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Abstract
The ability to track CD4 T cells elicited in response to pathogen infection or vaccination is critical
because of the role these cells play in protective immunity. Coupled with advances in genome
sequencing of pathogenic organisms, there is considerable appeal for implementation of computer-
based algorithms to predict peptides that bind to the class II molecules, forming the complex
recognized by CD4 T cells. Despite recent progress in this area, there is a paucity of data
regarding their success in identifying actual pathogen-derived epitopes. In this study, we sought to
rigorously evaluate the performance of multiple web-available algorithms by comparing their
predictions and our results using purely empirical methods for epitope discovery in influenza that
utilized overlapping peptides and cytokine Elispots, for three independent class II molecules. We
analyzed the data in different ways, trying to anticipate how an investigator might use these
computational tools for epitope discovery. We come to the conclusion that currently available
algorithms can indeed facilitate epitope discovery, but all shared a high degree of false positive
and false negative predictions. Therefore, efficiencies were low. We also found dramatic
disparities among algorithms and between predicted IC50 values and true dissociation rates of
peptide:MHC class II complexes. We suggest that improved success of predictive algorithms will
depend less on changes in computational methods or increased data sets and more on changes in
parameters used to “train” the algorithms that factor in elements of T cell repertoire and peptide
acquisition by class II molecules.
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Introduction
CD4 T cells are known to play a key role in protective immunity to infectious organisms and
much current research uses epitope-specific probes to study the role that CD4 T cells play in
immunity to complex pathogens. Further success in identification of the peptides that are the
focus of an adaptive CD4 T cell response is essential for understanding the mechanisms of
protective immunity and the factors that influence the dynamics and specificity of host
pathogen interactions. CD4 T cell epitope identification is also needed for vaccine
evaluation, tetramer-based studies of T cell phenotype and for development of peptide-based
vaccines. With increasing success in genome sequencing of complex bacterial and viral
pathogens (reviewed in (1–5)), candidate proteins for vaccines are increasing, but
identification of epitopes that are the focus of immune responses remains a bottleneck in this
research.

A number of empirical approaches have historically been used for epitope discovery,
including biochemical isolation and proteolytic fragmentation of antigenic proteins (6, 7),
derivation of genetic constructs that encode all or selected segments of candidate pathogen-
derived proteins (8–11), elution and sequencing of peptides from pathogen-infected cells or
tumor cells (12–16), and individual epitope mapping, using arrays of synthetic peptides (17–
22). These approaches, typically coupled with T cell assays to identify the immunologically
active peptide within the candidate antigen, are time consuming and involve significant
expenditure of effort and resources to be successful. The labor intensive nature of these
approaches is a particularly large obstacle for complex pathogens that express hundreds of
proteins, of which only a small fraction may be the target of T cells or B cells or that may
serve a protective role as vaccine candidates.

The considerations of time and expense required for empirical approaches have led to the
development and refinement of algorithms that use different logic bases and sources of data
to predict epitopes that will be presented by particular MHC molecules (reviewed in (23–
28)). Because the major selective force in peptide binding to MHC involves side chains of
amino acids (“anchors”) in the peptide with depressions (“pockets”) in the MHC molecule,
the algorithms focus on scoring these interactions as a means to predict CD4 epitopes. Some
methods such as matrix-based algorithms operate with the general model that each amino
acid adds or detracts from the binding of the peptide to the MHC protein in a largely
predictable, independent and quantifiable manner (29, 30). Large data sets or “training data”
are used to construct and refine the algorithms that ultimately search for the highest 9-mer
core in a peptide and output the predicted binding affinity of every candidate peptide. Other
less rigid algorithms that operate using such methods as neural networks (31, 32) and
particle swarm optimization (33) have also been developed and utilized. Finally, Sette and
co-workers describe a “Consensus” approach that essentially averages the predicted ranking
hierarchy of a given set of peptides scored by what their studies suggest to be the best
performing 3–4 web available algorithms (34).

In general, the predictive algorithms developed for MHC class I peptides that activate CD8
T cells significantly outperform those that predict MHC class II-presented peptides that
elicit CD4 T cells, in large part because of the nature of their respective peptide binding
pockets. MHC class I molecules are closed at their periphery, thus limiting the size of the
peptide that binds to 8–10 amino acids (35–37). Therefore, the amino acids that contribute
the key anchor positions for pocket interactions are easily identified. In contrast, the binding
pocket of MHC class II is open at its periphery. Elution and sequencing studies indicate that
peptides bound by class II molecules typically range from 9–25 amino acids in length (38,
39) and long peptides are well presented to CD4 T cells (40, 41). Often, the “register” of
these peptides, the amino acids that comprise the 9 amino acid core within the MHC-binding
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groove and that dictate MHC binding and T cell recognition, is not known. For several
peptides analyzed in detail, multiple registers are presented by class II (42–45). Therefore,
simple knowledge that a peptide is presented by a class II molecule does not provide insight
into what amino acids control its presentation. Because much of the data that trains the
algorithms are long peptides, it has been challenging to know how identified antigenic
peptides bind to the class II molecule and thus to predict what peptides within an
uncharacterized set will be presented by the same or related class II molecules. Databases
containing epitopes presented by class II molecules have steadily accumulated (46–48)and
been used to refine existing algorithms, but the issue of uncertain binding cores persists.

Because CD4 T cells are known to be critical regulators of both B cell and CD8 T cell
responses to pathogens, provide direct function for responses against intracellular pathogens
and are critical for vaccine success, it is clear that despite the theoretical challenges, there is
considerable appeal in using computation-based algorithms to identify candidate CD4 T cell
epitopes, particularly for complex pathogenic organisms that express hundreds of proteins.
“Benchmark” studies, that assess the accuracy of the predictions typically measured the
ability of the algorithms to predict binding to MHC class II molecules, using existing or new
data sets (25, 29, 32–34, 49–51). Evaluation of peptide performance using functional tests of
the actual immunogenicity of the predicted peptides have been much more limited. The
studies performed are typically restricted to a handful of peptides, are sometimes tested by
immunization with free peptides rather than a complex antigen, and often, the presenting
class II molecule for CD4 T cell recognition is not unequivocally identified (20, 34, 52–55).
In recent years, our laboratory has empirically and comprehensively investigated the peptide
specificity of CD4 T cells elicited in response to primary influenza infection using a
completely unbiased approach involving overlapping peptide libraries and cytokine EliSpot
assays. Multiple strains of mice have been studied, including HLA-DR transgenic mice and
common inbred strains of mice (21, 22, 56). We have identified and quantified the responses
to more than 500 influenza-derived peptides presented by these different class II molecules
that are the focus of CD4 T cell responses.

In the study presented here, we have evaluated the ability of web-available algorithms to
predict the specificity CD4 T cells elicited in response to influenza. We had three goals for
this study. The first was to evaluate the performance of the algorithms for their efficiency in
epitope identification by combining our results in epitope discovery with advances by other
groups in developing predictive algorithms. The second goal was to develop useful
strategies to implement algorithms for epitope discovery for future investigations on the role
that CD4 T cells play in protective immunity to pathogenic organisms. The third goal was to
gain the insight needed to improve performance of the algorithms for future efforts to
facilitate epitope discovery. To our knowledge, the analyses presented in this study are the
first to comprehensively evaluate the performance of algorithms with the results of empirical
and non-biased epitope discovery of multiple pathogen-encoded antigens and unrelated class
II molecules.

