acid; IE, influence on expression; MAP, mitogen-activated protein; MAPK, MAP kinase; PDGF, platelet-derived growth factor; PI3K, phosphatidylinositol
3-kinase; PKA, cAMP-dependent protein kinase; PKB, protein kinase B; P-, dephosphorylation; RXR, retinoid X receptor; SREBP1c, sterol regulatory
element–binding protein 1c; T, transformation; TGF, transforming growth factor; TR, transcription regulation; +P, phosphorylation; Z, catalysis; GPCR,
G protein-coupled receptor; 15d-PGJ2, deoxy-delta prostaglandin J2; PDK/PDK1, 3-phosphoinositide-dependent protein kinase -1; ACACA, acetyl-CoA
carboxylase; ACSL, acyl-CoA synthetase long-chain family members; ACLY, ATP citrate lyase; BCAA, branch chain amino acid; CISY, citrate synthase; DAG,
diacylglycerol; ELOVL, elongation-of-very-long-chain-fatty acids; EMT, epithelial-mesenchymal transition; BEH, ethylene-bridged hybrid; 4E-BP1, eukaryotic
translation initiation factor 4E binding protein 1; FADS1, fatty acid desaturase 1; FASN, fatty acid synthase; GSK3b, glycogen synthase kinase 3; GNAS,
G protein as- dependent adenylate cyclase; GRB2, growth factor receptor-bound protein 2; H-Ras, Harvey rat sarcoma viral oncogene homolog; HGF, he-
patocyte growth factor; HXK, hexokinase; HSS, high-strength silica; HODE, hydroxyoctadecadienoic acid; INSIG2, insulin-induced gene 2; IRS-1 and IRS-2,
insulin receptor substrates-1 and -2; TRIP, mediator complex subunit 1; MEK/MAP1, mitogen-activated protein kinase kinase 1; NCOA1, nuclear receptor
coactivator 1; NRC1/SRC1, nuclear receptor coactivator 1; N-CoR, nuclear receptor corepressor; SMRT, nuclear receptor corepressors; NUDT1, nudix
(nucleoside diphosphate-linked moiety X)-type motif 1; PtdIns(3,4,5)P3, phosphatidylinositol 3,4,5-triphosphate; P13K, phospatidylinositol 3-kinase;
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FIG. 4. (Continued) PtdIns(4,5)P2, phosphatidylinositol 4,5-biphosphate; PGE, prostaglandin; PTGIS, prostaglandin I2 (prostacyclin) synthase;
PDGHS, prostaglandin-endoperoxide synthase 2 prostaglandin G/H synthase; COX2, cyclooxygenase 2; PDHA, pyruvate dehydrogenase (lipoamide)
a1; QCs, quality controls; RARs, retinoic acid receptors; RXRA, retinoid X nuclear receptor (a; SHC, Src homology 2 domain containing transforming
protein 1; SHP, small heterodimer partner; SOS, son of sevenless protein homologs 1 and 2; c-Raf-1, gene homolog 1; XIAP, X-linked inhibitor of
apoptosis.
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but also those derived exogenously from drugs, foods,
and cosmetics, etc. A list of medications taken by the par-
ticipants and those detected in plasma is given (Supple-
mentary Table 1). Surprisingly, we noted that among the
metabolites that showed significant differences between I+

and I2 were morphine and coniine. Since the identification
of these compounds is putative based on mass (m/z), it is
possible that molecules may be reported with m/z identi-
cal to that of morphine and coniine. It is known that en-
dogenous opioids such as endorphins are measured in
plasma in individuals after glycogen-depleting aerobic ex-
ercise (44,45). It remains unclear whether insulin depri-
vation in T1D and associated glycogen depletion may
increase endorphin secretion. Endorphin also has sub-
stantial structural similarity in terms of amino acid se-
quence to that of adrenocorticotropic hormone, and many
other alkaloids might have a structure similar to that of
coniine. However, the importance of these findings war-
rants more detailed studies.

Insulin treatment corrected the levels of most of the
altered metabolites, but some of the metabolites and
metabolic pathways (Fig. 2B and Table 3) remained un-
affected. In addition, insulin treatment showed changes in
seven metabolic pathways that were not previously ob-
served to be affected in T1D during insulin treatment (Fig.
2B). The additional group of metabolites altered by insulin
treatment (ND vs. I+) included many organic acids, glu-
cogenic amino acids, bile acids, purine, pyrimidine, phos-
phatydylcholine, ethanolamine, carnitine, and creatinine
(Supplementary Table 7). Several of these metabolites are
involved in hepatic metabolism and lipid metabolic pro-
cesses in adipose tissue (46,47). The potential impact of
these altered pathways in T1D after insulin treatment
requires future investigation. Systemic versus prehepatic
insulin administration altered energy and protein metabo-
lism in diabetic dogs (48). We have shown the effects of
short-term tight glycemic control by insulin, but it remains
to be determined whether long-term insulin treatment will
show persistent changes in these pathways. Higher glu-
cagon levels in I2 compared with I+ may have contributed

to some of the changes (49,50), although insulin deficiency
is likely the predominant factor.

