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Abstract

Passive immunotherapy, including adoptive T cell therapy and antibody therapy, has shown
encouraging results in cancer treatment lately. However, active immunotherapy of solid cancers
remains an elusive goal. It is now known that the human innate immune system recognizes
pathogen-associated molecular patterns (PAMP) conserved among microbes or damage-associated
molecular patterns (DAMP) released from tissue injuries to initiate adaptive immune responses
during infection and tissue inflammation, respectively. In contrast, how the innate immune system
recognizes endogenously arising cancer remains poorly understood at the molecular level, which
poses a significant roadblock to the development of active cancer immunotherapy. We hereby
review the current knowledge of how solid cancers directly and indirectly interact with cells of the
human innate immune system, with a focus on the potential impact of such interactions to the
resultant adaptive immune responses against cancer. We believe that understanding cancer and
innate immune system interactions may allow us to better manipulate the adaptive immune system
at the molecular level in order to develop effective active immunotherapy against cancer. Current
and future perspectives in clinical development that exploits these molecular interactions are
discussed.
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Introduction

Despite a predominantly immunosuppressive tumor microenvironment,! 2 spontaneous T
cell and antibody responses against tumor-associated antigens (TAA) can be induced in
tumor-bearing hosts.3-> In a small fraction of patients, anti-tumor immunity may lead to
spontaneous tumor regression or control of tumor expansion, with perhaps the most
compelling evidence documented in patients with melanoma3 and paraneoplastic neurologic
disorders.

The ultimate goal of active cancer immunotherapy is to achieve the anti-tumor immunity
that has been demonstrated in the sporadic examples of spontaneous tumor regression/
containment and recent success of passive immunotherapy such as adoptive T cell therapy
and antibody therapy.’-10 Recent advances in basic science have defined several ligand/
receptor interactions and molecular pathways that have significant impact on subsequent
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adaptive immune responses in various circumstances. For example, it is now known that the
human innate immune system, through its cell-surface pattern recognition receptors,
recognizes PAMP conserved among microbes or DAMP released from tissue injuries to
initiate adaptive immune responses during infection and tissue inflammation,
respectively.11: 12 Despite this wealth of knowledge, how spontaneous anti-tumor immune
responses are initiated is still poorly understood at the molecular level, which poses a major
obstacle in developing effective active immunotherapy.

Direct cancer and innate immune system interactions

NK cells

The major effector cells of the immune system that directly target cancer cells include
natural killer cells (NK), dendritic cells (DC), macrophages, polymorphonuclear leukocytes
(PMN including neutrophils, eosinophils, and basophils), mast cells, and cytotoxic T
lymphocytes. NK cells, DC, PMN, mast cells, and macrophages are first-line effectors to
damaged cells and cancer cells. Natural killer T cells (NKT) and y3 T cells play roles as both
innate and adaptive components, through close interactions with cells of the adaptive
immune system, such as CD4* and CD8* T lymphocytes with cytotoxic effects and
memory.13 The importance of innate immune system in limiting cancer progression has
been highlighted recently with the following direct molecular interactions between cancers
and innate immune effector cells.

NK cells constitute the primary innate immune cell type responsible for killing non-MHC
expressing cancer cells, releasing small cytotoxic proteins such as perforin and granzyme
that cause apoptosis in target cells. There are two functional types of receptors on the NK
cell surface: stimulatory receptors and inhibitory receptors. Natural killer group 2D
(NKG2D) molecule is perhaps the best-known stimulatory receptor.14 The ligands on tumor
cells for NKG2D include MHC class-I-chain-related protein A (MICA),1> MICB,16. 17

UL 16 binding proteinl8 in human, and minor histocompatibility molecule H60, Retinoic
acid early transcript 1 protein (RAE-1 a-g), UL16 binding protein-like transcript 1 protein in
micel®-22 Fig. 1 shows the interactive diagram of such interactions in humans. The binding
of the above stress-related ligands with NKG2D stimulate NK cells, leading to secretion of
IFN-y and perforin, release of inflammatory cytokines, and the induction of apoptosis in
cancer cells. Other NK stimulatory receptors have also been characterized, such as
NKp30,23 NKp44,24 and NKp462° in humans, NK-cell receptor protein 1 (Nkrp1),26: 27
Ly49d/h,28: 29 NKG2C/E-CD94 in mice, 1% 30 and DNAX accessory molecule3! in both
humans and mice. The inhibitory receptors of NK cells consist of the human killer-cell
immunoglobulin-like receptors (KIR),32 33 the mouse Ly49a/c/g2,34-36 and NKG2A-CD9%4
lectin-like receptors shared by both humans and mice3’. The non-classical MHC class |
molecule, HLA-G, on tumors also functions as a ligand for KIR that can inhibit cytotoxicity
mediated by NK cells. Ly49 family receptors specifically recognize MHC class | or MHC
class-I-like molecules. The non-classical MHC class | molecule HLA-E is the ligand for
human NKG2A/CD94 heterodimer receptors.38

