
Sparse-CAPR: Highly-Accelerated 4D CE-MRA with Parallel
Imaging and Nonconvex Compressive Sensing

Joshua D. Trzasko1, Clifton R. Haider1, Eric A. Borisch2, Norbert G. Campeau3, James F.
Glockner3, Stephen J. Riederer3, and Armando Manduca1

1Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
2Information Technology, Mayo Clinic, Rochester, MN, USA
3Department of Radiology, Mayo Clinic, Rochester, MN, USA

Abstract
CAPR is a SENSE-type parallel 3DFT acquisition paradigm for 4D contrast-enhanced magnetic
resonance angiography (CE-MRA) that has been demonstrated capable of providing high spatial
and temporal resolution, diagnostic-quality images at very high acceleration rates. However,
CAPR images are typically reconstructed online using Tikhonov regularization and partial Fourier
methods, which are prone to exhibit noise amplification and undersampling artifacts when
operating at very high acceleration rates. In this work, a sparsity-driven offline reconstruction
framework for CAPR is developed and demonstrated to consistently provide improvements over
the currently-employed reconstruction strategy against these ill-effects. Moreover, the proposed
reconstruction strategy requires no changes to the existing CAPR acquisition protocol, and an
efficient numerical optimization and hardware system are described that allow for a 256×160×80
volume CE-MRA volume to be reconstructed from an 8-channel data set in less than two minutes.
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INTRODUCTION
CE-MRA [1, 2] is a minimally-invasive imaging technique widely used to study vessel
lumen morphology and hemodynamics for such clinical tasks as identification of
atherosclerotic stenotic and thrombotic lesions, assessment of vascular malformations, and
vascular surgery planning. However, to be carried out with diagnostic certainty, these and
analogous tasks demand image sequences with simultaneously high spatial and temporal
resolution. Given the direct relationship between scan duration and the number of acquired
image samples (and thus spatial resolution and field-of-view), generating a CE-MRA image
sequence that possesses both of these attributes using conventional acquisition and
reconstruction strategies is typically infeasible. Consequently, many techniques have since
been proposed for accelerating CE-MRA exams, including parallel imaging [3, 4, 5], novel
undersampling and view-ordering methodologies [6, 7, 8], and constrained reconstruction
models [9, 10].
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CAPR (Cartesian Acquisition with Projection–Reconstruction-like sampling) [11] is a
SENSE-type parallel [12, 13] acquisition paradigm for time-resolved 3D CE-MRA that has
permitted high spatial and temporal resolution, diagnostic quality images of varied
anatomical regions to be obtained even at high acceleration rates. Previously, both view-
shared [11, 14] and non-view-shared [15] CAPR image sequences have been reconstructed
using a combination of Tikhonov regression [16] and partial Fourier methods [17, 18].
While this strategy facilitates online clinical assessment and requires little to no user
interaction, images reconstructed using these techniques can exhibit significant noise
amplification and/or undersampling artifacts when operating at extreme rates of
acceleration. As such, it may be beneficial to consider auxiliary use of a more advanced
(albeit slower and possibly offline) reconstruction routine that is less subject to these ill-
effects to avoid potential complications in diagnosis.

For the highly-undersampled MRI problem, reconstruction strategies based on the a priori
assumption that images in the class of interest are sparse or compressible (either intrinsically
or following mathematical transformation) have been particularly successful [9].
Compressive Sensing (CS) theory [19, 20] asserts that the number of samples needed to
generate an accurate approximation of an image is largely determined by its information
complexity. For example, images such as angiograms can often be formed from quite
limited k-space measurement sets when sparsity-promoting reconstruction techniques such
as ℓ1-minimization [9], homotopic ℓ0 [21] or ℓp-minimization (0 < p < 1) [22], or orthogonal
matching pursuit (OMP) [23, 24], are employed.

In this work, an offline, sparsity-driven reconstruction framework for CAPR time-series
acquisitions is proposed and demonstrated to provide both superior vessel conspicuity and
resilience against noise amplification relative to the current clinical reconstruction protocol.
Following definition of the recovery model, a robust and efficient quasi-Newton iterative
scheme for executing the nonconvex Compressive Sensing (NCCS) reconstruction process
is described and a computational framework for handling large data sets in times
approaching clinical usefulness is discussed. Several examples comparing the results of both
the current and proposed reconstruction strategy across are proffered.

