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The recently developed SOGGA11 and M11-L density functionals have been tested for the predic-
tion of bandgaps and lattice constants by comparing to databases containing 31 bandgaps and 34
lattice constants. To make a comparative assessment we also test several other density functionals
against the same databases; in particular, we test the local spin density approximation, PBE, PBEsol,
SOGGA, TPSS, revTPSS, and M06-L local density functionals and the HSE screened-exchange hy-
brid nonlocal density functional; and for a subset of 13 lattice constants we also compare the mean
errors to those of the AM05 and WC local density functionals and the HISS and HSEsol nonlocal
density functionals. The tests show that, of the ten functionals tested against all 65 data, the SOGGA,
PBEsol, and HSE functionals are the most accurate for lattice constants, whereas the HSE, M11-L,
and M06-L density functionals are the most accurate for bandgaps. However, the SOGGA11 density
functional is the most accurate generalized gradient approximation for bandgaps. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.3698285]

I. INTRODUCTION

Many years ago, semiconductors were defined as “rather
poor conductors.”1 But now they are recognized more pos-
itively as the materials at the heart of much modern tech-
nology. It is therefore essential to validate computational
methodologies for materials design and evaluation in terms
of their ability to predict the structural and electronic proper-
ties of semiconductors. The most central of these properties
are lattice constants and bandgaps.

Bandgap is a critical property for understanding the op-
tical and electrical properties of materials, for the design of
semiconductor devices, and for the optimization of photo-
catalysis schemes. The accurate calculation of bandgaps is
an active and important research area in solid-state physics
and theoretical chemistry.2–5 Although Kohn-Sham density
functional theory (DFT) has been very successful in theoret-
ical physics and quantum chemistry, local density function-
als such as the local spin density approximation (LSDA) and
generalized gradient approximations (GGAs) tend to underes-
timate bandgaps due to self-interaction errors. Self-interaction
errors are also often largely responsible for the underesti-
mation of chemical reaction barrier heights4, 6 and HOMO-
LUMO gaps and for the overestimation of polarizabilities and
hyperpolarizabilities of conjugated molecules. Hybrid func-
tionals, which include a portion of nonlocal Hartree-Fock
exchange, ameliorate the self-interaction problems, and they
are much more accurate for bandgaps than the LSDA and
GGAs.4, 7, 8 However, the computational cost for nonlocal ex-
change in solid-state physics calculations (or any calculations
on spatially extended systems) is very high,4, 9, 10 and recently
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Heyd et al.4, 11, 12 developed a screened-exchange hybrid func-
tional, called HSE, to ameliorate this problem.

Although on the one hand we want to develop the best
density functionals regardless of their complexity and compu-
tational cost, the literature shows that in practice cost is still
an important criterion for choosing a modeling method for ap-
plications to complex systems, and most computer programs
for studying spatially extended systems such as solid-state
materials either are restricted to local density functionals
or are orders of magnitude more expensive when nonlocal
functionals are employed. Therefore, there is great interest in
testing and validating local functionals. Local functionals are
those that depend on local properties such as electron density
(the LSDA functionals), electron density and its reduced
gradient (GGAs), or electron density, its reduced gradient,
and the electronic local kinetic energy density (meta-GGAs).
Local functionals do not include nonlocal Hartree-Fock
exchange as required to fully eliminate self-interaction, nor
do they include nonlocal correlation as required to model
dispersion interactions between nonoverlapping subsystems.
In the present study, we use databases of properties for 31
semiconductors to assess the performance of a large number
of DFT functionals for lattice constants and bandgaps.
The considered functionals include the nonlocal HSE
(Refs. 4, 11, and 12) functional and nine local functionals:
our recently proposed SOGGA11 (Ref. 13) and M11-L,14

their SOGGA (Ref. 15) and M06-L (Ref. 16) predecessors,
and six other popular and high-performing functionals,
in particular LSDA, PBE,17 PBEsol,18, 19 TPSS,20 and the
recent revTPSS.21 SOGGA11, SOGGA, PBE, and PBEsol
are GGAs, and M11-L, M06-L, TPSS, and revTPSS are
meta-GGAs.

Lattice constants are of key interest for solid-state ap-
plications and materials design. The performance for lattice
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constants of diverse solids of LSDA, five standard GGAs,
one meta-GGA, and several unnamed variations of GGAs has
been studied thoroughly by Haas et al.22–24 Their studies in-
cluded five of the functionals studied here, and they ordered
these functionals—from those that most underestimate lattice
constants to those that most overestimate them—as LSDA,
SOGGA, PBEsol, TPSS, and PBE.22 Their study did not in-
clude bandgaps, and here we study performance not only for
lattice constants but also for bandgaps and a broad set of
molecular properties with ten functionals including three very
recent ones to obtain further perspective.

II. THEORY

A. Exchange-correlation functionals

The nine local density functionals studied here include
a representative sampling of the most popular and most suc-
cessful of the functionals in current use in solid-state physics
and chemistry. We also consider one nonlocal functional,
namely HSE, because—although nonlocal—it is designed to
be more practical than local functionals for extended systems
(although it is still more expensive). The cost reduction is ac-
complished by making use of range separation for the inter-
electronic coulomb repulsion

1

r12
= erfc (ωr12)

r12
︸ ︷︷ ︸

SR

+ erf (ωr12)

r12
︸ ︷︷ ︸

LR

(1)

in the exchange term, and then including nonlocality only
in the short-range (SR) part. Thus HSE may be called a
screened-exchange hybrid functional. This strategy retains
some of the accuracy advantages of a nonlocal functional
while avoiding at the same time the computationally expen-
sive treatment of long-range (LR) nonlocal exchange.