TNF family ligands are widely expressed on the NK cell surface: TNF, TNF-related
apoptosis-inducing ligand (TRAIL), lymphotoxin, Fas ligand, 4-1BB ligand, lymphotoxin-
like inducible protein that competes with glycoprotein D for binding herpesvirus entry
mediator on T cells (LIGHT), OX40 ligand, CD40 ligand, CD30 ligand, and CD27 ligand.
In parallel, the TNF family of receptors, TNF receptor, TRAIL receptor, lymphotoxin
receptor, Fas, 4-1BB, HVEM/LT receptor, OX40, CD40, CD30, CD27 are expressed in
many tumor cell lines.3%-43 The complementary binding between TNF ligands and TNF
receptors can efficiently induce tumor cell apoptotic death. Hence, engineered or induced
expression of TNF family receptors on cancer cells represents one avenue being actively
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pursued for active immunotherapy. Moreover, LIGHT/HVEM (LTBR) signaling helps
develop the adaptive immune response through priming and recruiting tumor-specific T
cells. #4446 NK cells, activated by LIGHT, produce IFN-y to directly promote the expansion
and differentiation of T cells. Studies from mouse LIGHT tumor model suggest that
intratumoral NK cells and local IFN-y are required for priming cytotoxic T cells and tumor
rejection.46

Tumors coated with antibodies against cell-surface molecules can be directly recognized by
several innate immune cells through Fc receptors (FCcR), the receptors for immunoglobulin.
The FcR for IgG (FcyR) include two functional types of receptors, activating and inhibitory
receptors. Antibody coated tumor cells can be killed by NK cells or macrophages with
activating FcyR, termed ADCC or antibody-dependent cell-mediated cytotoxicity.4”: 48 NK
cells solely express the activating FcyR CD16 for 1gG#° without inhibitory FcyR detected.

Macrophages

DC

Apoptotic tumor cells can be efficiently eliminated by macrophages to avoid autoimmunity.
These tumor cells express the so-called “eat me” molecules at cell surface (Fig. 1) for
recognition and phagocytosis by macrophages. These signals include lipid
phosphatidylserine (PS), oxidized PS (ox-PS), oxidized low-density lipoprotein (oxLDL),
and the multi-functional protein calreticulin (CRT).%C These molecules are translocated or
redistributed to expose at the tumor cell surface during apoptosis.>l: 52 CRT is also
associated with the CD91 receptor on macrophages and involved in the engulfment of
apoptotic cells through interaction with soluble complement protein C1q and its ligand PS.
Scavenger receptors, such as SR-A, CLA-1, CD36, CD68, LOX-1 and stabilin-2, can bind
0x-PS and oxLDL motifs on apoptotic tumor cells. T cell immunoglobulin mucin (T1M)
proteins (TIM-1, TIM-3 and TIM-4) were recently identified as critical receptors for PS to
mediate uptake of apoptotic cells.>3-5% CD36 may also form complex receptors with oyB3
integrin on macrophages; while CD14 on macrophages can serve as the receptor for
ICAM-3, and trigger phagocytosis and clearance of apoptotic cells.56 Under normal
circumstances in the tumor environment, the interaction between apoptotic tumor cells and
macrophage phagocytes leads to immune tolerance without provoking significant pro-
inflammatory cytokines. Unlike NK cells, macrophages express both activating and
inhibitory FcyR simultaneously. Activating FcyR stimulate cytotoxicity to tumor cells. In
contrast, FcyRIIB is the only inhibitory receptor on macrophages in mice, which is
responsible for inhibitory effects on macrophage including inhibition of phagocytosis,
decreased cytokine release, superoxide production, and blocking Toll-like receptor 4 (TLR4)
signaling pathway.>’

In the tumor milieu, macrophages are believed to be major contributors to the chronic
inflammation that renders an immune suppressive environment benefiting tumor growth.?
Direct and indirect interactions of macrophages and cancer cells in the above and following
sections provide molecular mechanisms underlying such effects.