Materials and Methods
Mice

The HLA-DR1 and the HLA-DR4 transgenic mice were obtained from D. Zaller (Merck)
through Taconic Laboratories, and were maintained in the specific pathogen-free facility at
the University of Rochester according to institutional guidelines. C57Bl/10 mice were
purchased from the Jackson Laboratories, Bar Harbor ME. Mice were used at 2–5 months of
age.
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Ethics Statement
All animal protocols used in this study adhere to the AAALAC, International, the Animal
Welfare Act and the PHS Guide. All protocols have been approved by the University of
Rochester Committee on Animal Resources; Animal Welfare Assurance Number A3291-01.
The protocols under which these studies were conducted were approved on March 4, 2006
(protocol no. 2006-030) and April 10, 2008 (protocol no. 2008-023).

Influenza Infection of mice
A/New Caledonia/20/99 was produced in allantoic fluid of embryonated eggs. Briefly, eggs
were purchased from SPAFAS Inc. (North Franklin, CT), and incubated at 70°F and 100%
humidity for 9 days, followed by the infection of the allantoic cavity with 100 µl of human
(H1N1) influenza virus A/New Caledonia/20/99 (kindly provided by Dr. John Treanor at the
University of Rochester). Virus was collected from the allantoic fluid and the IED50 for the
produced virus was determined. HLA-DR1, HLA-DR4, transgenic and C57BL/10 (I-Ab)
mice were infected intranasally with A/New Caledonia/20/99 at 50,000 EID50 in 30 µl of
phosphate-buffered saline (PBS). Groups of mice were 2 to 4 months old, at the time of
infection, and were anesthetized by intra-peritoneal injection with tribromoethanol prior to
infection. Ten to twelve days post-infection, the mice were euthanized and spleens and
mediastinal lymph nodes were isolated and used as sources of CD4 T cells for EliSpot
analyses. Lymphocytes were pooled from 4–8 mice and depleted of B cells, CD8 cells and
macrophages by negative selection using MACS depletion (Miltenyi Biotech, Gladbach,
Germany), according to the manufacturer instructions.

Dissociation Kinetics
The dissociation experiments were performed using the procedure as previously described
(57–60). Briefly, 50 µL of 100nM purified soluble DR1 molecules expressed in S2 cells
were incubated with 1µL of 250µM fluorescein-labeled binding peptides at a concentration
of 100nM and pH 5.3 in McIlvaines buffer, containing 0.025% NaN3. The binding mixture
was incubated at 37°C during 2–24 hours and then the class II:peptide complexes were
separated from excess labeled peptides at room temperature using micro spin columns
(BioRad, Hercules, CA). Unlabeled influenza HA [306–318] (PKYVKQNTLKLAT)
peptide was added at final concentration of 5µM in order to prevent possible re-binding of
the dissociating peptide. Soluble I-Ad molecules were produced and isolated as previously
described (58–60). Briefly, a total of 1 × 1010 I-Ad PI-linked-CHO cells were solubilized
with 1.5 L of 50 mM Tris, 150 mM NaCl, 1 mM n-dodecyl maltoside (DDM), and 0.025%
NaN3 containing protease inhibitors. Class II molecules were isolated using antibody
affinity chromatography. After PI cleavage, the soluble I-Ad was eluted from the column at
pH 11.0 and fractions containing class II were pooled, dialyzed against PBS (pH 7.4)
containing 0.2 mM DDM and 0.025% NaN3 (DDM/PBS) and concentrated with a
Centriprep YM-10 device (Millipore Co., Bedford, MA). 50 µL of 100nM purified soluble
I-Ad molecules were incubated with 1µL of 250µM fluorescein-labeled binding peptides at a
concentration of 100nM and pH 5.3 in McIlvaines buffer, containing 0.025% NaN3. The
complexes were isolated using micro-spin columns as described above for DR1.
Dissociation assays were = performed by incubating the purified MHC class II-peptide
complexes at 37°C in McIlvaines buffer plus 0.025% NaN3 at a final pH of 5.3 in the
presence of either unlabeled influenza HA [306–318] (PKYVKQNTLKLAT), for DR1, or
Ea[52–68] (ASFEAQGALANIAVDKK), for I-Ad, in order to prevent possible re-binding of
the dissociating peptide. The dissociating peptide was separated from the remaining
complex with a BioSep SEC-S 3000 column (Phenomenex, Torrance, CA) using a
SHIMADZU chromatograph (Shimadzu Corporation, Japan). The intensity of the remaining
class II:peptide complex was determined using a fluorescence detector (at wave lengths of
495 (nm), excitation, and 525 (nm), emission (Shimadzu Corporation, Japan). The intensity
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of the peak belonging to the complex decreases over time, allowing quantification of the
dissociation half time. The graph of the intensity of the MHC class II-peptide complex
versus the dissociation time is used to generate the dissociation curve. Baselines values were
measured before each dissociation experiment to ascertain that are no traces of previous
samples and the program for elution of the complexes by HPLC-SEC includes a wash time
that ensures complete removal of all previous materials. Dissociation curves fit to single
exponential decay curves with r2>0.9. The half-life is the time at which the initial
fluorescence intensity of the complexes decays to half, which is stated as the t1/2
dissociation, proportional to the stability of that complex.

Peptides
17-mer peptides overlapping by 11 amino acids to cover the entire sequences of the HA and
NA proteins from the A/New Caledonia/20/99 influenza virus (H1N1), the NS1 sequence
from the A/New York/444/2001 influenza virus (H1N1), and the NP and M1 sequences
from A/New York/348/2003 influenza virus (H1N1) were used. Peptide arrays were
obtained from National Institutes of Health (NIH) Biodefense and Emerging Infections
Research Resources Repository, National Institute of Allergy and Infectious Diseases
(NIAID). The A/New York/348/2003 amino acid sequences for NP and M1 are 100%
conserved, and the A/New York/444/2001 NS1 amino acid sequence is >99% compared to
A/New Caledonia/20/99 (H1N1) influenza virus. The peptides were reconstituted to 10mM
in PBS, with or without added dimethyl sulfoxide for hydrophobic peptides, and 1mM
dithiothreitol for cysteine-containing peptides. Working solutions were prepared in
Dulbecco's modified Eagle's medium (Invitrogen Corp., Carlsbad, CA), filter sterilized, and
also stored at −20°C. The final concentration of the individual peptides used in the EliSpot
assays was 10µM.