The local M11-L uses the range-separation of Eq. (1) but
only at the local level. The M11-L exchange has a dual-range
functional form that is composed of a meta-GGA functional
with different parameters for SR and for LR. The differences
between M11-L and HSE can be visualized by comparing
the plot of the fraction of exchange as a function of the
interelectronic distance r12 for the two functionals, as in
Figure 1.

Two of the GGA functionals studied here, namely
SOGGA and PBEsol, were designed as specialized func-
tionals, the former by imposing the correct second order
coefficient (SO constraint) in the density gradient expansion
and enforcing a tighter Lieb-Oxford bound while maintaining
a simple functional form,15 and the latter by optimizing
a parameter to solid-state lattice constants.18, 19 The SO
constraint was also imposed on SOGGA11, which has a more
flexible functional form that has been optimized to provide
good across-the-board performance for chemical properties.
The other considered functionals are the simple LSDA, which
is widely used in solid-state calculations, the popular PBE
GGA, and three meta-GGAs: TPSS, revTPSS (a modification
of TPSS), and M06-L, which is a precursor (without range
separation) of M11-L.

FIG. 1. Range separation in the exchange functional: The black and grey
curves are for the HSE screened-exchange hybrid (local is solid, nonlocal is
dashed) and the red and orange curves are M11-L (LR is red with circles, SR
is orange with diamonds).

B. Lattice constants

Lattice constants are the distances between unit cells in
a crystal lattice, and they are usually represented by three
numbers a, b, and c, representing the distances in three direc-
tions of space. In this work, however, most semiconductors
considered have simple isometric structures, such as diamond
(A4), zincblende (B3), and rock salt (B1), that are completely
specified by a single lattice constant, although we also con-
sider a few wurtzite (B4) structures that require specifying
two lattice constants. Lattice constants are usually measured
and reported at room temperature; however in our database
we used equilibrium values4, 22, 25, 26 obtained by removing the
zero-point anharmonic expansion (ZPAE) contribution as de-
scribed in Sec. III A of this work; that is, the values corre-
spond to experimentally based estimates of the geometry with
the lowest Born–Oppenheimer electronic energy, including
nuclear repulsion. In this way we can directly compare our
calculated results with the experimental data, without having
to estimate vibrational geometry shifts for each density func-
tional.

C. Bandgaps

In discussing bandgaps, one should be very careful to
distinguish optical bandgaps from fundamental bandgaps, as
discussed elsewhere,27, 28 with the optical gap (the onset of
optical absorption) being smaller by an amount equal to the
exciton shift, which is often small in semiconductors. From
a computational point of view, one often calculates neither
the fundamental nor the optical gap, but rather the single-
particle gap defined as the difference in the orbital energies
of the highest occupied crystal orbital and the lowest unoc-
cupied crystal orbital. Alternatively, one can attempt to cal-
culate the optical gap by time-dependent density functional
theory; these results can be quite different for general non-
local functionals and molecular systems,29 but in the macro-
scopic limit (which is the limit needed for the present study of
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solid-state semiconductors) and employing the adiabatic ap-
proximation for time-dependent density functional theory
they are the same for local density functionals30 and similar
for the HSE density functional.5 Keeping these distinctions in
mind so that we do not misinterpret the results, in the present
article we follow the usual convention of comparing single-
particle gaps from calculations to experimental optical gaps.

III. TEST SET AND COMPUTATIONAL DETAILS

A. The SLC34 and SBG31 databases and subsets

In the creation of the new databases we considered data
from the SC/40 database by Heyd et al.4 and from the pre-
viously published31 DSBG9 database. SC/40 is an extensive
database with bandgaps and lattice constants of 40 binary
semiconductors, while DSBG9 is a smaller database of only 9
bandgaps. We trimmed the SC/40 database by deleting seven
of the semiconductors for which there are no experimental
values for either the lattice constant, the bandgap, or both
and three semiconductors for which we had serious diffi-
culties in obtaining converged self-consistent field solutions,
even using a very high number of k points. This leaves 30
semiconductors, to which we added ZnO data32, 33 because
of its importance in applications,34–38 and strong theoretical
interest,39–43 for a total of 31 semiconductors. We then cre-
ated two databases, SLC34 with 34 semiconductor lattice con-
stants and SBG31 with 31 semiconductor bandgaps. Although
both databases have data for the same 31 semiconductors, the
lattice constant database has 34 data because there are two lat-
tice constants each for the three semiconductors (GaN, InN,
and ZnO) with wurtzite structures.

For a more detailed discussion and analysis of the results,
we consider six subsets of the entire database. The first sub-
set (S) is composed of semiconductors that have been widely
used in previous studies; it is of particular interest for compar-
ison of results with other published data. The second subset
(D) is composed of difficult cases; in this subset are semicon-
ductors for which LSDA and many popular GGA functionals
are unable to predict a gap (the calculated gap is zero, incor-
rectly corresponding to a conductor). The semiconductors in
the first two subsets are also included in one of the other four
subsets, which are obtained by dividing the entire database
into four nonoverlapping subsets organized according to the
periodic table. The subset databases are identified as follows:

� S(13): thirteen semiconductors that have been widely
used for testing density functionals: C, Si, Ge, SiC, BP,
BAs, AlP, AlAs, β-GaN, GaP, GaAs, InP, InAs.

� D(6) and D(5): six lattice constants and five bandgaps
for difficult semiconductors: Ge, GaSb, InN, InAs,
InSb.

� G14(4): four unary semiconductors from group 14: C,
Ge, Si, SiC.

� 2-16(6): six binary semiconductors from groups 2 and
16: MgS, MgSe, MgTe, BaS, BaSe, BaTe.