DC are perhaps the most potent professional antigen presenting cells, and bridge between
innate and adaptive immune system. The two major groups of DC are known as the myeloid
DC and the plasmacytoid DC. Functional subsets of myeloid DC in the skin, epidermal
Langerhans cells and dermal interstitial DC are also characterized with distinct immune
induction potentials. Activated epidermal Langerhans cells secret interleukin 15 (IL-15) and
induce CD4" and CD8* T cell priming to elicit cellular immunity. Dermal interstitial DC
stimulate B cell priming to produce humoral immunity.58: 59 Engaging DC via different
receptors and subpopulations may stimulate different inflammation responses, producing
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multiple T cell outcomes including T helper cells of type 1 (Thl), Th2, Th17, Th21 and T
regulatory cells.

With respect to direct interactions with cancer cells, DC phagocytose apoptotic cancer cells
via o5 integrin and CD36 receptors.® Similar to macrophages, DC can recognize the so-
called “eat me” signals on apoptotic cells through endocytotic receptors, scavenger
receptors, and TIM receptors. Additionally, the apoptotic cell marker PS can be captured by
TAM receptor protein tyrosine kinases (TYRO3, AXL and MER) on DC and macrophages
via molecular linkers Gas6/protein S, and through a, 83 integrin via linker MFG-E8. TAM
receptors promote phagocytosis of apoptotic tumor cells and inhibit inflammation in DC and
macrophages.1-63 The integrin a,B3 complex is able to mediate engulfment of apoptotic
cancer cells.%4 65 Similar to macrophages, phagocytosis of apoptotic tumor cells by DC in
the absence of danger signals generally leads to immune tolerance.

DC also express both activating and inhibitory FcyR. Comparing to other fashions of antigen
uptake, antibody-coated tumor cells are more efficiently internalized into DC through
activating FcyR, leading to more efficient MHC class | and l1-restricted antigen presentation
and induction of tumor-specific effector and memory T cells.%6 Therefore, inflammation and
adaptive immune response could be trigged by DC-cancer cell encountering through
activating FcyR signaling pathway, and this process is negatively modulated by co-
expression of inhibitory FcyRIIB and TAM receptors on DC. However, it is necessary to
note that uptake of antigens does not accompany induction of effector T cells. The induction
of active adaptive immunity requires danger signals or maturation of DC during antigen
encountering as discussed in the following sections.

PMN and mast cells

Tumor-associated PMN and mast cells can have a significant role in tumorigenesis and
metastasis.5” However, fewer studies have been focused on the direct molecular recognition
between tumor cells and PMN. The known examples are activating and inhibiting FcyR on
PMN and mast cells to interact with antibody coated antigens on tumor cells. Activating
FcyR induces neutrophils to release cytokines and chemoattractants which influence
recruitment and activation of DC and macrophages in tumor environment.48. 68,69
Activation of inhibitory FcyRIIB on neutrophils decreases products of reactive oxygen
species, which are cytotoxic against tumors. While in mast cells, stimulating FcyRIIB can
decrease 1g-E mediated release of granular molecules, 1L-4 cytokine and histamine which
trigger inflammatory response in tumor environment.®’ One study has shown that increased
direct contact between tumor cells and PMN plus macrophages in mice is responsible for
resisting lethal doses of cancer cells.’® 71 However, the molecular mechanism for such
efficacy remains unclear.