Use of Web-Based MHC class II:peptide Binding Prediction Servers
The primary sequences for hemagglutinin protein (HA), neuraminidase protein (NA),
nucleocapsid protein (NP), non-structural protein 1 (NS1), and matrix protein 1 (M1)
proteins from A/NewCaledonia/20/99 (H1N1) were obtained from the protein data bank.
The sequences were run using the web-available predictors NetMHCII 2.2, NetMHCII-pan
2.1, and SMM-align at http://www.cbs.dtu.dk/services/ and Consensus, ARB, and
TEPITOPE, at http://tools.immuneepitope.org/main/. If only 15-mer peptides were scored
by algorithms (Consensus, ARB, and TEPITOPE), the empirically tested peptides were
matched to the functionally assayed 17-mer sequences by alignment with their N-termini.
The raw scores, the IC50, or the percentile rank values were used to determine the peptides
that were selected by the algorithms. For methods that report IC50 values such as
NetMHCII-2.2, NetMHCII-pan2.1, SMM-align, and ARB, the predictors qualify a peptide
as follows: 1. Non-binders for peptides with IC50 higher than 500nM, 2. Weak binders for
peptides with IC50 between 50nM and 500nM, and 3. Strong binders for peptides with IC50
lower than 50nM. These specific cutoffs were used to analyze predictive performance in
some experiments based on their use by the developers or users of predictive algorithms (49,
61–64). For Consensus, the percentile rank was used to rank the peptides, while for
TEPITOPE, the raw score was used for ranking. When a given functionally evaluated
peptide was penalized because its predicted binding core was at either the N- or C- terminus
of the scored peptide epitope, we evaluated each 9-amino acid core within the adjacent
scored peptides having the same core as the epitope and assigned the score that had the best
binding value. When scoring the selected viral “proteome”, the input sequences were the
entire amino acids sequences of the five proteins joined together, in the following order:
HA, NA, NP, NS1, and M1, with non-native peptides at the junctions of the proteins
eliminated from consideration. Only the experimentally tested peptides were scored for
analysis.
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Derivation of ROC curves and AUC scores
Algorithm prediction accuracy was measured via receiver operating characteristic (ROC)
curve and the area under curve (AUC) values were calculated as described by others (23–25,
32, 34). Each algorithm’s binding predictions were compared to the empirically defined set
of ‘epitopes’ and categorized under a binary classification system. At each discrimination
threshold, peptides were grouped into one of 4 categories. True positive (TP), predicted
binders as defined by the threshold that elicited response in T cell assays, false positive (FP),
predicted binders as defined by current threshold that did not elicit response in T cell assays,
true negative (TN), peptides predicted relative to threshold that did not elicit response in T
cell assays, false negative (FN), when peptides predicted as nonbinding relative to threshold
elicited response in T cell assays. The true positive rate (TPR), =[TP/(TP+FN)], was plotted
against the false positive rate (FPR), = [FP/(FP+TN)], for each threshold to form the ROC
curve. The area under each algorithm’s curve was calculated to give the AUC score.

CD4 T cell epitope discovery
Peptide-specific cytokine EliSpot assays were performed as previously described (65) and as
represented schematically in Figure 1. Briefly, 96-well filter plates (Millipore, Billerica,
MA) were coated with 2µg/ml purified rat anti-mouse IL-2 (clone JES6-1A12, BD
Biosciences, San Jose, CA) in PBS, washed and incubated with media to block non-specific
binding. CD4 T cells isolated and purified from previously infected mice (at 100,000 to
300,000 cells per well) were co-cultured with fibroblasts expressing the DR1, or antigen
presenting cells (APC) isolated from syngeneic mice and the test peptide at 10µM. After
overnight co-culture, plates were processed to visualize IL-2 producing cells as described
(21, 22, 56) } and cytokine EliSpots were enumerated using an Immunospot reader series
2A, using Immunospot software version 2.

Results
Identification of CD4 T cell epitopes through an entirely empirical method

Recently, our laboratory has identified the full repertoire of influenza-specific CD4 epitopes
from 5 major influenza proteins in several inbred strains of mice that express distinct class II
molecules (SJL, C57BL/10, HLA-DR1 (“DR1”) transgenic mice) by using a completely
empirical approach (21, 22, 65). HLA-DR4 (“DR4”) epitopes were additionally identified
for this study. Mice were infected by intranasal inhalation, representing the natural route of
infection for this pathogen in both mice and humans. At 10–14 days post infection, CD4 T
cells were isolated from lymphoid tissue, purified and assessed directly for their peptide
specificity using synthetic peptides and cytokine ELISPOT assays, allowing direct ex vivo
quantification of antigen or peptide-reactive lymphocytes. CD4 T cell specificity was
identified from a sequential, iterative method of epitope identification, employing
overlapping synthetic 17mer peptides representing the entire translated sequence of these
five viral proteins, schematically illustrated in Figure 1. These selected viral proteins that
were examined (HA, NA, NP, M1 and NS1) differ with regard to their expression within the
influenza virion and in infected cells, allowing us to evaluate whether these variables
influenced epitope selection or algorithm performance. HA and NA are expressed as
transmembrane proteins in the plasma membrane of infected cells and in the virion
envelope, NP is localized within the cytosol and nucleus, while M1 is associated with the
inner leaflet of the plasma membrane and is abundant in the virion. NS1 is notable because it
is excluded from the virion particle.

For epitope discovery, the approach depended on the number of candidate peptides. For
small viral proteins represented by less than 50 different peptides (M1 and NS1), each
peptide was tested individually in EliSpot assays. For larger proteins (HA, NA, and NP), we
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used the peptide pooling matrix strategy outlined on the right in Figure 1, adapted by us (21,
22, 65) from an approach originally described by Tobery and coworkers (19, 66). Three
different alleles (HLA-DR1, HLA-DR4 and I-Ab) were the focus of the study here because
they have been studied extensively and thus we imagined that the performance of the
algorithms would be highest for these. The individual peptide epitopes recognized by the
CD4 T cells from infected mice are listed in Supplemental Tables 1A–1C, with the
responses adjusted and presented to represent cytokine EliSpots elicited by each peptide per
million CD4 T cells tested. Peptides were considered positive if they reproducibly recruited
more than 30 cytokine producing cells per million CD4 T cells and data presented represents
the average value from at least 3 and typically more than 5 independent assays.

Comparison of algorithm predictions vs. the empirically defined epitopes
To analyze the relationship between predicted MHC class II binding peptide and
experimentally identified epitopes, we scored the 17mer peptides used for empirical
identification of epitopes using the web-available algorithms. We chose algorithms that
integrate much of the available information regarding peptide binding to class II molecules
and limited our studies to web-accessible algorithms. In the analyses described here, we
evaluated ARB, SMM, Tepitope, NetMHC pan, Net MHCII2.2 and the Consensus method.
The “score” of each peptide is provided in different formats for the different algorithms.
Some of the algorithms, such as ARB, NN-align and SMM (29, 30, 32), calculate a
“predicted IC50” value for each peptide scanned and recommends a cut off for strong, weak
and non-binding peptide, typically in the range of 10–500nM. Other algorithms, such as
Tepitope (67) and Consensus (34) rank the tested peptides from which an arbitrary cutoff
can be chosen, without any estimate of absolute affinity. The Consensus method ranks the
peptides based on assimilation of the prediction scores from what their studies have revealed
to be the most accurate algorithms. The choice of how to analyze the performance of the
algorithms in the current study was driven both by our desire to objectively analyze their
accuracy and also by anticipation of the way these tools might be utilized by other
investigators.