� 13-15(16) and 13-15(14): 16 lattice constants and 14
bandgaps for binary semiconductors from groups 13

and 15: BP, BAs, AlP, AlAs, AlSb, GaN, β-GaN, GaP,
GaAs, GaSb, InN, InP, InAs, InSb.

� 12-16(8) and 12-16(7): eight lattice constants and
seven bandgaps for binary semiconductors composed
of a group 12 and an element from group 16: ZnO,
ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe.

For twelve of the lattice constants in S(13) we used the
correction for ZPAE estimated by Hao et al., while the cor-
rected experimental datum for InSb was taken from Schimka
et al.25 For the other semiconductors we corrected the data
from the experimental references provided by Heyd et al.4

and the ZnO datum32 by estimating the ZPAE based on a
statistical analysis of previous studies.22, 25, 26 We noticed that
the value of the ZPAE correction for semiconductors with B3
structures is on average −0.010 Å (with the largest devia-
tion being within 0.002 Å), and we applied this estimate of
the correction to the remaining uncorrected experimental data
of semiconductors with B3 structures. For the four remain-
ing data with B1 structures we estimated from previous work
an average ZPAE correction of −0.025 Å (with the largest
deviation being within 0.010 Å), and we applied this to the
uncorrected experimental data. The remaining three data are
for B4 structures that have two lattice constants, and for these
we estimate a B3-type correction of −0.010 Å for the smaller
one, and a B1-type correction of −0.025 Å for the larger one;
these ZPAE corrections are always smaller than 1% of the
corresponding experimental lattice constants. The uncertain-
ties in the equilibrium lattice constants due to the uncertain-
ties in the estimated ZPAEs are small enough not to affect our
conclusions.

For bandgaps there is much more agreement on the ex-
perimental data, and all the reference data were taken from
Ref. 4, except for ZnO.33

B. Software, basis sets, relativistic effects

All density functional calculations were carried out with
the periodic-boundary-condition (PBC) methods44 of a lo-
cally modified45 GAUSSIAN09 program,46 using the ultrafine
(99,590) Lebedev grid for density functional integrations. The
calculated bandgaps were calculated at the optimized struc-
tures for each functional. Usually, we used 1000 k points, but
in many cases we compared the results to calculations with
12 000 k points, and the results always agreed.

The basis sets and relativistic effective core potentials for
the calculations SLC34 and SBG31 database were taken from
the supporting information of Ref. 4. This involves using a
modified 6-311G* basis (denoted m-6-311G* in Ref. 4) for
lighter elements (B to S) and a small-core relativistic effective
core potential with a polarized double zeta valence basis set
(denoted m-cc-pVDZ-PP or m-Stuttgard-RSC-1997 in Ref. 4)
for heavier elements (below the third period).

We will consider some additional databases in Sec. IV.
For the calculations on those databases, we used the MG3S
basis set47 for main-group elements and the def2-TZVP basis
set48 for calculations that involve transition metals.

The convergence of the lattice constant results with re-
spect to basis set size was carefully considered by Heyd et al.4
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TABLE I. Comparison of PBEsol results for the lattice constants of S(13)
obtained with different numerical methods.

Solid Expt.a G-PBCb FP-(L)APW+loc PW-PAWd STO+NO/QZQPe

C 3.555 3.561 3.557 3.556 3.553
Si 5.422 5.442 5.438 5.436 5.432
Ge 5.644 5.692 5.684 5.674 5.679
SiC 4.348 4.380 4.360 4.359 4.356
BP 4.527 4.540 4.525 4.521 4.520
BAs 4.764 4.788 4.775 4.767 4.768
AlP 5.450 5.472 5.476 5.472 5.468
AlAs 5.649 5.682 5.681 5.683 5.676
β-GaN 4.523 4.519 4.502 4.494 4.499
GaP 5.441 5.468 5.447 5.438 5.439
GaAs 5.641 5.687 5.670 5.665 5.664
InP 5.858 5.891 5.890 5.882 5.882
InAs 6.048 6.099 6.098 6.094 6.089

MSEf 0.027 0.018 0.013 0.012
MUEf 0.028 0.021 0.019 0.017
Max |ε|g 0.051 0.050 0.046 0.041
Min |ε|g 0.004 0.002 0.001 0.002

aThe experimental results as corrected for ZPAE.
bGaussian basis, periodic boundary conditions results obtained in this work, in agree-
ment with similar results in Refs. 4 and 49.
cFull-potential (linearized) augmented plane-wave and local orbitals results from
Ref. 22.
dPlane-waves projector augmented wave results from Ref. 25.
eSlater-type and numerical orbitals at the quadruple zeta plus quadruple polarization
level from Ref. 26.
fMSE and MUE denote mean signed error and mean unsigned error, respectively.
gMax |ε| and Min |ε| denote the largest unsigned error and the smallest unsigned error,
respectively.

when they created the m-6-311G* basis, and we re-assessed
it here by comparison of our results to those of more recent
studies based on both Gaussians and plane waves. For this
task we used the PBEsol functional and the S(13) subset as
a representative enough combination for testing convergence.
We found perfect agreement between our results and those
obtained by Heyd et al.4 and more recently by Lucero et al.49

These calculations all use the m-6-311G* Gaussian basis with
periodic boundary conditions (G-PBC). Table I presents our
results compared to those obtained by Haas et al.22 using
the very accurate full-potential (linearized) augmented plane-
wave and local orbitals [FP-(L)APW+lo] method, the results
obtained by Schimka et al.25 by using a plane-waves projector
augmented wave (PW-PAW) method, and the results obtained
by Hao et al.26 by using a mix of Slater-type and numeri-
cal orbitals at the quadruple zeta plus quadruple polarization
(STO+NO/QZQP) level; see references cited for the details
of these methodologies and calculations.