Clinical development based on direct cancer and innate immune system
interactions

A few NK-cell-based cancer therapies are now being tested in clinical trials, most of which
utilize direct cytotoxic activity of NK cells against cancer, such as activation of NK cell-
surface stimulatory receptors or blocking surface inhibitory receptors. Based on preclinical
studies showing tumor regression induced through genetic overexpression of NKG2D,
several drugs that selectively up-regulate NKG2D ligands on tumor cells are introduced to
complement chemotherapy such as DNA damage-inducing cisplatin and 5-FU,’2 the histone
deacetylase inhibitor sodium valproate’3. Low-dose proteasome inhibitor bortezomib has
also been applied in human breast cancer’# and hepatocellular carcinoma’® to increase NK
activating ligands and subsequent tumor lysis. TRAIL on NK cells can efficiently trigger
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cancer cell apoptosis even after chemotherapy, which induces resistance to intrinsic
apoptotic process in cancer. Thus, modulating TRAIL pathway on NK cells is also a new
approach combining NK cell-based therapy with chemotherapy.”8: 77 In addition to
activation of NK-surface stimulatory receptors, therapeutic monoclonal antibodies such as
the anti-KIR monoclonal antibody blocking inhibitory signaling in NK cells have been
tested in clinical trials on acute myeloid leukemia and multiple myeloma patients.’8

Several clinically useful monoclonal antibodies have now been approved for lymphoma and
leukemia, with some functioning in part through ADCC, such as B-lymphocyte antigen
CD20-targeted humanized monoclonal antibodies Rituximab, Tositumomab, and
Veltuzumab.”®: 80

Cancer and innate immune system interactions through DAMP and their
partner receptors

HSP

In addition to the direct cancer/innate immune system interactions, a large number of
molecules released due to cancer cell death, may function as DAMP and interact with innate
immune cells (Table 1). Such cancer-derived DAMP include both intracellular molecules
and extracellular matrix (ECM) molecules released from apoptotic and necrotic tumor cells.
Intracellular molecules that can function as DAMP include heat shock proteins (HSP), high-
mobility group box-1 protein (HMGB1), adenosine triphosphate (ATP), mitochondrial
formyl peptides, mitochondrial DNA, and uric acid. Special attention is given to NY-ESO-1
and possibly others, which are initially identified as TAA but lately have been recognized
with similar properties as DAMP. ECM danger molecules include hyaluronan and heparan
sulfate fragments, S100 family proteins, fibronectin, surfactant protein A, biglycan, versican
and so on. TLR on innate immune cells represent the major pattern recognition receptors
sensing DAMP-related danger signals.1! Other receptors such as cytoplasm NOD-like
receptors and RIG-I-like receptors also play significant roles in responding to DAMP
derived from cancers.8!

The exact nature of these DAMP in the cancer microenvironment and their contributions to
the cancer-associated inflammation and immunity are yet to be clearly understood, which
are now an active area of investigation. Nevertheless, it is believed that cancer-derived
DAMP and their partner receptors represent new molecular targets with potentially
significant immunological outcomes upon intervention.

HSP are house-keeping proteins that are widely expressed in most cells, and are molecular
chaperones under normal and stressed conditions. HSP from necrotic tumor cells display
immunological properties characterized by induction of DC maturation, inflammatory
cytokine production and stimulation of NK cell cytotoxicity.82 Some of these activities are
related to promoting tumor growth;83 while others contribute to anti-tumor immunity.
HSP90, Gp96, CRT, HSP70, HSP110, and Grp170 can function as chaperones of
polypeptides in cancer. Tumor-derived HSP-peptide complexes can be taken up by antigen-
presenting cells such as macrophages and DC and cross-presented by MHC class |
molecules, which makes HSP excellent carriers for cancer vaccines. Scavenger receptors
and CD91 are common recognition receptors for HSP on macrophage and DC surface.84
Among various HSP family members, HSP70, GRP78, and Gp96 have been found
immunogenic in cancer patients, and also qualify as TAA.85-87 TLR2/TLR4 have been
indicated as the major receptors involved in HSP70- and Gp96-mediated DC activation
through the MyD88/NF-kB pathway,88 although conflicting data suggested that stimulation
of TLR2 or TLR4 could be caused by microbial contaminants in the purified HSP
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preparations. Other cell-surface receptors are also indicated in HSP signaling, such as CD14
and CD40 in HSP70-mediated DC activation and scavenger receptor LOX-1 in HSP70-
mediated antigen cross-presentation.8?