THEORY
A Forward Model for Parallel MRI

Suppose we are interested in forming a discrete image estimate of some anatomy of interest
using three-dimensional Cartesian (3DFT) parallel magnetic resonance imaging. Denoting f
as the discrete image of interest, a commonly-assumed forward model for this acquisition
process is

(1)

where gc is the signal observed by the cth coil sensor, Γc is the element-wise (i.e. diagonal)
spatial sensitivity function for the cth coil sensor, ℱ is the discrete 3D Fourier transform
(3DFT) operator, and Φ is a binary operator that identifies the subset of k-space measured
during the imaging experiment. The vector n represents system noise and is hereafter
assumed to be a complex additive white Gaussian process (AWGN) [13].
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Time-Varying Signals and CAPR
In CE-MRA, the signal of interest is inherently transient and thus routinely probed at
multiple different time points to characterize patient hemodynamics in addition to vascular
morphology. Given the direct relationship between the number of k-space indices measured
during an MRI exam and the duration of the exam, spatiotemporal undersampling is often
employed to accelerate dynamic MRI exams such as CE-MRA. Reconstruction techniques
such as view-sharing [28], HYPR-type processing [8, 29], and constraint or regularization
methods [30, 31, 9, 32, 33, 23, 34, 35, 36] that rely on a priori assumptions about spatial
and/or temporal image structure may be employed to avoid generation of images with
significant artifacts.

Assuming that both the signal of interest and the sampling process may be temporally
variant in dynamic MRI, (1) can be generalized to

(2)

where t ≥ 0 is an integer corresponding to the frame number. During a CAPR acquisition, k-
space is partitioned into two distinct regions: 1) a circularly-symmetric low-pass region that
is sampled during each temporal update; 2) a high-pass region of which a different subset is
sampled during each temporal update. Thus, the effective sampling operator for CAPR can
be described as

(3)

The dynamic high-pass sampling operator ΦHI(t) is also strictly W-periodic and so, ∀t ≥ 0,
ΦHI(t) = ΦHI(t + W), and ∀τ ∈ (0, W), Trace . A pictorial example of a
CAPR acquisition sequence is given in Figure 1. For a more detailed description of the
CAPR acquisition protocol, the reader is referred to [11].

Data acquired using the CAPR strategy is usually reconstructed using a combination of least
squares regression (i.e. standard SENSE [12]) with Tikhonov regularization [16] and partial
Fourier methods [17, 18]. View-sharing [28] is also routinely performed prior to
reconstruction to reduce the presence of spatial undersampling artifacts in the generated
images, although zero-filling has been employed for studies of the lower peripheral
vasculature [15] in effort to reduce the “temporal footprint” of the exam. Reference or
background image subtraction is also typically performed prior to reconstruction of CAPR
data.

Constrained Image Reconstruction
Although the current CAPR reconstruction protocol is straightforward to execute, permits
online image generation [37], and has proven successful for several highly-accelerated
clinical applications, the effectiveness of this strategy can be compromised when operating
at very high rates of acceleration. Specifically, the lack of strong regularization in the
recovery model can lead to noise amplification during the reconstruction process and, for
non-view-shared reconstruction, permit significant undersampling artifacts to manifest. In
such scenarios, it may prove beneficial to employ an auxiliary reconstruction protocol that is
less prone to these ill-effects.
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First, consider the reconstruction of a single time frame volume without any spatial or
temporal regularization or preprocessing. The standard SENSE-type parallel MRI recovery
model (and the one underlying the current CAPR reconstruction protocol) is

(4)

where u is the optimization variable. In practice, however, (4) is often rank-deficient due to
undersampling or inaccuracies in coil sensitivity profile estimates, and some form of
regularization is needed to stabilize the recovery problem. Typically, generalizations of (4)
of the form

(5)

are considered, where

(6)

is a separable functional (defined element-wise by the penalty functional ρ(·)) that promotes
a priori assumptions about the structure of the target signal, α is a mixing parameter, and Ω
is the domain of the (transformed) image. Tikhonov regression, for example, employs

 (or equivalently, ρ(·) = |·|2) to promote low (transform) energy solutions [16].
Analogously, Markov Random Field (MRF) based priors [30, 32] may be used to promote
piecewise homogeneous solutions.

Following the work of Lustig et al. [9], the use of prior functionals that promote image
sparsity (either intrinsically or in some mathematical transform domain) has become
increasingly popular for the undersampled MRI reconstruction problem. Recall that
Compressive Sensing (CS) theory [19, 20] asserts that the number of samples sufficient to
form an accurate approximation of an image is dominantly determined by its underlying
complexity. If an efficient means of representing the image of interest (i.e. via
transformation by Ψ) is a priori known, a sparsity-promoting recovery model such as ℓ1-
minimization (P(·) = ‖·‖1, or ρ(·) = |·|) can allow for that image (or an accurate approximation
of it) to be generated from many fewer samples than required by traditional Nyquist-limited
linear strategies. Block et al. [31], and later several other groups (e.g., [38, 39, 40]), noted
that, in the context of parallel MRI, CS provides a mechanism for potentially accelerating by
factors that significantly exceed the number of coils.