From the results presented in Table I we noticed that there
is no general agreement between the methods, but the statisti-
cal parameters at the bottom of the table are similar. Although
lattice constants obtained with a Gaussian basis are usually
larger than those obtained with the other methods, the mean
unsigned deviations all agree within 0.011 Å. According to
these results, we can consider our results for mean unsigned
errors to be accurate within a basis set uncertainty of about
0.011 Å, which is small enough that it will not affect our con-
clusions

Bandgaps are less sensitive to basis set size, and after a
similar comparison of our results to those of Schimka et al.25

we find agreement on both the signed and unsigned average
errors of PBEsol and HSEsol within 0.06 eV between the two
studies.

IV. RESULTS

A. Lattice constants

Table II presents the results for the 34 lattice constants
in SLC34. In all tables, the mean signed error is abbrevi-
ated MSE, and the mean unsigned error is abbreviated MUE.
Functionals are listed in order of increasing MUE.

B. Bandgaps

Table III presents the results for bandgaps. Functionals
are again listed in order of increasing MUE. For all 34 semi-
conductors, if one density functional predicted that the gap is
direct, then the other nine also predicted direct, and the same
consistency holds for indirect; the result is indicated in the last
column of the table.

C. Performances for subsets and other databases

Although some density functionals (such as M06-L,
SOGGA11, and M11-L) are designed as general-purpose
functionals, others are tuned specifically for the solid state
or solid–vapor interfaces. Among the latter group, in chrono-
logical order, the AM05 functional distinguishes between two
separate regions in a real material, one type that is assumed to
be well described by the uniform electron gas, and the other
type assumed to be well described by a surface model system,
an approximation that is very suitable for solids.50 The WC
functional is a modification of the PBE functional that pro-
vides better results for solids, at the price of compromising
the performance for chemical systems.51–53 The HISS func-
tional is a range-separated functional that has HF exchange
only at the middle range of the electron-electron interaction
(sometimes it is also referred as a three-range functional).54

Finally, the HSEsol functional is a recent reparametriza-
tion of the original HSE functional specific for solid-state
calculations.25

Results for the four additional functionals mentioned in
the previous paragraph are only available for comparison to
the present results for the S(13) subset. In order to put the
performances of the functionals considered in this work in
perspective, in Table IV we compare our results for the errors
in the lattice constants of the S(13) subset to those for the four
additional functionals mentioned in the previous paragraph.

In Table V we compare the MUEs for both lattice con-
stants and bandgaps in SLC34 and SBG31, together with
those of the five subsets of SLC34 and SBG31, and those of
four more chemical databases: MGAE109/05 with 109 main
group atomization energies,55 DBH24/08 with 24 diverse bar-
rier heights,56 NCCE31/05 with 31 noncovalent complexa-
tion energies,57, 58 and TMBE15 with 15 transition metal bond
energies. The TMBE15 database consists of all the systems
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TABLE II. Lattice constants (Å) for SLC34.

Solid Structurea Expt.b SOGGA PBEsol LSDA HSE revTPSS M11-L TPSS M06-L PBE SOGGA11

C A4 3.555 3.556 3.561 3.537 3.553 3.571 3.515 3.579 3.560 3.579 3.540
Si A4 5.422 5.430 5.442 5.410 5.444 5.449 5.455 5.466 5.427 5.479 5.425
Ge A4 5.644 5.672 5.692 5.634 5.701 5.698 5.593 5.744 5.752 5.776 5.723
SiC B3 4.348 4.374 4.380 4.355 4.372 4.384 4.314 4.394 4.350 4.404 4.366
BP B3 4.527 4.528 4.540 4.509 4.543 4.551 4.538 4.566 4.535 4.567 4.536
BAs B3 4.764 4.774 4.788 4.750 4.794 4.797 4.763 4.821 4.805 4.829 4.797
AlP B3 5.450 5.461 5.472 5.436 5.472 5.486 5.434 5.497 5.452 5.508 5.461
AlAs B3 5.649 5.670 5.682 5.639 5.691 5.691 5.664 5.713 5.697 5.733 5.682
AlSb B3 6.126 6.131 6.146 6.079 6.146 6.163 6.233 6.172 6.189 6.188 6.159
GaNc B4 3.179 3.190 3.197 3.167 3.198 3.211 3.106 3.224 3.216 3.233 3.192

5.160 5.221 5.233 5.165 5.204 5.253 5.073 5.244 5.261 5.272 5.218
β-GaN B3 4.523 4.510 4.519 4.476 4.518 4.537 4.385 4.552 4.544 4.569 4.515
GaP B3 5.441 5.452 5.468 5.418 5.484 5.494 5.386 5.522 5.498 5.534 5.494
GaAs B3 5.641 5.668 5.687 5.626 5.705 5.703 5.607 5.745 5.753 5.771 5.726
GaSb B3 6.086 6.092 6.111 6.043 6.140 6.134 6.111 6.183 6.211 6.208 6.254
InNc B4 3.527 3.543 3.551 3.523 3.555 3.573 3.501 3.589 3.594 3.599 3.558

5.679 5.787 5.801 5.684 5.729 5.831 5.702 5.765 5.867 5.807 5.801
InP B3 5.858 5.869 5.891 5.839 5.909 5.928 5.903 5.961 5.947 5.970 5.955
InAs B3 6.048 6.078 6.099 6.038 6.120 6.127 6.082 6.170 6.205 6.195 6.204
InSb B3 6.473 6.489 6.501 6.430 6.535 6.524 6.554 6.585 6.644 6.608 6.712
ZnOc B4 3.223 3.233 3.239 3.504 3.199 3.249 3.148 3.249 3.282 3.294 3.272