HMGBL1 is a widely-expressed protein normally located in the cell nucleus and functions as
a DNA-binding transcriptional factor. However, it can be released as a secreted protein from
necrotic and apoptotic cancer cells.% In necrotic cell death, emitted HMGB1 contributes to
inflammation in activating DC/macrophage to secret IFN-a, TNF-a, IL-12 and IFN-y, up-
regulate CD80 and CD86 co-stimulatory molecules, and induce adaptive CD8* T cells.%0: 91
In contrast, oxidized HMGBL1 delivers tolerogenic signals during apoptosis. Extracellular
HMGB1 usually associates with other molecules correlating with differential binding to DC/
macrophage cell surface receptors. For example, HMGB1/DNA/RNA complex signals
through RAGE (receptor for advanced glycation end products).®2 HMGB1/IL-1p associates
with the IL-1R/IL-1RAcP complex.93 HMGB1 and lipopolysaccharide (LPS) complex can
activate TLR4;% 95 while HMGB1/nucleosome preferentially engages TLR2.96 HMGB1/
CXCL12 associates with receptors CXCR4, TLR4 and RAGE.®” HMGB1 has also been
reported to directly bind to triggering receptor expressed on myeloid cells-1.98 Pro-
inflammatory responses are usually caused by the above HMGBL1 and associated partners;
whereas several binding receptors of HMGBL1 suppress its proinflammatory effects, such as
CD24 and thrombospondin. 99

ECM components

ATP

Multiple ECM components are upregulated or degraded in cancer, serving as pro-
inflammatory mediators mostly through pattern recognition receptors TLR2 or TLR4 or
both. Biglycan, an ECM proteoglycan liberated during inflammation, activates p38, ERK,
and NF-xB signaling pathway through receptors TLR2 and TLR4 in macrophage and
induces the production of inflammatory cytokines TNF-o and chemokine macrophage
inflammatory protein-2 (MIP-2).100 ECM degradation product of polysaccharide fragments
derived from hyaluronic acid1%? and heparan sulfatel92 have revealed new roles for
immunomodulatory signals eliciting DC maturation via TLR4. S100A8/S100A9 proteins,
another family of endogenous DAMP molecules, can specifically interact with the TLR4-
MD2 complex on phagocytes, which results in elevated expression of TNF-a and
stimulation of chemotactic response. This includes the secretion of pro-inflammatory
chemokines IL-8, up-regulation of adhesion molecule ICAM-1 and adhesion receptor
CD11b/CD18.103.104 Fibronectin and surfactant protein A (SP-A) may also be recognized
by TLR4 promoting expression of genes involved in the inflammatory response.105. 106
Recent studies suggest that versican, a large ECM proteoglycan that accumulates in the
mouse Lewis lung carcinoma microenvironment, stimulates tumor infiltrating macrophages
(via TLR2, and co-receptors TLR6 and CD14) to produce IL-6 and TNF-a, and accelerates
LLC metastasis.197 Versican is also accumulated in stroma surrounding human skin tumors
induced by UV, co-localizing with infiltrating neutrophils.108

Recent evidence show that high levels of extracellular ATP can function as an endogenous
danger signal and pro-inflammatory factor.199 High concentrations of extracellular ATP are
quickly detected after tumor death induced by stress and chemotherapeutic agents.110 ATP
is believed to play an important role in rendering the “immunogenic” death of tumor (late
stage apoptosis and necrosis) and induction of anti-cancer immune response accompanied
with chemotherapy.111 Following chemotherapy, ATP emitted from dying cancer cells
engages the purinergic receptor P2X7 on immature DC, activating the NOD-like receptor
family, pyrin domain containing-3 protein (NLRP3) inflammasome and driving the secretion
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of IL-1p. IL-1p then contributes to adaptive immunity against cancers, including priming
IFNy-producing CD8* T cells.112

Mitochondrial DAMP

Uric Acid

Mitochondrial DAMP are newly identified intracellular DAMP that can be released into the
circulation from shock-injured tissues, which can elicit significant immune consequences.113
Among them, mitochondrial formyl peptides activate human PMN through formyl peptide
receptor-1;114 mitochondrial DNA, which are evolutionarily derived from bacteria, is
recognized by innate immune system via TLR9, that similarly binds bacteria DNA.
Mitochondrial DAMP promote PMN Ca2* flux, activate p38 MAPK!1® and p44/42
MAPK,16 and induce PMN to secrete IL-8 and matrix metalloproteinase-9. This has lead to
PMN migration, degranulation and contribute to systemic inflammatory responses in vivo.
Dying tumor cells may also release mitochondria debris containing formyl peptides and
DNA, producing similar immune outcomes.