Recall that a signal is said to be “sparse” if only a few of its elements are non-zero, and that
its (relative) sparsity can be assessed by counting how many non-zero elements it has. This
suggests that the ℓ0-norm1 (P(·) = ‖·‖0, or ρ(·) = 1(|·| ≠ 0), where 1(·) is an indicator
functional) should be used as the regularizing functional or sparsity measure. In [19] and
[20], it was asserted that sparse signals could (theoretically) be accurately estimated from
many fewer samples than traditionally required (e.g., to satisfy the Nyquist criterion) by ℓ0-
minimization. However, since directly solving the ℓ0-minimization problem is NP-hard [41]
and thus impractical, alternative sparsity measures are needed. Most applications of CS
theory for undersampled MRI reconstruction employ P(·) = ‖·‖1 as the sparsity measure,

1Due to lack of homogeneity, the ℓ0-norm is technically not a true norm.
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since the convexity of the ℓ1-norm guarantees that the global optimum of the optimization
problem will be identifiable. The cost of this ability is an increase in the sampling rate
required to guarantee a prescribed level of performance [19, 20]. Several authors (e.g. [25,
26, 21, 27]) have also suggested the use of nonconvex sparsity-promoting penalty
functionals that more closely resemble the ℓ0-norm than does the ℓ1-norm. Although they
lack global convergence guarantees, in practice reconstruction models employing
(nonconvex) concave metric prior functionals [27] such as ρ(·) = log(σ−1|·| + 1), for any σ ∈
[0, ∞), often yield higher quality reconstructions than ℓ1-based methods without
significantly increasing computational expense [25, 26, 22, 21, 42]). It is noted that Raj et
al.’s [30] truncated linear penalty functional is closely related to these so-called nonconvex
CS (NCCS) methods; however, reconstruction problems with acceleration factors exceeding
the number of coils were not considered in that work.

Specifying the Reconstruction Model for CE-MRA
Noting that the information of interest in background-suppressed angiograms (acquired
using any technique) is dominantly morphological [43], Lustig et al. [9] asserted that
transforming these images via finite spatial difference operators can lead to even more
highly compressible image representations. Çukur et al. [44] later employed this model in
steady-state free precession (SSFP) MRA, rapidly acquiring only a small set of phase-
encoded k-space views after each magnetization preparation step to ensure contrast retention
and reconstructing a relatively artifact-free image from this limited view set using ℓ1-
minimization. In a standard time-resolved CE-MRA exam, pre-contrast images are typically
available. The pre-contrast image, or background, is subsequently subtracted from the
contrast-enhanced image to reveal images (ideally) depicting only the gadolinium-enhanced
vessel lumens, and possibly perfused tissue regions [45]. Regardless of the whether either
source image is itself sparse or compressible, a finite spatial difference transformed
subtraction image certainly will be.

Let r be a pre-injection background image (assumed fully sampled) and Dn a finite spatial
difference operator for offset direction n. Given the proposed sparsifying transformation for
CE-MRA images, the constrained parallel MRI reconstruction model in (5) can be adapted
as

(7)

where η is the set of all offset directions over which spatial differences are to be computed.
For 3D volume reconstructions, it is recommended that this set span all three cardinal
directions to maximally exploit vascular connectivity. It is noted that use of a reference
image within the penalty functional of a constrained MRI reconstruction model as done
above has been previously considered by several authors, both in the context of a
generalized Tikhonov regression model for parallel MRI reconstruction [46, 47] and within
CS reconstruction models [48, 49, 50] as a means of sparsifying the image of interest.

Although reconstruction models like (7) are intuitively attractive, the general unavailability
of a fully sampled reference image makes employing them in practice challenging. Akin to
what is done during HYPR reconstruction [8], Chen et al. [48], and Samsonov et al. [50] and
Wu et al. [49], independently suggested that the reference image be generated by
compositing a subset of the individual undersampled frames of the time sequence. By
construction, the composite reference image will contain both background and intravascular
signal. It will also exhibit characteristics similar to a single long acquisition image.
Correspondingly, there are two potential drawbacks to using this strategy. First, prolonged
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sampling of a time-varying process imposes a nonuniform k-space modulation that results in
spatial blurring of the reference image [51, 52, 53]. Second, due to the unavoidable disparity
in intravascular signal intensity between any individual time frame and the composite image,
a subtraction image formed using the latter will inherently contain residual signal in areas of
either previous or eventual contrast enhancement. A subtraction image formed using a pure
background reference should not contain this residual signal, and is thus expected to possess
a higher degree of sparsity or compressibility than its composite-based analog.