5.194 5.267 5.277 5.211 5.275 5.320 5.109 5.325 5.331 5.352 5.328
ZnS B3 5.399 5.367 5.383 5.319 5.432 5.437 5.399 5.465 5.448 5.467 5.440
ZnSe B3 5.658 5.638 5.657 5.588 5.707 5.699 5.691 5.736 5.756 5.751 5.707
ZnTe B3 6.079 6.064 6.089 6.017 6.150 6.128 6.233 6.174 6.235 6.195 6.130
CdS B3 5.808 5.825 5.844 5.776 5.896 5.911 5.958 5.944 5.942 5.934 6.097
CdSe B3 6.042 6.075 6.098 6.025 6.152 6.153 6.205 6.195 6.249 6.210 6.343
CdTe B3 6.470 6.478 6.502 6.422 6.568 6.559 6.478 6.610 6.709 6.626 6.740
MgS B3 5.612 5.665 5.676 5.618 5.681 5.710 5.797 5.719 5.649 5.721 5.816
MgSe B1 5.375 5.458 5.477 5.417 5.499 5.504 5.600 5.520 5.520 5.532 5.504
MgTe B3 6.410 6.419 6.432 6.381 6.478 6.479 6.462 6.517 6.478 6.517 6.646
BaS B1 6.364 6.330 6.351 6.303 6.413 6.431 6.443 6.433 6.422 6.436 6.546
BaSe B1 6.570 6.556 6.577 6.517 6.649 6.653 6.731 6.659 6.694 6.671 6.710
BaTe B1 6.982 6.894 6.919 6.897 7.051 7.009 7.113 7.062 7.068 7.062 7.174

MSEd 0.014 0.029 − 0.016 0.049 0.061 0.029 0.083 0.088 0.097 0.102
MUEe 0.027 0.035 0.037 0.051 0.061 0.071 0.083 0.088 0.097 0.104

aThe Strukturbericht symbols are used for the structures as follows: A4-diamond; B1-rock salt; B3-zincblende, B4-wurtzite.
bExperimental results are taken from Ref. 4 and corrected for ZPAE, except for ZnO which is taken from Ref. 32 and corrected for ZPAE.
cWurtzite structures require the specification of two independent lattice constants.
dMSE denotes mean signed error.
eMUE denotes mean unsigned error.

that contain transition metals in the SRMBE13 and MRMBE5
databases.13, 14

The atomization energy and the barrier height databases
test the performance of the functionals for two of the most
central properties in chemistry, while the noncovalent inter-
actions database is particularly interesting because of the high
current activity in testing the ability of density functionals to
predict noncovalent interaction energies, which are of high
interest to both chemists and solid-state physicists. Finally,
since all these chemical databases have no transition metals,
the TMBE15 database is nicely complementary, and since
compounds containing metals are an especially active and
promising application area for local functionals, it is impor-
tant to consider this category of systems.

The functionals in Table V are arranged in order of in-
creasing average MUE for the four additional databases.

V. DISCUSSSION

A. Lattice constants

Table II is disappointing for the new density functionals,
especially SOGGA11. As we shall see in the further discus-
sion, this reflects the difficulty of obtaining good chemical
properties and good lattice constant with the same functional.
Whereas previous discussions15, 18, 19, 24 emphasized general
connections between enforcing the second-order constraint
and obtaining good results for lattice constants, the poor per-
formance of SOGGA11 for lattice constants shows that those
considerations were incomplete. If one has a simple func-
tional form (such as that used in PBEsol or SOGGA or the
unnamed variations of GGAs examined by Haas et al.24), en-
forcing any one constraint has a more general effect on the
density functional, since several global aspects of a density
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TABLE III. Bandgaps (eV) results for SBG31.

Solid Expt.a HSE M11-L M06-L TPSS SOGGA11 PBE revTPSS LSDA SOGGA PBEsol Typeb

C 5.48 5.49 4.06 4.73 4.29 3.97 4.24 4.05 4.22 3.98 4.03 I
Si 1.17 1.28 1.24 1.04 0.80 0.26 0.72 0.63 0.62 0.45 0.53 I
Ge 0.74 0.83 0.90 0.16 0.32 0.09 0.13 0.14 0.00 0.02 0.00 I
SiC 2.42 2.40 2.28 1.59 1.42 1.22 1.46 1.23 1.42 1.16 1.27 I
BP 2.40 2.18 1.66 1.78 1.45 1.03 1.40 1.28 1.36 1.14 1.24 I
BAs 1.46 1.92 1.78 1.50 1.27 0.73 1.25 1.13 1.19 1.02 1.10 I
AlP 2.51 2.51 2.39 2.08 1.86 1.14 1.78 1.72 1.64 1.47 1.56 I
AlAs 2.23 2.21 2.22 1.86 1.66 0.99 1.55 1.57 1.43 1.28 1.37 I
AlSb 1.68 1.98 1.92 1.48 1.58 1.01 1.44 1.40 1.34 1.16 1.22 I
GaN 3.50 3.53 2.91 2.06 2.15 2.09 2.22 1.71 2.18 1.70 1.85 D
β-GaN 3.30 3.14 2.70 1.87 1.79 1.92 1.86 1.53 1.84 1.87 1.70 D
GaP 2.35 2.45 2.02 2.15 1.89 1.17 1.80 1.77 1.63 1.57 1.62 I
GaAs 1.52 1.12 1.64 0.89 0.60 0.72 0.36 0.73 0.04 0.55 0.42 D
GaSb 0.73 0.90 1.09 0.30 0.39 0.30 0.19 0.31 0.00 0.19 0.06 D
InN 0.69 0.76 0.51 0.01 0.00 0.13 0.00 0.01 0.00 0.00 0.00 D
InP 1.42 1.78 1.22 1.47 1.19 1.01 0.99 1.00 0.74 0.95 0.83 D
InAs 0.41 0.58 0.99 0.15 0.08 0.18 0.00 0.00 0.00 0.00 0.00 D
InSb 0.23 0.47 1.03 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 D
ZnO 3.40 2.90 2.55 0.98 0.94 0.94 0.88 0.77 0.91 0.79 0.83 D
ZnS 3.66 3.49 2.79 2.86 2.53 2.20 2.30 2.42 2.02 2.27 2.22 D
ZnSe 2.70 2.42 2.62 1.84 1.62 1.48 1.37 1.58 1.05 1.31 1.26 D
ZnTe 2.38 2.36 2.72 1.51 1.65 1.79 1.39 1.60 1.11 1.38 1.29 D
CdS 2.55 2.25 1.68 1.65 1.47 2.03 1.26 1.31 0.97 1.13 1.08 D
CdSe 1.90 1.51 1.74 0.98 0.85 1.46 0.63 0.77 0.31 0.50 0.45 D
CdTe 1.92 1.67 2.20 0.94 1.05 1.50 0.81 0.98 0.54 0.74 0.67 D
MgS 5.40 4.75 3.56 4.28 3.91 4.11 3.65 2.68 3.37 3.33 3.34 D
MgSe 2.47 2.75 3.14 2.35 2.21 2.02 1.90 2.03 1.74 1.67 1.70 I
MgTe 3.60 3.59 3.38 3.21 3.07 3.10 2.65 3.08 2.41 2.60 2.58 I
BaS 3.88 3.26 2.40 2.64 2.56 3.50 2.40 2.48 2.13 2.11 2.15 I
BaSe 3.58 2.81 2.42 2.27 2.18 2.59 2.05 2.17 1.84 1.79 1.83 I
BaTe 3.08 2.28 2.06 1.57 1.77 2.46 1.66 1.69 1.48 1.32 1.38 I