We began the analyses using the Consensus and the NetMHCII methods, both of which have
unique strengths and have been widely used or evaluated by others (25, 29, 49, 50, 62, 68–
71). The Consensus method calculates the median percentile rank of each peptide based on
the predictions of three independent, high performing algorithms. Because the scoring
output is a percentile rank, there is no absolute value of affinity implied and candidate
epitopes are identified on inclusion within the top scorers. The recently developed
NetMHCII (32) corrects for biases due to replicate binding cores within the training data and
is one of the few algorithms that factors in effects of the amino acids that flank the 9 amino
acid core of the peptides. It also has added flexibility in that it allows evaluation of peptides
of different lengths. This method provides output in the form of predicted IC50 values. Both
algorithms are able to predict epitopes for the three alleles of MHC class II molecules
studied here and both were found by their originators to outperform other individual state of
the art algorithms.

To globally visualize the predicted binding vs. the actual hierarchy of CD4 T cell responses
to influenza, the number of cytokine EliSpots elicited by each peptide tested within the 5
viral proteins (the “proteome”) were plotted vs. the predicted affinity (NetMHCII) or
percentile rank (Consensus). Predicted values are represented as their reciprocal, so that the
height of the epitope on the Y-axis represents a peptide’s actual or predicted “strength”. The
CD4 cytokine EliSpot data are represented as spots per million for every peptide analyzed,
with an arbitrary cutoff of 100 spots per million CD4 T cells indicated, as this might be a
minimal frequency (0.01%) useful for such methods at tetramer-based flow cytometry or
intracytoplasmic cytokine staining. These graphs, shown in Figure 2A, are thus divided into
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4 quadrants, where the top right quadrant represents the “double positive” peptides-those
peptides both predicted by the algorithm and that were also true CD4 T cell epitopes, as
detected by cytokine EliSpot assays. The bottom left quadrant represents the double negative
peptides, those neither predicted nor observed. The top left quadrant represents the “false
positive” peptides, predicted to be above the threshold used and the bottom right quadrant
represents the false negatives-peptides found to be epitopes in the influenza-specific CD4 T
cell response but not predicted to be high affinity binders. The number of peptides that fell
into each quadrant for each allele is tabulated in Figure 2C, that also indicates the fraction of
peptides in each category. Also quantified in 2B are minor epitopes, those that recruit low
but detectable numbers of cells greater than 30 but less than 100 cells per million. All
regions scored are illustrated schematically in Figure 2B.

These analyses indicated that both the number and percentage of each candidate peptide that
in is the “double positive” quadrant varies significantly with the allele and algorithm. For
example, DR1 has the highest fraction of double positive peptides chosen by NetMHCII (16
out of 30 total positives or 53%), most notably the four highly dominant peptides, recruiting
more than 400 cells per million CD4 T cells and estimated to be of very high affinity. These
true positive peptides were offset by a total of 61 false positive peptides. DR4 had only one
peptide that was both predicted and found empirically, while I-Ab has none. The range for
Consensus ranged from 25%–41% true positives, depending on the allele, and between 19–
27 peptides predicted but not found, with DR1 having three peptides that were highly ranked
and found to be immunodominant. In all cases, although the algorithms selected some
epitopes, there were many epitopes that were not predicted to be MHC binding peptides by
either algorithm and many peptides that were predicted to be binders that were not CD4
epitopes.

Because some cellular proteins have preferential access to the MHC class II presentation
pathway (39, 72–74), we analyzed the individual peptide epitopes for each viral protein
separately to determine if algorithm performance varied among the proteins examined.
Supplemental Figures 1 and 2 show the results of these analyses for the three alleles
analyzed and the predictions made by NetMHCII and Consensus. Although there were not
striking disparities between predicted vs. true epitopes, two rather consistent trends were
noted. First, NetMHCII predictions for NS1, M1 and NP appeared to have a somewhat
higher “hit rate” across alleles and fewer false positives. For example, for DR1, 11 NS1-
derived peptides were predicted to be high affinity binders and of these, 6 of these were true
epitopes. Secondly, we noted that epitopes within HA seemed to have an opposite pattern,
where 30 peptides were predicted to be high affinity binders to this allele, but only 8 of these
were true epitopes. Suppl. Figure 2 shows a similar type of analysis performed using the
Consensus method. By the nature of the scoring for this algorithm, all protein/allele
combinations will have similar numbers of peptides that fall above and below any cutoff,
independently of whether they are truly high affinity binders. Using a 10% cutoff as a
“prescreen” would have indeed allowed identification of some of the major epitopes that
were recognized by CD4 T cells after influenza infection. In the case of DR1 of the 25 major
epitopes, only 6 were identified to be in the top 10% rank, 2 in NS1 and 2 in M1. For DR4,
of the 8 major epitopes, only 3 were identified as strong binders and they were all in NP. For
I-Ab, there were 11 immunodominant epitopes, and of these, 3 epitopes were within the top
10% predicted and two were in NP.

The relationship between cutoff choices for selection of peptides compared to the yield of
actual epitopes for both algorithms is most readily seen in Figure 3, that represents each
peptide contained in the tested proteome plotted in order of decreasing predicted binding
affinity or rank by NetMHCII and Consensus, respectively, with two potential cutoffs
shown, corresponding to IC50 values of 50nM or 500nM for NetMHC2.2 and 10% or 20%
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predicted top binders for Consensus. From this analysis, several conclusions were made.
First, the epitopes identified empirically through functional studies are mostly contained
within the top 50% of the 332 peptides scored. This indicates that the actual epitopes
recognized by CD4 T cells are enriched in the high scoring group of peptides. Second,
although there is clustering of epitopes in this top half of the peptides, the most robust CD4
T cell specificities are not clustered within the highest of the predicted affinities. This is
particularly apparent for the human DR4 molecule. Thus, although this type of display
allows use of algorithms to select peptides, the “cutoff” for selection of peptides for further
confirmation needs to be generous if it is hoped to capture the most dominant of epitopes
with the candidate peptides. Finally, using NetMHCII, the ranking of affinity vs. response is
different for each allele, so selection of a consistently appropriate cutoff may be difficult.
For example, for DR1, the use of a 50nM predicted affinity cutoff would select
approximately 80 out of 332 peptides and would have successfully identified 30% of the
true epitopes, including the three most immunodominant. The same predicted affinity for
DR4 would select for less than 15 peptides and only 4 epitopes, none of which are the most
immunodominant. For the DR4 allele, the 500nM cutoff would be more effective. For I-Ab,
the 50 nM cutoff would select only 2 peptides, of which none of the 11 major epitopes
would be found and here the lower threshold of 500nM would be more effective. Thus, the
algorithms do not perform equivalently for all alleles, in terms of epitopes “captured” at any
given cutoff. The bottom panel of Figure 3 shows Consensus prediction, where the peptides
are simply ranked. Consensus was the most successful for I-Ab where most of the peptide
epitopes would have been identified with the 20% cutoff and many identified even with the
10% cutoff. Finally, although the identified epitopes are generally within the top third, even
the lowest ranked peptides contain some epitopes. In conclusion, both methods facilitated
identification of epitopes and if only a few epitopes are needed, a very stringent cutoff will
select a subset of peptides that contains at least a few epitopes, but many epitopes, including
major immunodominant epitopes will be missed.