To circumvent these complications, consider the following. Define the subtraction image υ =
u − r. Since r is presumed constant, observe that (7) can be recast as

(8)

where hc(t) = gc(t) − Φ(t)ℱΓcr [49, 50]. If r is completely known, the non-subtracted
reconstruction image can of course be recovered simply by computing ũ(t) = υ̃(t) + r and the
reformulation in (8) proffers no real benefit over (7). Note, however, that in many CE-MRA
applications only the subtraction image is actually of interest. When υ̃(t) is all that is
requested, observe that only a set of sampled versions of the background reference image is
required by the reconstruction model. In a time-resolved CE-MRA exam like CAPR that
employs a W-periodic sampling operator, these data sets can be obtained simply by initiating
the acquisition process W cycles prior to contrast injection such that r is sampled under
every utilized Φ(t). Since even the complete sample set needed by hc(t) indexes only a small
fraction of k-space, it can be accumulated quickly and in significantly less time than would
be needed to form a complete image of the contrast-free background. Thus, the effective
benefits of possessing a complete, unbiased, and accurate background reference image can
be practically realized with minimal protocol overhead and simple complex k-space
subtraction of the undersampled background signal from the raw coil data.

Embedding View-Sharing
View-sharing [28] can improve the numerical conditioning of an undersampled dynamic
series reconstruction albeit at the expense of some loss of spatiotemporal resolution [52, 53].
As both view-shared [11] and non-view-shared reconstructions [15] of CAPR sequences
have been previously considered, the use of view-sharing in conjunction with the proposed
reconstruction strategy is discussed. For a detailed discussion about the implications of
view-sharing on the temporal resolution of a CE-MRA exam and its appropriateness for
different anatomical studies, the reader is referred to [11, 15].

As with background subtraction, view-sharing can be performed directly on the raw k-space
data on a coil-by-coil basis and so requires only trivial modification of the reconstruction
model. Let Θ ∈ [1, W] be the temporal window over which view-sharing is performed
(typically, only Θ = 1 [15] or Θ = W [11] are considered). For t ≥ Θ − 1, performing view-
sharing on a non-background-subtracted CAPR data series generates a signal described by

(9)

where the view-shared sampling operator
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(10)

and the notation A* denotes the adjoint of the operator A. Similarly, performing view-
sharing on a background-subtracted CAPR data series generates a signal described by kc(t) =
jc(t) − ΦVS(t, Θ)ℱTcr.

For Θ = W, observe that ΦVS(t, Θ) will always select the same set of k-space indices.
Although the first complete view-shared pre-injection data set could be used as the
background signal (i.e., letting ΦVS(t, Θ)ℱΓcr = kc(Θ − 1)) [11], Borisch et al. [54] have
reported that this strategy can lead to Θ-periodic temporal intensity fluctuations in the
reconstructed image sequence. Conjecturing that this phenomenon results from subtracting
volumes with differing magnetization histories, the usage of a history-matched subtraction
strategy was suggested as a remedy for this problem. This approach, which requires Θ + 1
pre-contrast-arrival time frames be available to form the background signal set, is also
adopted in this work. Generalizing the reconstruction problem in (8) to incorporate view-
sharing thus yields

(11)

which is applicable for t ≥ Θ + 1.

Numerical Optimization
Adopting the model in (11) for the reconstruction of CAPR CE-MRA data, what remains to
be discussed is how to numerically compute solutions to such problems. For the prior
functional class of interest, (11) generally does not possess a closed-form solution and thus
iterative methods are needed to identify minima of J(υ). In this work, an inexact quasi-
Newton iteration similar to that described in [32, 21, 27] is adopted for this task; however,
other strategies such as nonlinear conjugate gradient iteration [31, 9] or discrete optimization
with graph cuts [30] are also possible.

Complex quasi-Newton iterations are typically of the form

(12)

where i ≥ 0 is the iteration number, the cost functional gradient L(υi) = ∇ῡJ(υ)| υ=υi [56, 57],
and the Hessian approximator B(υi) ≈ H(υi) = ∇ῡ∇υJ(υ)|υ=υi [58]. . The term “inexact” arises
when Δi is estimated (e.g. via truncated Conjugate Gradient (CG) iteration) rather than
exactly determined. As P(·) iscontinuous but nonsmooth (this is true for both convex and
nonconvex prior functionals), a weak gradient can be employed to yield

(13)

where the diagonal operator
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(14)

Similarly, the utilized linear approximation of the true Hessian operator is given by

(15)

which is a generalization of the model used by Vogel and Oman [59] for total variation (TV)
denoising. .