MSE − 0.10 − 0.29 − 0.73 − 0.85 − 0.89 − 0.98 − 1.00 − 1.14 − 1.14 − 1.14
MUE 0.26 0.54 0.73 0.85 0.89 0.98 1.00 1.14 1.14 1.14

aExperimental results are taken from Ref. 4, except for ZnO which is taken from Ref. 33.
bD = direct gap; I = indirect gap.

TABLE IV. Errors for the S(13) subset of lattice constants and comparison
with other published results.

Functional MUE MSE Max |ε| Min |ε|

SOGGA 0.015 0.013 0.030 0.001
HSEsola 0.015 − 0.013 0.059 0.000
HISSb 0.016 0.007 0.040 0.000
LSDA 0.017 − 0.016 0.047 0.007
WCc 0.022 0.019 0.052 0.001
AM05c 0.025 0.020 0.063 0.002
PBEsol 0.028 0.027 0.051 0.004
HSE 0.035 0.034 0.072 0.002
M11-L 0.039 − 0.018 0.138 0.001
revTPSS 0.042 0.042 0.079 0.014
SOGGA11 0.046 0.043 0.156 0.003
M06-L 0.050 0.050 0.157 0.002
TPSS 0.066 0.066 0.122 0.024
PBE 0.080 0.080 0.147 0.024

aPW-PAW results from Ref. 25.
bG-PBC m-6-311G* results from Ref. 49.
cFP-(L)APW+lo results from Ref. 22.

functional change when one changes any parameter in a sim-
ple functional form, whereas the very flexible form used in
SOGGA11 allows the global behavior to be more indepen-
dent of whether or not the second-order constraint is satisfied,
and this shows that the previously apparent good correlation
of accurate prediction of lattice constants with enforcing the
second-order constraint was deceptive.

We note that revTPSS is a revised version of TPSS that
was constructed21 based in part on the empirical realization
that the TPSS functional does not give good solid-state lattice
constants (just as PBEsol was designed to remedy this defi-
ciency in PBE); thus it provides a good comparison to results
for functionals that were not developed specifically with lat-
tice constants in mind. Table II does show that revTPSS has
smaller than average errors in lattice constants.

Table II suggests that it would be valuable to conduct
further study to understand why some lattice constants are
predicted more accurately than others. There are interest-
ing differences not just between subgroups but also within
subgroups. For example, it is not clear why density functional
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TABLE V. Mean unsigned errors for subsets of SLC34 AND SBG31 and for chemical databases and relative errors.

M11-L M06-L TPSS revTPSS SOGGA11 HSE PBE PBEsol SOGGA LSDA

Lattice constants (Å)
S(14) 0.039 0.050 0.066 0.042 0.046 0.035 0.080 0.028 0.015 0.017
D(6) 0.040 0.136 0.096 0.072 0.132 0.054 0.123 0.050 0.034 0.019
G14(4) 0.039 0.030 0.054 0.033 0.029 0.026 0.067 0.027 0.016 0.012
2-16(6) 0.139 0.086 0.099 0.079 0.181 0.076 0.104 0.045 0.047 0.046
13-15(16) 0.048 0.081 0.074 0.054 0.072 0.039 0.091 0.035 0.022 0.021
12-16(8) 0.083 0.135 0.103 0.073 0.148 0.069 0.120 0.031 0.026 0.076
SLC34a 0.071 0.088 0.083 0.061 0.104 0.051 0.097 0.035 0.027 0.037

Bandgaps (eV)
D(5) 0.42 (5)b 0.44 (4)b 0.40 (3)b 0.47 (3)b 0.41 (5)b 0.15 (5)b 0.50 (2)b 0.55 (1)b 0.52 (2)b 0.56 (0)b