Evaluation of the relationship between predicted affinity and epitope dominance
We next extended our analyses to additional algorithms. We had two goals: first to assess
the agreement among algorithms with each other and second to examine the relationship
between immunodominance and the affinity estimates generated by the algorithms. Shown
in Figure 4 is this analysis performed with several algorithms that present estimated affinity
in the form of IC50, each of which is represented by a different symbol. Only SMM,
NetMHCII and ARB incorporate I-Ab, so the analysis of this MHC class II molecule was
restricted to these three algorithms. For simplicity, we only included peptide epitopes that
recruited at least 50 spots per million CD4 T cells. For several epitopes, there is good
agreement among all of the algorithms for predicted binding and that these estimates could
allow selection of epitopes. For example, for DR1, among the 32 dominant peptide epitopes,
20 were predicted by at least three algorithms to possess high affinity binding and three
highly dominant M1 peptides and one NS1 peptide were predicted to be high affinity by all
four algorithms, suggesting that some peptides have features that are well recognized to
promote binding to this allelic form of human class II.

For DR4 and I-Ab, the relationship between predicted IC50 among algorithms vs. epitope
dominance was much weaker. Among the 8 major epitopes restricted by DR4 that recruited
at least 100 CD4 T cells per million, two were predicted to bind with high affinity by more
than 2 algorithms, while for I-Ab, of the 12 major epitopes, only 2 were selected by at least
two algorithms to have high affinity binding. This analysis also revealed that a number of
epitopes that were identified empirically were not predicted to be MHC-binding by any of
the algorithms. For DR1, 9 of 32 were judged to be non-binders by at least 3 algorithms, for
DR4, 4 out of 8 were judged to be non-binders, while for IAb, the vast majority of epitopes
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were predicted to be poor or non-binders. There was also a significant range in the IC50
values predicted for individual peptides, as evidenced by the high degree of spread among
the different symbols in Figure 4.

Analysis of the efficiency of predictive algorithms for response “capture”
Because there are many false positive peptides predicted by each algorithm, we conclude
that secondary screens are important, and next sought to evaluate different thresholds that
might be used for selection of candidate peptides. Of particular interest was the cost (how
many peptides would be tested in secondary screens) vs. benefit (how many epitopes found)
of different thresholds. In this analysis, we selected the subset of algorithms that provides
output in the form of predicted affinity (SMM, NetMHCpan, Net MHCII and ARB). Figure
5A shows the fraction of the response predicted or what would have been “captured” by pre-
selection of epitopes by the indicated algorithm, at either an IC50 value of 50nM or 500nM.
The cutoffs were chosen based on common use in the literature by those who derive or use
the predictive algorithms (49, 61–64). Although these two values are somewhat arbitrary
and others cutoffs, such as 5nM, for very high affinity or 1000nM, for very low affinity
could be used, the two cutoffs selected provide a framework that can be used to compare the
predictive efficacy of the individual algorithms. The number of cytokine producing cells
elicited by all of the peptides identified by an algorithm were summed and then divided by
the total number of cytokine producing CD4 T cell response identified empirically. One can
consider this to be the “benefit” of using the algorithms to select peptides for further study.
Figure 5B presents the number of peptides that were selected by each algorithm at the two
cut-off values, and thus the number that would need to be made if all of the peptides
predicted to be in that group of binders were tested in functional studies.

Use of a 50nM IC50 value of predicted affinity did capture at least 30% of the response for
DR1, with increasing performance using SMM<NetMHCPan<NetMHC<ARB. However,
the apparent greater performance came at the “cost” of increasing numbers of peptides to be
tested (panel B, open bars) for these algorithms, based on additional peptides estimated to be
better than the 50nM IC50 value. For the less well-studied DR4 molecule, ARB
outperformed the other algorithms, and would have allowed identification of 40% of the
response using the 50nM cutoff, and would have required testing of only 60 peptides. At the
500nM, Net MHCpan appeared to outperform the other algorithms in terms of cost vs.
benefit, with over 60% of the response captured and only requiring testing of 90 peptides.
For I-Ab, ARB seemed to be the best performing, with over 30% of the response predicted at
500 nM predicted affinity cutoff, which would have selected approximately 80 peptides to
be tested in secondary screens. This comparative retrospective analysis shows that it is
difficult to identify algorithms or parameters that will efficiently identify epitopes for
untested class II molecules.

Analysis of algorithm performance by ROC curves
The large discrepancies within the absolute affinities predicted by the different algorithms
introduced the rather large caveat of having to pick a threshold to adequately compare
predictive ability between algorithms. As observed in the previous section, a good predictive
algorithm in a relative sense can hypothetically be too stringent or lenient with its predicted
affinities and be eclipsed by an algorithm with lesser predictive ability but more moderate
affinity estimate. to circumvent this caveat, the binary classifier system – sorting predictions
into true positive, false positive, true negative, and false negative – was imposed at all
possible thresholds and for each threshold, a true positive rate and false positive rate were
calculated and plotted as ROC curves for each algorithm (Figure 6), a method that is
commonly used when multiple algorithms are compared for predictive performance (23–25,
32, 34) and that is generally used to measure the distinguishing capability of a classification
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or diagnostic system (75). The area under the curve (AUC) values were calculated to score
the overall predictive ability of each algorithm without the need for a binding cutoff and
compared to what would have been predicted by chance alone. From the given analysis,
NetMHCHIIpan and NetMHCII seem to score consistently higher than the mean AUC
value. However, aside from TEPITPOE’s relatively poor performance in DR1, there is no
algorithm that significantly outperforms or underperforms relative to the other algorithms.
Furthermore, the differences between algorithms seem to decrease in relation to how
extensively the MHC context is studied. The range and standard deviation between AUC
values is largest in DR1 while near negligible in I-Ab.

Potential advantage of percentile ranking vs. predicted affinity for selection of peptides as
candidates for further studies

The overall inconsistency in using affinity estimates to predict epitopes, as well as the
tendency of some algorithms to estimate high affinity to many peptides (ARB) and other to
estimate low affinity to many of the peptides (SMM), prompted us to consider the possibility
that the affinity estimates can be inaccurate in an absolute sense but might be useful in a
relative sense. We therefore asked if ranking of peptides in a hierarchy of affinity rather
than absolute affinity estimates would lead to more consistent results and more efficient use
of the algorithms, while allowing us to still estimate the actual fractional response
successfully predicted. To evaluate this, we simply ranked all the peptides by their estimated
IC50 values and then used a simple percentile cut off, rather than affinity threshold to select
peptides (Figure 7). Using this method of ranking, we were also able to extend our studies to
Consensus and Tepitope, which simply rank peptides. When this fixed percentile ranking
rather than estimated affinity was used to select peptides, a much better “performance” was
apparent for all alleles and algorithms, with as much as 40–60% of the response predicted at
even the 10% cutoff, depending on the allele. There was a particularly striking agreement
when comparing the different algorithms for DR1 using this method. This result indicates
that algorithm outputs of IC50 values for peptide:class II interactions are the most useful for
simple ranking of candidate peptide epitopes, rather than for use as absolute values for
selection. This conclusion from our studies is consistent with recently published approaches
that assimilate the rankings of peptides, rather than their estimated affinities, to select
peptides for further empirical study (34, 71, 76).