As noted in [25] and [21], spurious local minima exist in nonconvex optimization problems
and specific effort must be put forth to avoid those that are far from the global optimum. In
this work, two numerical strategies are used to address this challenge: 1) warm-starting and
2) ε-continuation [60, 61]. Warm-starting consists of providing an iterative estimation
process with an initial guess, υ0, that is already close to the targeted solution. Although this
strategy is generally inapplicable in static imaging applications, during causal reconstruction
of a time-series one reconstructed time frame volume can simply be used as the initial
estimate for the subsequent time frame. Assuming that the first frame of the (background
subtracted) time-series was acquired prior to contrast arrival, a zero image can be used as the
initial estimate for the first time frame. The second strategy, ε-continuation, uses functional
smoothing to manipulate the targeted solution space such that only significant minima
remain. Suppose that every |·| inherent to ρ(·) is replaced with , for some
smoothing parameter ε > 0. When ε is large, many spurious local minima will be “smoothed
away” [61]; however, recall that it is the nonsmootheness of ρ(·) that ultimately permits the
generation of sparse solutions. As such, ε is made a decreasing function of the Newton
iteration number (i.e. limi→∞ εi = 0). In this work, the diminishing sequence εi+1 = βεi (0 <
β < 1) is used. Since warm-starting theoretically initializes each reconstruction problem
close to its solution, we typically prescribe each time frame reconstruction to consist of only
a few Newton steps in conjunction with a moderately-aggressive β = 0.1. Under ε-
continuation, (14) is correspondingly replaced by

(16)

Figure 2 displays an example progression of |·|εi.

METHODS AND MATERIALS
Implementation of the Reconstruction Procedure

As discussed in the Theory section, the acquired raw k-space data is first (optionally) view-
shared, after which (optionally) history-matched k-space reference subtraction is performed.
The resultant signal set is then passed to the reconstruction engine along with both the set of
coil sensitivity functions (acquisition discussed in the next section) and the warm start
initializer. After reconstruction, the generated image volume is both saved off and passed
back into the iterative quasi-Newton solver to be used as the warm-start initializer for
reconstruction of the subsequent time frame volume.
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Considering specification of the targeted cost functional in (11), a normalized variant of the
Laplace functional [21],

(17)

was employed as the sparsity measure for all experiments in this work. (17) was selected
because its derivative has a simple form and was thus easy to work with. We note that other
nonconvex functional forms could be employed and would be expected to perform similarly
[61, 62, 27]. Alternatively, a standard (ℓ1-based) CS reconstruction could be performed by
defining ρ(·) = |·|, but this option was not considered here. Setting the scale parameter σ ∈ [0,
∞) to be one-quarter of the anticipated dynamic range of the reconstructed image was
observed to be effective in practice. The same σ was used for all reconstructions of similar
anatomy. It is again noted that since this functional is nonconvex, all presented
reconstruction results are only formally guaranteed to be local optima of the targeted cost
functional in (11). The specific form of the quasi-Newton iteration strategy used for all
reconstructions is described below:

For all experiments, β = 0.1, maxIterouter = 5, maxIterinner = 1, and

. The regularization parameter α implicit to B(·) and L(·) in
Algorithm 1 was manually assigned during each reconstruction. As with σ, the same α was
used for all reconstructions of similar anatomy. Between 15–25 linear Conjugate Gradient
(CG) iterations were used to solve for the Newton update step, Δi. It is noted that, by fixing
the number of iterations per reconstruction cycle, the time-to-completion for an entire time-
series reconstruction can be estimated based on the reconstruction time for the first frame.
All DFT operations needed to form B(·) and L(·) should, of course, be carried out using the
FFT algorithm. Analogously, a generic operator formalism (described in the Appendix) was
adopted for all finite spatial difference transformations. While this action does not change
the complexity of the transformation, it facilitates the production of an optimized code
implementation. For all experiments, both forward and backward finite differences were
calculated along the three cardinal axes

Algorithm 1

Fixed-Stage Quasi-Newton Iteration with ε-Continuation and Warm-Start Initialization

define: ε0 > 0, β ∈ (0, 1), maxIterouter, maxIterinner;

let:i = 0,υ0 = υ̃(t), countouter = 0;

repeat

    countinner = 0;

    repeat

      solve: B(υi)Δi = −L(υi);

      υi+1 = υi + Δi;

      countinner = countinner + 1;

      i = i + 1;

    untilcountinner ≥ maxIterinner ;

    εi+1 = βεi;

    countouter = countouter + 1;

untilcountouter ≥ maxIterouter ;
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υ̃(t + 1) = υi;

(x, y, z), such that η = {(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0, −1, 0), (0, 0, 1), (0, 0, −1)}.
Although use of higher-order and off-axis neighbors is also possible under the proposed
numerical framework, these options were not considered in this work.