G14(4) 0.45 0.57 0.75 0.94 1.07 0.06 0.82 1.00 1.05 0.89
2-16(6) 1.06 0.95 1.05 1.31 0.70 0.52 1.28 1.50 1.53 1.51
13-15(14) 0.40 0.63 0.73 0.86 0.96 0.21 0.81 0.94 0.94 0.90
12-16(7) 0.43 0.89 0.99 1.07 0.77 0.23 1.22 1.36 1.30 1.52
SBG31c 0.54 0.73 0.85 0.99 0.89 0.26 0.98 1.14 1.14 1.14

Chemical databases (kcal/mol)
MGAE109/05d 0.74 0.87 1.07 0.94 1.68 0.88 3.07 7.94 7.82 18.37
DBH24/08 2.56 4.05 8.20 8.14 5.14 3.77 8.18 10.3 10.2 13.3
NCCE31/05 0.56 0.58 1.17 1.14 1.28 0.75 1.24 1.79 1.84 3.31
TMBE15 4.43 7.74 7.58 8.06 11.67 14.99 9.62 14.53 14.96 27.94

Ave. othere 2.07 3.31 4.51 4.57 4.94 5.10 5.53 8.63 8.71 15.73

aMUE from Table II.
bThe number of semiconductors that are correctly predicted to have a nonzero bandgap is reported in parenthesis.
cMUE from Table III.
dAs in all previous articles employing this database, the errors are given on a per bond basis.
eAverage of the MUE of the other databases calculated as:
f[MUE(MGAE109/05)+MUE(DBH24/08)+MUE(NCCE31/05)+MUE(TMBE15)]/4.

theory does much better for zinc chalcogenides than for Cd
chalcogenides.

An interesting question is whether the performance of
density functionals for molecular bond lengths is related to
their performance for lattice constants.13 One consideration is
that systems with extended structures in all three dimensions
do not have exponentially vanishing tails in the electron den-
sity whereas molecules do. To gain insight into this question,
we optimized the geometry of the MgS diatomic molecule for
all the considered density functionals, using the same basis
set as used for the solid. This diatomic was chosen because
it appears in the 2–16 subset of SLC34, which is the subset
with the largest average errors for lattice constants for M11-
L, SOGGA11, PBEsol, and SOGGA (but not for the other
six density functionals), and because the equilibrium internu-
clear distance re of MgS is well known59, 60 (2.143 Å). Note
that the internuclear distances are different in ionic lattices
than in molecules. For example, the lattice constant of 5.622
Å for MgS corresponds to a nearest neighbor Mg–S distance
of 2.430 Å. Figure 2 compares the absolute percentage er-
ror in re for diatomic MgS to the mean unsigned error of the
SLB34 database; we see that indeed there is a rough corre-
lation, and the performance for the diatomic matches those
of the lattice constant database for many functionals, includ-
ing SOGGA, PBEsol, revTPSS, M11-L, and to a lesser extent
also for LSDA, TPSS, and PBE. It would be interesting to fur-
ther examine the relationship between the accuracy of density
functionals for lattice constants and their accuracy for molec-

ular bond lengths, but it is beyond the scope of the present
work.

When we broaden the discussion to include the four addi-
tional density functions introduced in Sec. IV C, we see from
Table IV that the HSEsol, HISS, WC, and AM05 function-
als perform well for the lattice constants of S(13), all being

FIG. 2. Comparison of the absolute percentage error in the equilibrium dis-
tance of the MgS molecule (blue, diamonds, in Å) with MUE(SLB34) (red,
circles, in percentage points) calculated with different density functional
approximations.
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better than PBEsol; in particular HSEsol provides results that
are matched only by SOGGA. Note that HSEsol and HISS,
like HSE, are nonlocal, whereas the other eleven functionals
in Table IV are local, but in some sense it is still “fair” to
compare HSE, HSEsol, and HISS to the local functionals be-
cause they are local at long-range. However, since the HSEsol
functional was optimized for improvement for solid-state sys-
tems, its performance for chemistry is similar to that of HSE
at best.25 Furthermore, we already showed that the WC func-
tional deteriorates the performance for chemistry with respect
to that of its PBE mother functional.52 Both the AM05 func-
tional and the HISS functional seem promising from more
than one point of view; however their complicated mathe-
matical expressions present enough difficulties for their im-
plementation in software packages that they have so far seen
only limited use and circulation among users.

B. Bandgaps

All functionals in Table III underestimate the bandgaps
on average, as shown by their negative MSE. For most func-
tionals the magnitude of the MSE is the same as the MUE,
which indicates that they underestimate all 31 bandgaps.
HSE has the best performance for bandgaps, which illus-
trates how the inclusion of nonlocal short-range exchange re-
moves a dominant part of the error. Among local functionals,
M11-L is the best performer, with a remarkable gain of more
than 25% over the performance of M06-L, which has the third
best performance (second best among local functionals). The
best GGA functional is SOGGA11, whose performance is
midway between the TPSS and revTPSS meta-GGAs. Com-
parison of Tables II and III shows that the functionals that
provide the best performance for lattice constants (SOGGA,
PBEsol, and LSDA) are the worst performers for bandgaps,
which present a challenge for future functional development.

Comparison of M11-L with M06-L and the other meta-
GGA functionals shows a clear advantage of the new dual-
range exchange functional form that is used in M11-L. M11-L
has about the same computational cost as M06-L and sim-
ilar performance for lattice constants, but Table V shows
that M11-L provides significant improvement not only for
bandgaps but also for the three additional chemical databases.
If we interpret poor performance for barrier heights and

bandgaps as both coming mainly from self-interaction error,
the good performance of M11-L for both the barrier heights
database and the bandgaps shows that M11-L does a much
better job in compensating the self-interaction error than any
other previous local functional. Similarly, SOGGA11 does
best for these databases of any GGA, with performance im-
proved by about 50% for barrier heights and by about 10%
for bandgaps as compared to the popular PBE functional.