Uric acid is a by-product of nucleic acid metabolism, which can be released from dying
tumor cells and serve as a DAMP alert, shaping both the innate and adaptive immune
responses.117 First, uric acid crystals may form in tumor cells with high contents of nucleic
acids, which are able to up-regulate co-stimulatory molecules on immature DC and
subsequently prime CD8" T cells.}18 Second, in cooperation with NF-kB activation (such as
that caused by LPS), uric acid crystals have recently been shown to induce DC to secrete
IL-1a/B, IL-6, and 1L-23, which subsequently drive pro-inflammatory Th17 differentiation
of naive CD4* T cells.119 IL-1 then binds to the IL-1R and signals through MyD88 to
amplify pro-inflammatory responses, including neutrophil recruitment.120 The effect of
Th17 differentiation is dependent on the NLRP3 inflammasome, and cytokines IL-1a/p and
IL-18. The receptor that identifies uric acid crystals is not clear. The binding of uric acid
crystals with immature DC seems not to be mediated by a specific receptor on the cell
surface, but instead depends on directly engaging the cholesterol-rich membrane lipid rafts
and Syk kinase activation.121. 122

TAA and DAMP

TAA are usually defined based on their recognition by spontaneous T cell and antibody
responses in cancer patients. When encountering antigen presenting cells, TAA themselves
are generally perceived as by-standers that rely on the above-referenced “danger signals” to
initiate adaptive immune responses. According to this paradigm, TAA will be mostly
resulted from the neo-peptides of genetic mutations in cancer cells. However, human TAA
identified to date are commonly seen as non-mutated self-proteins.? It is speculated that
direct interactions may exist between some TAA and the innate immune cells, which may
play a role in the initiation of adaptive anti-tumor immunity in vivo. In search of intrinsic
factors derived from TAA that contribute to anti-tumor immune responses, our laboratory
has been focused on NY-ESO-1, a non-mutated cancer/testis antigen with distinctively
strong immunogenicity.123 Spontaneous antibody and T cell immune responses against NY-
ESO-1 are readily detectable in a wide spectrum of cancer patients with NY-ESO-1-
expressing tumors, including older patients with late stage cancers, whose immune systems
are known to be less responsive. The immunogenicity of NY-ESO-1 is not due to its higher
level of expression compared to other TAA. Indeed, at least in melanoma, the expression of
NY-ESO-1 is much lower than that of melanocyte differentiation antigens such as gp100,
MART-1, TRP-1, and TRP-2, as well as other cancer/testis antigens, such as MAGE-1 and
MAGE-3.124 Our recent investigation of the specific interaction between polymeric NY-
ESO-1 and TLR4/CRT on the surface of immature DC, macrophages, and monocytes,
indicates a unique interaction between NY-ESO-1 and the innate immune system,122. 125
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Although the exact signaling events of NY-ESO-1/DC interactions still need to be
elucidated, NY-ESO-1 is shown to serve as an endogenous molecular adjuvant in anti-tumor
immune responses. Expression plasmids encoding NY-ESO-1 fused with TAA carbonic
anhydrase 9 generated robust antibody responses against the otherwise non-immunogenic
protein in mice.12°

NY-ESO-1 thus represents the first example of a cancer/testis antigen that is also a DAMP.
On the other hand, antibody (and maybe T cell) responses against well-known protein
DAMP, such as HSP70, GRP78, and HMGBL1 are present in various cancer patients.85-87
These DAMP are thus also TAA, supporting the cross-over roles between TAA and DAMP,
i.e. certain TAA may serve as DAMP and certain protein DAMP may serve as TAA.

Clinical development based on interactions of cancer-derived DAMP and
their receptors

Targeting TLR

Current strategies in clinical development include (1) TLR functional blockade using
neutralizing antibodies and antagonists, (2) TLR signaling pathway inhibitors, and (3) the
use of TLR agonists alone or as vaccine adjuvants.126-129 We emphasize on TLR agonists in
immunotherapy of solid cancers in the following paragraph.