All reconstructions were executed offline on a dedicated 8-node cluster system, where each
node holds two 3.4 GHz Xeon processors and 16GB memory. The entire reconstruction
system is currently implemented in C++ under the templated class framework developed by
Borisch et al. in [37], and makes use of the message passing interface (MPI) for inter-node
and intra-node communication and the OpenMP library for intra-node parallelism as well as
FFTW. On this system, reconstruction of a single 256×160×88 neurovasculature volume
from an 8-coil data set using the proposed computation paradigm requires only about 100
seconds of computation, or about one hour for the entire time series of 36 volumes.

In Vivo Experiments
All imaging experiments were conducted according to a protocol approved by the
Institutional Review Board (IRB). Five time-resolved CE-MRA studies of the
neurovasculature or peripheral vasculature performed at 3.0T (Signa; GE Healthcare,
Milwaukee, WI) using the CAPR acquisition protocol are included here. Included
neurovascular studies were performed using a commercially-available receive-only head coil
while peripheral vascular studies were performed using in-house built modular receive-only
arrays [63].

For all experiments, an elliptical-centric (EC) ordered [6] 3D spoiled gradient-echo
sequence was employed with the following parameters: bandwidth = ±62.5kHz; flip angle =
30°; readout direction = superior-inferior (SI). Experiment specific parameters such as
scanner software version, repetition time (TR), echo time (TE), number of coils (C), number
of views inherent to ΦLO (MLP), number of views inherent to ΦHI(t) (MHP), reconstructed
volume dimensions (Nx × Ny × Nz), number of reconstructed time frames (Nt), sampling
periodicity (W), number of view-sharing frames (Θ), spatial resolution (δx × δy × δz),
temporal update rate (δt), temporal footprint (TF), acceleration factor (AF), and
undersampling factor (USF) can be found in Table 1. The SENSE acceleration factor (R)
underlying the CAPR sampling strategy is also included for completeness.

The acceleration factor is herein defined as

(18)

which is simply the inverse of the fraction of total views investigated during a single CAPR
update. This quantity, however, is not indicative of how underdetermined reconstruction of a
single time frame volume will be given that several data sets and view-sharing may be
utilized. Also note that (18) includes undersampling the corners of k-space, whereas prior
measures of acceleration for CAPR acquisitions typically do not. Alternatively, the
undersampling factor,

(19)
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accounts for the total number of measurements (from any time) during reconstruction of a
single image volume. By construction, any recovery problem involving image estimation
from more samples than there are reconstructed volume elements achieves a score of USF =
0%. For an example acqusition with Ny = Nz = 256, MLP = 250, MHP = 3000, and W = 4, a
non-view-shared reconstruction (i.e. Θ = 1) would have USF = 60.33%,, whereas a view-
shared reconstruction with Θ = 4 would have USF = 0.00%. In particular, conventional
parallel acquisitions with acceleration factors smaller than the number of coils are not
undersampled by this definition, since the resulting reconstruction problem is not
mathematically underdetermined.

Prior to initialization of each time-resolved sequence, a high-resolution calibration scan
(sequence = GRE; bandwidth = ±31.25kHz; flip angle = 10°; full spatial resolution for
neurovascular exams, 2 × 2 reduction in phase-encoded plane for peripheral vascular exams)
was performed and coil sensitivity profiles were estimated using root-sum-of-squares
demodulation. Time-series acquisition was initiated prior to contrast injection to allow the
earlier described set of pure background images to be obtained for reference subtraction.
Intravenous administration of 20 mL of a gadolinium-based contrast agent (MultiHance;
Bracco Diagnostics, Princeton, NJ) at 3mL/s, followed by 20mL of saline at 3mL/s, was
performed using a commercially-available power injector. Following completion of an
exam, time series data was (optionally) view-shared and reference subtracted. The processed
data set was then reconstructed using both the standard clinical protocol described in [11]
(hereafter referred to as “SENSE+Homodyne”) and the proposed iterative reconstruction
protocol (hereafter referred to as “Nonconvex Compressive Sensing”). Following [14],
images were 3× sinc-interpolated to make small features more apparent (albeit while
producing subtle zipper artifacts) when a region-of-interest was enlarged [64].

RESULTS
Example 1: Figure 3 shows a subset of results obtained for a (view-shared)
neurovasculature study of a pediatric patient. The NCCS reconstruction time was slightly
less than 2 minutes per 3D volume. Observe that both the NCCS cross-sectional and MIP
images exhibit better vessel-to-background contrast than do the corresponding SENSE
+Homodyne results. Also, note in (f) and (l), and their corresponding enlargements (m) and
(n), a mass-like region of increased-contrast appears near the posterior right frontal lobe of
the brain. The enhancing abnormality corresponds to post-ischemic hyperperfusion of a
large section of the cortex several days following stroke. Although these regions of contrast
uptake could likely be localized from the SENSE+Homodyne results, they can be identified
with higher confidence using images generated under the proposed technique.