For the difficult subgroup, Table V also presents the num-
ber of semiconductors for which the bandgap is predicted to
be different than zero. M11-L, SOGGA11, and HSE are the
only functionals that correctly predict all five semiconductors
in this subgroup to have a gap. All functionals except HSE
and M11-L yield a large underestimation of the gaps for these
difficult cases (HSE and M11-L are the only functionals to
have positive MSE, LSDA has the worst performance by pre-
dicting a zero bandgap for all five cases). Since most density
functionals predict most of the difficult cases to be conduc-
tors, HSE and M11-L are the only suitable functionals for the
study of these semiconductors, and if one restricts considera-
tion to only local functionals, one is left with only M11-L.

The 2–16 semiconductors are a weakness for of M11-L
in that both lattice constants and bandgaps are far from the av-
erage for the other subdatabases. However, this group is also
the worst for HSE and many other functionals, which suggests
another challenge for future functional development.

C. Overall analysis

In order to form a view of the overall performance of
each of the density functionals, we need to consider all six
databases; however, the errors for the different databases have
different typical magnitudes and even different units. To allow
a balanced comparison of the errors for the various databases,
we first converted all the MUEs to relative errors. Averaged
over the ten density functionals, the mean unsigned errors for
the six databases, in the order that they appear in Table V, are
0.065 Å, 0.87 eV, 4.34 kcal/mol, 7.38 kcal/mol, 1.37 kcal/mol,
and 12.15 kcal/mol. Dividing each MUE by the average er-
ror for that database yields a unitless relative error. These are
listed in Table VI, where the density functionals are arranged
in order of increasing average relative error, which is given in
the last row.

TABLE VI. Relative errors.a

M11-L HSE M06-L revTPSS TPSS SOGGA11 PBE SOGGA PBEsol LSDA
MGGAb Nonlocal MGGA MGGA MGGA GGA GGA GGA GGA LSDA

SLB34 1.09 0.78 1.35 0.93 1.26 1.59 1.49 0.41 0.53 0.57
SBG31 0.62 0.30 0.84 1.14 0.98 1.03 1.13 1.32 1.32 1.32
MGAE109/05 0.17 0.20 0.20 0.22 0.25 0.39 0.71 1.80 1.83 4.23
DBH24/08 0.35 0.51 0.55 1.10 1.11 0.70 1.11 1.38 1.39 1.80
NCCE31/05 0.41 0.55 0.42 0.83 0.86 0.94 0.91 1.35 1.31 2.42
TMBE15 0.36 1.23 0.64 0.66 0.62 0.96 0.79 1.23 1.20 2.30

Ave. relativec 0.50 0.60 0.67 0.81 0.85 0.93 1.02 1.25 1.26 2.11

aIn each of the first six rows, the relative error is the MUE divided by the average MUE for that database.
bMGGA denotes meta-GGA.
cAveraged over all six relative errors.
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Several interesting trends emerge when one arranges the
results as in Table VI. First of all, we see that the nonlocal
density functional has better performance than all but one of
the local ones, all of the meta-GGAs perform better than any
of the GGAs, and all of the GGAs perform better than LSDA.
This is probably not too surprising, but the next observation
is not as easy to explain. In particular the table shows that
although the errors in bandgaps, main-group atomization en-
ergies, barrier heights, and noncovalent complexation ener-
gies all roughly correlate with one another (all four of these
rows tend to show increasing errors, with only a few excep-
tions, as one proceeds left to right), there is basically no cor-
relation with errors in lattice constants. The transition metal
bond energies also do not correlate well with other properties.
Clearly the features of density functionals that control semi-
conductor lattice constants and transition metal bond ener-
gies are distinct from those that control main-group energetic
predictions.

Haas et al.24 considered a more diverse set of solids than
we do, but their conclusions and the trends in their paper
are not all that different from ours for the density function-
als and properties they considered. Haas et al.24 concluded
that “GGAs of the PBE form cannot describe well lattice
parameters of solids and atomization energies of molecules
simultaneously.” The present study allows for a more gen-
eral conclusion, namely that even for more general forms
of GGAs, atomization energies, barrier heights, noncovalent
interaction energies, and bandgaps all improve or degrade
together (at least on average), but performance for lattice
constant of solids does not follow the same trends at all.

VI. CONCLUDING REMARKS

In the present study, we tested the performances of our
most recent functionals, SOGGA11 and M11-L, and com-
pared them to those of other successful and popular den-
sity functionals for a large database of lattice constants and
bandgaps of 31 semiconductors (SLC34 and SBG31). We
considered ten functionals (nine local, one nonlocal) for
bandgaps and 14 (11 nonlocal, three local) for lattice con-
stants. We found that:

� For lattice constants the functionals that provide
best performance are SOGGA and HSEsol; of these,
the nonlocal HSEsol is a better general-purpose
functional.

� M11-L provides reasonable results for lattice constants
(better than M06-L), while SOGGA11 is the worst (of
functionals tested) for this property.

� For bandgaps M11-L is the second best functional after
HSE, and is the best local functional. SOGGA11 is the
best GGA functional.

� A correct second order coefficient for the density gra-
dient expansion is not sufficient to provide accurate re-
sults for lattice constants.

By construction, the average value (both the average for
each row and the average for the whole table) of the relative
errors in Table VI is 1.0. Therefore, a relative error below
1.0 denotes better than average performance. Interestingly,

among the ten functionals considered in this table, not a sin-
gle one is better than average for all six databases, and none
is worse than average for all six either. Thus, while it is possi-
ble to improve lattice constants of solids, it is very challeng-
ing to do so and to simultaneously achieve good performance
for chemistry. The quest for a universally applicable density
functional continues.
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