Due to complicated and sometimes adverse immune effects of TLR agonists, their overall
use as cancer monotherapies is limited locally but not systematically. So far, TLR agonists
approved by the FDA for clinical use in cancer treatment consist of the classic Bacillus
Calmette-Guein (mycobacterium mixture) targeting TLR2, TLR4, and TLR9 for bladder
cancer,39 Imiquimod (small-molecule single-stranded RNA) targeting TLR7 for superficial
basal cell carcinoma, 131 132 and the AS04 adjuvant system (detoxified lipid A on aluminum
hydroxide) targeting TLR4 for human papillomavirus as a prophylactic cervical cancer
vaccine.127 Several other TLR agonists, such as CpG oligo-deoxynucleotides targeting
TLRY7, polyriboinsinic-polyribocytidylic acid targeting TLR9, and flagellin-protein fusions
targeting TLR5 are being actively evaluated as adjuvants in multiple cancer indications.133
For example, a small single stranded RNA molecule based TLR7 agonist, 852A, stimulates
immature DC to produce multiple cytokines including IFNa in vitro and in vivo. It is now
being evaluated in a Phase 11 clinical trial for treatment of inoperable melanoma.13* There
are also numerous efforts to discover new TLR agonists with low toxicities and improved
systemic anti-tumor effects from natural product extracts analysis and structural
modifications. TLR agonists are being exploited as adjuvants in cancer vaccines based on
their ability to induce maturation of antigen presenting cells.133 They can also combine with
chemotherapy, radiotherapy or monoclonal antibodies to improve efficacy.

Molecular adjuvant effect of HSP and other DAMP

HSP have been applied as carriers/adjuvants for cancer vaccines in clinical trials. The most
commonly used approaches include autologous tumor-derived HSP-polypeptide complexes
and chimeric HSP-TAA fusion proteins. Promising effects are being obtained in clinical
trials using Gp96 complex purified from patients’ own cancers including glioma, renal cell
carcinoma, melanoma and pediatric neurological cancer patients. For example, in a phase Il
trial carried out in stage IV melanoma patients treated with autologous tumor-derived Gp96,
twenty eight among 39 patients had residual measurable disease; whereas 11 were disease
free after surgery.13° In another Phase 11 study of HSP polypeptide complex for patients
with metastatic renal cell carcinoma, two patients had a partial remission, one had a
complete remission and 18 had stable disease, among 61 patients treated. These HSP-based
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vaccines exhibit minimal toxicity and promising antitumor activity.89 Phase 111 clinical trials
have been initiated in advanced melanoma and kidney cancer with earlier stage disease.136

Pre-clinical studies have indicated potential advantages in cancer vaccine-induced helper T
cells and cytotoxic T cells generated through activating immature DC directly with DAMP
rather than indirectly via pro-inflammatory or activating cytokines provided by neighboring
cells.137. 138 |n particular, following the recognition of the mechanism of immunogenicity,
HMGB1 and NY-ESO-1 are being studied in preclinical investigations as immune adjuvants
with perspectives as potential vaccine adjuvants in human trials in the future.125. 139 DAMP,
due to its limited toxicity comparing with bacterial and viral products, are attractive
candidates of molecular adjuvant development.

Other areas of clinical development exploiting cancer/innate immune cell interactions, such
as blocking DAMP that are associated with chronic inflammation for the prevention and
treatment of cancer, blocking or enhancing cytokines/chemokines in cancer biotherapy,
utilization of growth factors to increase the number of DC and other antigen presenting cells,
have been the subject of other review articles 1 2: 140 and not explicitly discussed here.

Conclusions

Spontaneous immune responses against cancer are complex and can be well summarized in
the immune editing model.> In most patients present at the clinic, chronic inflammation and
immune suppression are the dominant effects in the tumor microenvironment. However, this
does not exclude the existence of cancer-derived intrinsic factors that may have a powerful
activation effect to the immune system. By dissecting the molecular details of cancer and
innate immune system interactions as summarized in Fig. 1 and Table 1, we hope to
individually identify cancer-derived intrinsic factors involved in this complex network and
point to areas with the potential of tipping the balance through immunological interventions.
These factors are composed of certain cancer-derived DAMP as well as their partner
receptors on the immature DC, which represent new molecular targets for immunotherapy of
cancer in the future.
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Figure 1.