Example 2: Figure 4 shows a subset of results obtained for a (view-shared) patient study of
the feet. For improved visualization, only one foot is shown in the renderings. The NCCS
reconstruction time was slightly less than 10 minutes per 3D volume. In both the early and
middle filling stages, major vessels such as the distal anterior tibial and dorsalis pedis
arteries are clearly visible in both reconstruction results; however, observe that many smaller
distal vessel branches are obscured by noise in the SENSE-Homodyne results,, whereas they
are apparent in the NCCS reconstruction results. This phenomenon is highlighted in (g) and
(h), the respective enlargements of (b) and (e). Also note that the multiple stenotic lesions
throughout the distal anterior and tibial artery, as well in several secondary branching
vessels, are not distorted by the regularized reconstruction procedure.

Example 3: Figure 5 shows a subset of results obtained for a (view-shared)
neurovasculature volunteer study. The NCCS reconstruction time was slightly less than 2
minutes per 3D volume. Observe in this example that a flow-based artifact (dominantly
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along the anterior-posterior (AP) direction) has manifested from the transverse sinus in the
SENSE+Homodyne image, but that this artifact is (anecdotally) suppressed in the NCCS
result. Additionally, notice the superior contrast and homogeneity of the contrast-perfused
parotid, submandibular, and sublingual salivary glands as well as the paranasal sinuses in the
NCCS result over the SENSE+Homodyne result. The enlargements in (c) and (d) further
highlight both of these image properties.

Example 4: Figure 6 shows a subset of results obtained for a (non-view-shared) study of the
hands. The NCCS reconstruction time was slightly less than 3 minutes per 3D volume. In
both the early and middle filling stage volumes, note that there is strong ringing orthogonal
to the radial and ulnar arteries in the SENSE+Homodyne results, but these artifacts are not
apparent in the NCCS results. In the enlargements of the middle filling stage volume in (g)
and (h), notice that vessels (in particular, the proper and common palmar digital arteries)
appear sharper in the NCCS result than in the SENSE+homodyne result, and that
background haze has been removed, making the deep palmar arch and palmar metacarpal
arteries more apparent. As before, background signal homogeneity is also superior in the
NCCS reconstruction.

Example 5: Figure 7 shows a subset of results obtained for a (non-view-shared) volunteer
study of the vasculature of the calves. The NCCS reconstruction time was slightly less than
6 minutes per 3D volume. Observe in (i) and (j), which are enlargements of the trifurcation
region of the middle filling stage MIP images, the improved sharpness of the major vessels
as well as the resolution of secondary branching vessels originating off the posterior tibial
and peroneal arteries. Evidence of vessel sharpening is also apparent in the cross-section
enlargements in (k) and (l). In the axial plane of the SENSE+Homodyne result, radial-like
artifacts matching the point-spread function of the CAPR sampling pattern permeate the
image; these artifacts are not apparent in the NCCS result. Also, again note that superior
background homogeneity of the NCCS result and, in this example, suggestion of muscular
perfusion.

DISCUSSION
In this work, we have presented a sparsity-driven reconstruction framework for time-
resolved 3D (4D) CAPR CE-MRA image sequences that consistently generates angiograms
with less noise amplification and fewer undersampling artifacts than does the currently-
employed clinical reconstruction protocol (SENSE+Homodyne). Moreover, the presented
strategy requires no changes to the existing CAPR acquisition protocol, and can be executed
in times that are approaching clinical usefulness. Generalizing the reconstruction strategy for
similar CE-MRA acquisition sequences (e.g. [65]) would also be straightforward.

Even though the proposed reconstruction framework has several demonstrated
advantagesover the current CAPR reconstruction protocol, it is not without limitation.
Further development is undoubtedly required to reduce the computation time of the
reconstruction routine such that it is truly clinically practical. As also recently demonstrated
by Murphy et al. [66], optimized use of advanced computing hardware such as graphics
processing units (GPU) may be the key to making iterative sparsity-driven reconstruction
algorithms practical for routine clinical use. We are continuing to investigate mapping the
proposed reconstruction algorithm to alternative hardware platforms as well as algorithmic
modifications that would allow for increased parallelizability.

Another limitation of the proposed reconstruction strategy is that both the recovery model
and the numerical optimization routine each possess several parameters that must be
reasonably assigned to achieve high quality results. For example, assigning too small a value
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to the regularization parameter, α, can allow noise amplification during the reconstruction,
whereas assigning too large a value to α can result in over-sparsification and thus
oversmoothing of the image, and a corresponding loss of features. However, it is noted that
once an effective setting is found for a particular image scenario, it can be reused (e.g. all
neurovascular studies are run under the same settings).