An additional and quite striking observation from this analysis is that although irregular in
shape, the lines that describe the prediction effectiveness of each algorithm in capturing the
response essentially overlap. They all have a fairly sharp slope to the 10% cutoff
(successfully predicting approximately 20–30% of the response), then a diminished slope
from approximately 10% to 60% cutoff and then approach a plateau after the 60–70%
cutoff, representing the low yield of additional epitopes with increasing peptides tested. The
conclusion from these analyses is that ranking peptides by different algorithms normalizes
their prediction efficiency and when compared in this way, they all perform similarly to each
other. The conclusion is in agreement with the ROC analyses discussed earlier. The
individual peptides “captured” at each cutoff varies somewhat for each algorithm (not
shown), but any given algorithm would apparently allow identification of approximately
25% of the response by selection of 32 peptides out of 332, at least for these three alleles of
MHC class II molecules.

Kinetic measure of class II:peptide affinity as a predictor of immunodominance
One issue that is raised by the data in Figures 2 and 4 is why some peptides that are not
predicted to bind to the relevant MHC class II at all, do in fact successfully elicit CD4 T cell
responses to influenza infection. One possibility to explain these false negatives is that some
peptides can bind very weakly to the “presenting” peptide MHC class II molecule but
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nonetheless have properties that allow elicitation of a CD4 T cell response, for example T
cell receptor contacts that recruit a tremendously high number of reactive CD4 T cells, a
parameter that is not currently evaluated by available algorithms. The other possibility is
that the IC50 values estimated by the algorithms do not accurately assess the true affinity of
some MHC class II:peptide complexes. Our laboratory has previously shown that
dissociation kinetics of MHC class II:peptide complexes, rather than competition assays are
the best predictor of immunogenicity, both in responses to complex proteins and in multi-
peptide based vaccines (57, 77–80). In analyses of class II:peptide complexes with
dissociation rates that differ by seven orders of magnitude, McConnell’s group (81) showed
that the association rates were essentially the same, indicating that dissociation kinetics
provide accurate measurements of the affinities of peptide:class II complexes. To evaluate
whether this parameter is a better indicator of immunogenicity for influenza-specific
responses, we tested the dissociation rates of several DR1 peptide complexes, using purified
class II and purified fluoresceinated peptides. Two peptides that elicited greater than 100
CD4 T cells per million but that were not predicted by any of the algorithms to possess high
affinity binding to DR1 were chosen for this biochemical study. One peptide was derived
from HA (375-SGYAADQKSTQNAIN), and one was from NP (73-
ERRNKYLEEHPSAGK). Two control peptides analyzed in earlier work (56) were studied
in parallel. Dissociation half times of the peptide:class II complexes (t1/2), cytokine EliSpot
and predicted IC50 values for these peptides are shown in Table I. It is clear from this study
that all of the immunogenic peptides tested have very high affinity and stable interactions
with the presenting class II molecule. The HA (375–389) and NP (73–88) peptides that were
not predicted to bind with high affinity to DR1 by any of the algorithms had dissociation
half-times of 600 and 500 hr, respectively, indicating that they persist on DR1, even at
acidic pH, for more than 20 days. Only the one HA peptide previously examined by our
group (ELLVLLENERTLDFHD, t1/2 350 hr) was predicted to be a high affinity binder (low
IC50) by most of the algorithms. Strikingly, among the four peptides, there was no
correlation between the dissociation rates and predicted IC50 value. The two peptides that
had the most rapid dissociation rates (HA-162 and HA-350 with t1/2 of 85 and 350 hr,
respectively) had the highest estimated affinity (mean of 106nM, and 148nM IC50
respectively), while the peptides that had the most stable interactions with DR1 (HA-375
and NP-73, t1/2 of 600 hr and 500 hr, respectively) had lowest mean estimated affinity (3354
and 1300nM, respectively). Table II shows a similar type of analyses performed with the
murine I-Ad molecule using the algorithms that can be used to score antigenic peptides
presented by I-Ad and predict IC50 values (NetMHCII2.2, SMM-align and ARB). In these
studies, known immunodominant or cryptic epitopes from model or pathogenic origin,
whose binding register and dissociation kinetics were previously determined by us (57, 59,
79, 80, 82) were studied. We also compared peptide variants of these peptides whose
binding stability to the class II molecule could be modulated by changes in anchor residues,
as we have described (57, 59, 79, 82). Again, as was seen with some of the epitopes
presented by HLA-DR1, immunodominant peptides such as LACK (161–173) and an HA
peptide 126–138, T128>V) designed to improve its anchor interaction with the P1 pocket
(57, 59, 80, 82) were predicted by the algorithms to have variable, but generally weak IC50
values that were not substantially different from peptides that very poorly recruit CD4 T
cells in vivo such as HEL (11–25) or HA (126–138) (57, 82). In all cases, however, the
measured off-rates of the peptides from the class II molecule correlated with their
immunodominance. Table III additionally shows that in many cases incorrect or differing
binding registers were predicted by the different algorithms from what our studies have
shown to be the correct binding register (57, 59, 82). We conclude from these studies that
the ability to bind strongly to the presenting class II molecule is indeed a strong predictor of
immunodominance, and that peptide dissociation assays accurately measure this parameter,
but that algorithms sometimes fail to recognize the features of high affinity binding.
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Discussion
In this study, we have combined the results of an unbiased approach for influenza CD4 T
cell epitope discovery with implementation of predictive algorithms to select
immunodominant peptide epitopes. Advances in CD4 epitope discovery are becoming
increasingly important for the tracking and functional characterization of CD4 T cells during
or after infection or vaccination and is also essential for derivation of peptide-based
vaccines. Purely empirical strategies for epitope discovery, using either the method we have
used or other approaches such as tetramer-based epitope mapping (83–86) are daunting
because of their cost and labor intensive nature. Also, for pathogens with large genomes,
purely empiric approaches are impractical. Therefore, the potential benefits of computer-
based algorithms to facilitate identification of CD4 T cell epitopes are significant. The
increasing depth of available databases for peptides presented or bound by class II molecules
(46, 87–89), coupled with enhanced sophistication of computer-based algorithms, has led to
increasing optimism of using predictive tools as a starting point for epitope discovery. We
therefore sought to evaluate the “state of the art” performance of a number of these
algorithms to predict peptides that are the focus of the CD4 T cell response to a live
influenza infection.