Previous studies reported that cessation of insulin
treatment is associated with higher oxidative metabolism
(16) but reduced skeletal muscle ATP production (24),
thus creating an environment of high oxidative stress.
This higher oxidative metabolism and catabolism of many
amino acids (50) were also shown to be at least partially
related to hyperglucogonemia (49). Glucagon has no
receptors in skeletal muscle; therefore, it is likely that
these effects of glucagon may have occurred in liver but
not in skeletal muscle. Insulin deficiency in T1D individu-
als has also been shown to accelerate the catabolism of
many amino acids, especially of BCAA in skeletal muscle
(17). The changes in plasma metabolites observed there-
fore represent not only processes occurring in skeletal
muscle but also processes in multiple other organs, es-
pecially in liver. We have examined whether findings
from plasma metabolite–based pathway analysis are in
agreement with those derived from skeletal muscle gene
transcriptome.

The current study demonstrated concordance of 16 ca-
nonical pathways that are altered by insulin deficiency
based on metabolomics versus transcriptomics (Fig. 3A).
Moreover, similar alterations of the pathways between
I+ T1D and ND were also observed (Fig. 3B). Metabolic re-
sponse displayed a much higher level of specificity than
the transcriptomics data, which may be due to the capacity
of the metabolites to respond faster to short-term insulin
deprivation than muscle transcription of genes. Metabolomics
of human plasma is a reflection of the spillover from various
organs from all over the body, whereas the transcriptomics
of muscle tissue only depicts the localized changes in
mRNA levels. Thus, synergy of metabolites and genes and
the canonical correlation approaches enabled us to demon-
strate the effect of coordinated changes of the transcriptome
and the metabolic processes.

The integration of the data from both analyses allowed
us to build metabolic networks of PPAR and insulin-
signaling pathway as shown in Fig. 4. Of interest, pathway

TABLE 3
Putative pathways that are altered after insulin treatment in T1D with respect to ND individuals

Maps Metabolites P Ratio

HETE and HPETE biosynthesis
and metabolism Arachidonic acid, HETE, HPETE 6.892e28 10:80

Prostaglandin biosynthesis and metabolism
and immune response Prostagladin, arachidonic acid, HETE, HPETE 1.075e25 9:101

Leucine, isoleucine, and valine (BCAA)
metabolism Leucine, isoleucine, valine, oxovaline 4.079e26 9:54

Histidine-glutamate-glutamine metabolism Histidine, alanine, oxoglutaric acid, 5.510e25 9:96
(L)-Alanine, (L)-cysteine, and
(L)-methionine metabolism Alanine, cystine, oxoglutarate, glutamate 4.215e24 6:56

GABA biosynthesis and metabolism Aminobutyrate, glutamate, glutamine, oxoglutarate 9.827e24 6:55
Transcription of PPAR pathway Prostagladin, leukotriene 4, HETE, HPODE 4.306e23 5:61
Muscle contraction: nNOS signaling
in skeletal muscle

Acetylcholine, glucose, arginine, acetate, citrate,
phosphoinositol 2.618e22 5:43

Leukotriene 4 biosynthesis and metabolism Prostagladin, arachidonic acid, HETE, HPETE 9.993e24 5:44
Regulation of lipid metabolism: insulin
regulation of fatty acid metabolism

Hydroxybutyrate, acetoacetate, glycerol,
glycerol phosphate, palmitic acid 3.885e24 6:55

Niacin-HDL metabolism Nicotinamide, niacin, glycerol 4.094e23 6:47
Tricarboxylic acid Citrate, ketoglutarate, pyruvate, acetoacetate 5.496e23 5:51

P value is the mean of P values of three pairs of study groups depicting significance of the pathway, and ratio is the number of compounds
identified to the total number of metabolites present in a pathway. HPODE, hydroperoxylinoleic acid; nNOS, neuronal nitric oxide synthase.
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analysis based on both plasma metabolites and gene
transcriptome demonstrated highly significant (P , 0.004)
differences of PPAR pathway between I2 and I+ T1D/ND
participants. The different isoforms of PPAR were not
distinguished by the pathway-enrichment analysis. The
metabolites involved in the specific PPAR-a, -b, and -g
pathways require further investigation.

The current study confirmed the validity of the non-
targeted plasma metabolomic profiling by demonstrating
that this single plasma analysis could identify most path-
ways previously reported based on multiple approaches
over many years of research. In addition, the significant
concordance of pathways based on plasma metabolites
and skeletal muscle transcriptome supports the notion that
plasma metabolites are chemical fingerprints of cellular
metabolites and pathways. The novel pathway affected
by insulin and the demonstration of alteration of many
metabolites and pathways affected by insulin treatment
indicate potential therapeutic targets for the high morbidity
and mortality in T1D individuals despite improved gly-
cemic control.
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