Although beyond the scope of this manuscript, it is expected that the improved vessel-to-
background conspicuity (i.e. contrast) and homogeneity of vessels, enhancing structures, and
background tissue resulting from the NCCS reconstruction strategy for CAPR CE-MRA
image series will lead to improved diagnosis, with better sensitivity for detection of
abnormalities, and fewer false positive/negative interpretations. Nonetheless, a formal
radiological comparison of these two reconstruction strategies is still needed and will be the
subject of a separate, future work.

APPENDIX

FINITE SPATIAL DIFFERENCE COMPUTATION
The adopted finite difference spatial model assumes that any finite spatial difference
centered inside Ω but for which the neighbor of interest is outside Ω will be zero. More
specifically, ∀s ∈ Ω and any n,

Note that this operator can be abstracted as Dn = I − Sn − Cn, where I is the identity
operator, Sn is a non-wrapped shift operator (towards neighbor n) with zero-filling, and Cn is
an operator that copies non-shifted boundary elements. Let n = {Δx, Δy, Δz} and s = {x, y, z},
where x ∈ [0, Nx), y ∈ [0, Ny), and z ∈ [0, Nz). Assuming the notation u(s + n) = u(x + Δx, y
+ Δy, z + Δz), the component operators of Dn can then be defined as

(20)

and

(21)

where

Note both I and Cn are inherently self-adjoint, and application of the adjoint of Sn simply
generates a shift in the opposite direction of n. Consequently, . This trivial
construction allows for consistent boundary handling during iteration, and correspondingly
facilitates code optimization.
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Figure 1.
An example W = 4 CAPR acquisition sequence (Ny = Nz = 256). During this acquisition, the
phase-encoded plane of k-space (ky–kz) is partitioned into a distinct low-pass region, shown
in orange, and a high-pass region (a). The high-pass annulus is itself further partitioned
azimuthally into W subsets of “vanes”, shown here in blue, green, yellow, and red, which
are placed asymmetrically about the origin. Although Cartesian, the CAPR sampling
operator, by construction, tends to exhibit properties similar to non-Cartesian radial
trajectories (within the phase-encoded plane). The sampling order or schedule is shown in
(b). During each temporal update, uniformly-spaced samples (here, spaced 2 × 2 apart) from
within the low-pass region and a single high-pass vane set are acquired. This same set of k-
space indices is reinvestigated after W temporal updates. The set of all k-space indices
investigated at any point during the entire exam is shown in (c), and is simply the union of
the sample sets shown in (b). Note that, for this example, only about 20% of k-space is
investigated during the exam, a property that facilitates practical formation of the reference
signal needed for background subtraction.
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Figure 2.
Deformation of the Laplace error functional as it undergoes ε-continuation (ε → 0).
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Figure 3.
Selected images from Example 1: (a–c) are sagittal MIPs of early, middle, and late filling
stage volumes from a view-shared SENSE+Homodyne reconstruction of the
neurovasculature of a pediatric patient, and (d–f) are axial, coronal, and sagittal slices from a
late-filling stage SENSE+Homodyne volume; (g–i) and (j–l) are the corresponding images
from the NCCS reconstructions. (m) and (n) are the respective enlargements of a region of
interest (ROI) in (f) and (l).

Trzasko et al. Page 20

Magn Reson Med. Author manuscript; available in PMC 2012 April 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Selected images from Example 2: (a–c) are sagittal maximum intensity projections (MIP) of
early, middle, and late filling stage volumes from a view-shared SENSE+Homodyne
reconstruction of the feet; (d–f) are from the corresponding NCCS reconstruction. (g) and
(h) are the respective enlargements of an ROI in (b) and (e).
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Figure 5.
Selected images from Example 3: (a) is a sagittal MIP of a late filling stage volume from a
view-shared SENSE+Homodyne reconstruction of the neurovasculature of a volunteer; (b)
is from the corresponding NCCS reconstruction. (c) and (d) are the respective enlargements
of an ROI in (a) and (b).
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Figure 6.
Selected images from Example 4: (a–c) are coronal MIPs of early, middle, and late filling
stage volumes from a non-view-shared SENSE+Homodyne reconstruction of the hands; (d–
f) are from the corresponding NCCS reconstruction. (g) and (h) are the respective
enlargements of a region-of-interest (ROI) in (b) and (e).
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Figure 7.
Selected images from Example 5: (a–c) are coronal MIPs of early, middle, and late filling
stage volumes from a non-view-shared SENSE+Homodyne reconstruction of the calves of a
volunteer, and (d) is an axial cross-section of a middle filling stage volume; (e–g) and (h) are
from the corresponding NCCS reconstruction. The location of the axial cross-section is
marked by the dotted line in (b) and (f). (i) and (j) are the respective enlargements of an ROI
in (b) and (f); (k) and (l) are the respective enlargements of an ROI in (d) and (h).
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