Several important conclusions were possible from the analyses we have performed. First,
utilization of predictive algorithms can facilitate epitope discovery. With all of the three
allelic forms of class II molecules tested in this study, the identified epitopes were highly
represented in the top third to half of the peptides predicted by the different algorithms.
Although the degree of enrichment varied with the allele and the algorithm, this result does
suggest that use of predictive algorithms can be a good first step toward epitope
identification, at least for the alleles analyzed in this study and for pathogens with limited
genome sizes or for protein vaccines. Specific strategies to use this enrichment step for these
types of applications will depend on the goals of the investigator. For example, if one seeks
to identify only a few epitopes for tracking a response to a particular pathogen, fairly
stringent selection (i.e. selection of the top 5%–10% of peptides) will likely be successful. If
more criteria need to be fulfilled (highly immunodominant peptides or CD4 epitopes within
a particular protein), lower thresholds may need to be employed, with the increasing “yield”
balanced by increasing “cost” of greater numbers of synthetic peptides to test. Agreement of
algorithms and prediction efficiencies were enhanced through use of a ranking system rather
than predicted IC50 value to select peptides.

Second and quite striking for each of the algorithms tested, there is a high number of “false
positive” peptides identified: peptides that were predicted to be high affinity binders to the
host class II molecule but that were not recognized by CD4 T cells elicited in response to
influenza infection. The number of peptides in this category varied, depending on the
specific allele and algorithm and the cutoff used for selection of peptides. For example, with
high stringency (either 50nM for algorithms that predict IC50 values or 10%, for algorithms
that rank peptides), the range in false positives for DR1 ranged from 20–65 peptides for the
332-peptide “proteome”, consisting of 5 viral proteins tested. When the threshold included
all peptides that are predicted to bind to the relevant MHC class II molecule, there were over
100 false positive peptides. From a practical standpoint, the high false positive rate for many
class II/protein combinations indicates in general, that the algorithms should be used only as
a first step in epitope discovery. We conclude that secondary screens are essential to identify
the true epitopes, after which focused studies can be pursued. For large genome organisms,
however, secondary screens of large numbers of candidate peptides may be unfeasible using
the currently available computational strategies.
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There are several possibilities to explain the high number of false positive peptides. The
first, and simplest explanation is that these peptides have been “chosen” correctly by the
algorithm to be high affinity binders for the MHC molecules expressed in the host but lack
some property needed to be a CD4 T cell epitope. One element that could be lacking in
MHC-binding peptides that do not elicit CD4 T cells could be their ability to be processed
and presented by the class II molecule, due to the source protein abundance or the location
of the peptide within the viral protein. A second feature that might diminish a peptide’s
antigenicity despite high affinity binding to class II molecules is that they possess few amino
acid residues in solvent-exposed positions that are potent in recruitment of CD4 T cells. The
predicted affinity of some peptides may be an overestimate, even for those peptides that
have “attractive” TcR contacts and are abundantly released and available for peptide binding
during antigen presentation. We do know that the reproducibility in responses among
individual animals is reasonably good (Supplemental Figure 3), suggesting that we have not
missed epitopes due to pooling of lymphocytes from multiple animals, each of which might
display greatly varied responses. Pooling of CD4 T cells from multiple mice is a necessary
experimental strategy because of the number of different peptide epitopes tracked in parallel
in our studies, and the low yields of CD4 T cells from individual mice. Finally, from a
purely technical standpoint, it is possible that poor peptide quality or solubility limits our T
cell detection for occasional peptides, thus accounting for false positives. The peptides used
in our studies were HPLC-purified, but it is possible that peptide quantity or purity was
overestimated by the supplier or alternatively that peptide solubility was limited, thus
diminishing the signal in the EliSpot assays.

Our analyses also revealed a high false negative rate; peptides that were recognized in the
CD4 T cell response but not predicted to be MHC binders by most of the algorithms. The
analyses here indicated even with well-characterized class II molecules, at least 25% of the
peptides that elicit strong CD4 T cell responses were not predicted by most of the algorithms
to bind to the MHC molecule in question. Although in the animal studies reported here, we
have studied the immunodominance pattern at the peak of the immune response (day 10–
14), we have found that the hierarchies in peptide-specific CD4 T cells remain in the
memory phase of the immune response (56). These results suggest that epitopes discovered
in our studies are representative of those persisting in the memory phase and in human
circulating CD4 T cells. In fact, some of the HLA-DR epitopes discovered in our transgenic
models predicted to be of very low affinity by all of the algorithms tested, including NP-73
and NP-402 for DR1, and M1–97 for DR4 have been reported in the literature from human
subjects (84, 90). Finally, we are confident that the false negative rate is not due to incorrect
assignment of the class II restriction element in the mice. Only the HLA-DR1 mice express
an additional class II molecule and for these peptide epitopes, MHC restriction was
unambiguously assigned through the use of transfected APC in EliSpot assays, as we have
described (21, 91).

The false negative score for many epitopes suggests that the algorithms in general fail to
recognize certain types of peptides that are presented by MHC class II molecules, even those
that have been well studied, such those studied here. In favor of this possibility are results of
our studies with the I-Ad class II molecule, which has been extensively analyzed for its
peptide binding and cocrystallized with antigenic peptide (92). I-Ad was widely thought to
have a “promiscuous” binding pocket with specificity primarily dictated by the P4 and P6
pockets (39, 92–94) but we recently found that the P1 pocket to be a strong determinant of
peptide binding particularly with glutamic acid at this position (59, 82). Our studies suggest
that this charged reside binds via a novel salt bridge within this pocket. Because of this
alternative type of interaction in the P1 pocket, the “value” of glutamic acid in antigenic
peptides was previously missed.
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One unexpected finding revealed by our analyses is that the efficiency in prediction of
epitopes seems to similarly plateau for all the algorithms tested, even if ranking is used to
order peptides. It is remarkable that algorithms developed recently do not outperform others
developed more than a decade ago when the efficiency of prediction was analyzed in this
way. This conclusion prompts us to question whether the approaches used for development
and refinement of computation tools have fundamental limitations that will not improve
even with more sophisticated computational methods. We suggest that rather than focus on
modifications of computational strategies, increased performance of computational aids to
epitope prediction may require a serious re-evaluation of the data that is used to “train” the
algorithms. One improvement that might significantly enhance performance would be to
disproportionately weigh data that provides the most information on the peptide core and
stability of binding to the host MHC molecule. Most of the newly developed methods are
trained on data derived primarily on competitive binding assays. Because of their relatively
low cost and high throughput capacity, these assays are very useful for identification of
peptides that do or do not bind to a given class II allele. However, the quantitative ability of
peptides to compete for binding may reflect properties that are distinct from those that
promote accumulation onto class II molecules, clearly a key event for immunogenicity (57,
80, 82, 95). From the simplest point of view, IC50 values are measures of the ability of a
given peptide to diminish accumulation of a labeled “indicator peptide”. Such competitive
assays are based on the assumption the data arise from a simple equilibrium between single,
homogenous monovalent receptor and ligand and follow the laws of mass action (96–99). It
is now clear from the work of many groups that the reactions between peptide and MHC II
proteins involve long-lived intermediates, heterogeneous initial states, and a pre-equilibrium
between active and inactive forms of the class II protein and that binding reactions compete
with inactivation of the MHC protein, an event that is potentiated by formation of unstable
MHC:peptide complexes (100–104). The complexities in class II:peptide interactions,
coupled with the possibilities of multiple binding cores of antigenic peptides, indicate
predictions based solely on competitive binding assays will be limited in their ability to
quantitatively assess the ability of the test peptides to bind stably to the class II molecule.
Dissociation assays, elution and sequencing or crystallographic studies together provide key
insight into the amino acids that promote accumulation of peptides onto the class II
molecules. Although these assays are cost and labor prohibitive as routine methods, more
investment in generation of these data and more weight given to these data could enhance
the predictive capacity of computational strategies. Incorporation of data from these assays
might also improve accuracy of the 9 amino acid core predicted to bind to in the MHC class
II pocket. We hypothesize that limitations in our understanding of peptide:class II
interactions have led to incorrect core assignments, a hypothesis recently supported by
discrepancies between predicted cores and co-crystallization of peptide: class II complexes
(25, 63) and our own data shown here. Faulty core designation may “contaminate” the
prediction accuracy of preferences in binding going forward.