Direct cancer recognition by the innate immune system. NK, macrophages, DC, neutrophils,
eosinophils, and mast cells are the cellular components of the innate immune system.
NKG2D, a stimulatory receptor on NK cells, specifically recognizes MICA/B on cancers to
stimulate cell killing. Inhibitory receptors such as KIR detect non-classical MHC class |
molecule HLA-G on cancers to prevent NK cell cytotoxicity. Binding of TNF family ligands
on NK cells to TNF family receptors on tumor cells triggers cancer apoptosis, which gives
rise to subsequent CD4" and CD8* T cells. The function of NK cells is also mediated by
activating FcR/CD16 through ADCC. Macrophages phagocytose apoptotic cancer cells via
CD14, TIM, TAM and FcR receptors through the interaction with ICAM-3, PS, PS/Gas6
and immune complex, respectively. Gas6 functions as the “bridge” between PS and TAM
receptors. Both activating and inhibitory Fc receptors (FCR™, activating; FCR™, inhibitory)
exist on macrophages and associate with the production of cytokines and superoxide
substances. DC may uptake apoptotic tumor cells through o, 85, CD36, FcR, TIM and TAM
receptors. Cytokine secretion from DC and macrophages promote antigen presenting cell
activation, leading to cellular and humoral adaptive immune response. Activating FCR on
DC help tumor cell antigen presentation. Activating and inhibitory FcR are also expressed
on neutrophils, eosinophils, and mast cells, which directly recognize antibody-coated tumors
to promote or inhibit the secretion of cytokines and chemokines from innate immune cells.
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Table 1
Cancer-derived DAMP and their receptors on the innate immune cells.
DAMP Receptors Target Cells Immunological Outcomes Ref
HSP family members CD91, TLR2/4, DC Macrophages Antigen presentation, cross- presentation; | 84 88,89
CD14, CD40, DC activation
Scavenger receptor
LOX-1
HMGB1/DNA/RNA RAGE, TLR9 Plasmacytoid DC Cytokine production: IFN-a, TNF-a 92
HMGBL/IL-1p IL-1R/IL-1RACP Macrophages Neutrophils | Chemokine/Cytokine production: MIP-2, | 93
TNF-a
HMGB1/LPS TLR4 Monocytes Cytokine production: TNF-a, IL-6, 94,95
IL-1B, IL-10
HMGB1/nucleosome TLR2 DC Macrophages Cytokine production: TNF-q, IL-6, 9%
IL-1B, IL-10; Upregulation of co-
stimulatory molecules: MHC class I,
CD86, CD83
HMGB1/CXCL12 CXCR4, TLR4 DC Macrophages Migration of DC and macrophages o7
HMGB1 TREM-1 Monocytes Neutrophils Chemokine/Cytokine production: TNF-a, | 9%
IL-6, IL-8
HMGB1 CD24/Siglec-10 DC Cytokine reduction:IL-6, CCL2, TNF-o; 99
Inhibition of NF-kpB
Biglycan TLR2/4 Macrophages Chemokine/Cytokine production: MIP-2, | 100
TNF-a; Activation of p38, ERK, and NF-
P
Hyaluronic Acid TLR4 DC DC maturation 101
Heparan Sulfate TLR4 DC DC maturation 102
S100A8/S100A9 TLR4/MD2 DC Macrophages Chemokine/Cytokine production: IL-8, 103, 104
TNF-a; Upregulation of adhesion
molecule ICAM-1
Fibronectin TLR4 Macrophages Production of MMP-9; NF-kf activation 105
Surfactant protein A TLR4 Macrophages Cytokine production: TNF-o, IL- 10; NF- | 106
«p activation
Versican TLR2/TLR6/CD 14 Macrophages Chemokine/Cytokine production: TNF-a, | 107,108
IL-6, IL-1B, MIP-1qa, MIP-1B, MIP-2
ATP pP2X7 DC Cytokine production: IL-18; NLRP3 109-112
inflammasome activation
Mitochondria formyl peptides | FPR-1 Neutrophils MMP-8 and MMP-9 production; 114,116
Activation of p44/42 MAPK; Ca* flux
Mitochondria DNA TLR9 Neutrophils MMP-8 and MMP-9 production; 115
Cytokine production: TNF-q, IL- 6;
Activation of p38 MAPK
Uric acid DC Th17 Cytokine production: IL-10/B, IL-6, | 117-121
and IL-23; Upregulation of co-
stimulatory molecules
NY-ESO-1 CRT/TLR4 DC ND 122,125
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Abbreviations used: FPR-1: formyl peptide receptor-1; MMP: matrix metalloproteinase; ND: not determined; TREM-1: triggering receptor
expressed on myeloid cells-1; TRPM2: transient receptor potential protein M2.
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