True breakthroughs in algorithm performance for prediction of CD4 T cell epitopes is also
likely to be facilitated by considerations of peptide sequences that contribute to recruitment
of diverse T cell receptors. Although strength of MHC binding is the key parameter that
determines a peptide’s immunogenicity, solvent exposed residues within the peptide likely
determine the upper range of the magnitude of a CD4 T cell response that can be recruited
by a peptide. Recent theoretical and functional studies, as well as detailed consideration of
the molecular events in thymic positive and negative selection events support the view that
particular solvent exposed amino acids within MHC-bound peptides dramatically influence
TcR repertoire development and elicitation (105–111). Interestingly, recent syntheses of
computation and functional studies suggest that the best antigenic epitopes will have TcR
contact amino acids that both survive negative selection but also have the ability to recruit
diverse TcR and quantifies the amino acids that tend to favor this “equation” (112, 113).
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Incorporation of these characteristics of TcR recruitment into computational methods of
epitope prediction will likely increase the efficiency of computer-based peptide epitope
selection. We suggest that more explicit experimental evaluation of these issues, coupled the
computational power of many groups of investigators, will dramatically enhance the
performance of computation-based predictors, a key step needed for efficient epitope
discovery.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of the experimental approach followed for epitope discovery
To limit the number of peptides tested, a matrix array was used for HA, NA, and NP
proteins where peptides were pooled into 8–12 peptides and then arrayed into intersecting
rows and columns as described [27,29]. Only peptides within pools that were positive in
both columns and rows in the matrix, eliciting a cytokine response equal or greater than 30
spots per 106 cells, were considered positive. All the positive peptides from the matrix were
further tested individually. In the case of M1 and NS1 proteins that were comprised of less
than 50 peptides all peptides were tested individually.
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Figure 2. Accuracy of NetMHC2.2 and Consensus for prediction of influenza-specific CD4 T
epitopes
A. All of peptides analyzed functionally for CD4 T cells isolated from previously infected
HLA-DR1, HLA-DR4 or C57Bl/10 mice were compared for their response magnitude
(represented as cytokines spots/million on the X axis) vs. their predicted affinity (IC50
values, Net MHCII2.2) or ranking (Consensus), indicated on the Y axis. The inverse value
of the affinity is used for NetMHCII2.2 so that greater values represent increasing predicted
affinity of the peptide for MHC class II. The threshold indicated by the vertical dotted lines
in each panel in A represents major epitopes (eliciting more than 100 spots per million). B.
The grid represents the areas scored in Figure 2A. Area 1 includes peptides predicted but not
found, area area 3 represents peptides both predicted and found, are 4 are peptides neither
predicted or found, area 6 are peptides that were not predicted to bind but that were found.
Areas 2 and 5 represents the minor epitopes that recruit more than 30 but less than 100 spots
per million CD4 T cells. The values in C quantify the number of peptides in each area
shown in B.
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Figure 3. Ranking of experimentally identified epitopes using the NetMHCII2.0 and Consensus
algorithms
Representation of the predicted ranking, based on the indicated algorithms, for each of the
experimentally identified epitopes. The x-axis shows the relative position of every epitope
among the total of 332 synthetic peptides that span the entire HA, NA, NP, NS1, and M1
proteins. Shown for each peptide is the magnitude of the cytokine response elicited in recall
experiments. The experimentally tested peptides were placed in the hierarchy for each
algorithm calculated either as [(1/IC50)*100] for NetMHCII2.2 or percentage in the ranking
of all peptides in Consensus. Vertical dotted lines within each graph indicate the cutoffs of
50nM or 500nM IC50 values for NetMHCII2.2 or 10% or 20% best predicted binding
peptides, for Consensus.
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Figure 4. Affinity predictions from different algorithms for influenza-specific CD4 T epitopes
Shown by bars for each allele is the magnitude of the response recalled by the indicated
peptide, represented as cytokine spots per million CD4 T cells in the right Y-axis. Shown by
the symbols are the affinity predictions from each algorithm for the peptides relevant to the
indicated allele, with the axis shown in the left Y-axis. A: HLA-DR1, B. HLA-DR4 and C.
I-Ab. The black line indicates the threshold of 50nM, where all symbols above that line are
peptides predicted to bind with high affinity. The solid red line indicates the threshold of
100 spots/million for dominant peptide epitopes.
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Figure 5. Algorithm performance in predicting CD4 T cell response specificity using different
affinity cutoffs
The cytokine EliSpots for all epitopes recognized by CD4 T cells in each strain were
summed to represent the total response. Predictions of MHC class II binding peptides were
calculated by each algorithm and the epitopes that were successfully predicted at either a
50nM (open bars) or 500nM (filled bars) IC50 values were identified. Responses to these
two subsets of peptides were summed and divided by the total response elicited by all of the
peptides to yield “% predicted” in A, the fraction of the response that would have been
identified by using only the algorithm-selected peptides at the indicated threshold. B. The
total number of peptides predicted by each algorithm for each allele at either the 50 or
500nM threshold is shown. The total number of peptides that would have been made using
no selection is 332.
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Figure 6. ROC analysis and AUC values of predictive algorithms
The predictive ability of SMM, NetMHCIIpan, NetMHCII, ARB, TEPITOPE, and
Consensus are shown in terms of ROC curves. The ‘standard’ (y=x) line represents the curve
formed had peptides been chosen at random. Predictive ability is gauged by how far the
points on the curve fall to the upper left of the standard line. Because better performing
algorithms encompass more area under their respective curves, AUC values are a numerical
representation of algorithm efficiency, with 1 representing a perfect predictor and 0.5
representing a non-predictive or random algorithm
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Figure 7. Percentile rank cutoff vs. fraction of CD4 response predicted by individual algorithms
The cytokine EliSpots for all of the epitopes recognized by CD4 T cells in each strain of
mice were summed to represent the total response. Prediction of MHC class II binding
peptides were estimated by each algorithm and epitopes were ranked by each algorithm in
the order of diminishing predicted affinity. Cytokine EliSpot responses elicited at each
incremental rank of the peptides selected by each algorithm were summed and divided by
the total response elicited by all of the peptides to yield the number of peptide reactive CD4
T cells successfully predicted at the indicated threshold. Shown by the dotted line is the
point at which 50% of the response would have been predicted or “captured” through the use
of the indicated algorithm.
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