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Abstract
We present results from machine classification of melanoma biopsies sectioned and stained with
hematoxylin/eosin (H&E) on tissue micro-arrays (TMA). The four stages of melanoma
progression were represented by seven tissue types, including benign nevus, primary tumors with
radial and vertical growth patterns (stage I) and four secondary metastatic tumors: subcutaneous
(stage II), lymph node (stage III), gastrointestinal and soft tissue (stage IV). Our experiment setup
comprised 14,208 image samples based on 164 TMA cores. In our experiments we constructed an
HE color space by digitally deconvolving the RGB images into separate H (hematoxylin) and E
(eosin) channels. We also compared three different classifiers: Weighted Neighbor Distance
(WND), Radial Basis Functions (RBF), and k-Nearest Neighbors (kNN). We found that the HE
color space consistently outperformed other color spaces with all three classifiers, while the
different classifiers did not have as large of an effect on accuracy. This showed that a more
physiologically relevant representation of color can have a larger effect on correct image
interpretation than downstream processing steps. We were able to correctly classify individual
fields of view with an average of 96% accuracy when randomly splitting the dataset into training
and test fields. We also obtained a classification accuracy of 100% when testing entire cores that
were not previously used in training (four random trials with one test core for each of 7 classes, 28
tests total). Because each core corresponded to a different patient, this test more closely mimics a
clinically relevant setting where new patients are evaluated based on training with previous cases.
The analysis method used in this study contains no parameters or adjustments that are specific to
melanoma morphology, suggesting it can be used for analyzing other tissues and phenotypes, as
well as potentially different image modalities and contrast techniques.
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Melanoma is the most aggressive form of skin cancer, affecting 1/75 people in the United
States. Cutaneous Malignant Melanoma (CMM) starts and grows locally, initially spreading
superficially across the surface of the skin (radial growth phase), and later invading into the
dermis and subcutaneous fat (vertical growth phase). The vertical progression of melanoma
is graded using “Clark’s level” measurement (1), where level I tumors are contained within
epidermis, and level V tumors have invaded the subcutaneous tissue. Further, the melanoma
may be carried via the lymph to the lymph nodes, and via the bloodstream, to distal sites
such as the lungs, brain, and liver. The American Joint Committee on Cancer (AJCC)
recommended a system with four stages (2). The first two stages indicate a localized tumor
with a thickness less than 4 mm, corresponding to Clark’s levels I–III. Stage III refers to
tumors thicker than 4 mm, potentially with presence of satellite metastases or involvement
of regional lymph nodes. Stage IV indicates distal metastases, which are ultimately
responsible for the death of melanoma patients. Understanding and identifying the factors
that promote the progression of melanoma among these different stages is a key focus of the
melanoma community. Studying melanoma progression, and identifying the stage of a
patient’s tumor requires immunohistochemical analysis of the involved tissues. Such an
analysis of CMM’s transition to secondary sites is essential in understanding mechanisms of
metastasis and finding its relevant markers. The development of computer-aided image
processing techniques capable of distinguishing these stages can help in identifying novel
biomarkers of melanoma progression as well as potentially serve as diagnostic aides in
clinical settings.

Existing Research on Automatic Classification of Histopathology Images
Over the course of last decade, automatic annotation of histopathological images has been
established as a field (3–33). The existing research on automatic annotation of melanoma is
mostly concerned with distinguishing malignant melanoma from healthy controls (binary
classification problems) (18–23) rather than exploring patterns in primary and secondary
sites as we do in this work. Using in vivo confocal laser-scanning microscopy (857 images
total, 574 used for training) Gerger et al (19) were able to classify correctly 97.5% of
melanoma images. A similar result (97%) was obtained by Handels et al (20), where they
employed a laser profilometry technique using 44 images in their report. Principal
components were used as features in 213 images by Iyatomi et al (23) in their acral volar
skin data set, where they achieved 93% overall accuracy in this two-class problem.
Similarly, Wilgten et al (22) obtained 92% on a histopathological set of 40 images using
texture features. Cheng et al (21) reported 86% classification rate on their 285 image set
employing relative color features. A large set of 5,389 skin images was studied by Ganster et
al (18), where 574 images were used in training a kNN classifier. Using size, shape and
color descriptors they reported classification accuracy of 92%.

Scope of the Study and Contribution Summary
The scope of this study is to investigate critical factors for accurate machine-based analysis
of histopathology samples, using melanoma as a test-case. Specifically, our interest was to
investigate the effectiveness of a non-parametric, segmentation-free approach to analyzing
histopathology samples. In as far as the analysis does not rely on parameters specific to
melanoma, our findings stand a greater chance of applying to the automated analysis of
histopathology in other cancers and diseases.

A major source of error in machine-based analysis is variation in sample preparation. In this
study, we specifically control for this by analyzing biopsies on a tissue micro-array (TMA).
While TMAs are more prevalent in clinical studies than in clinical practice, standardization
of sample preparation and staining techniques will facilitate machine-assisted analysis in
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real clinical samples where a slide typically contains a biopsy from a single case including
normal and potentially diseased tissue.

A second source of error is the accuracy of manual, often subjective readings that are
commonly used as the “gold standard” or “ground truth” in machine-assisted diagnosis
studies. We avoided this source of error by focusing on melanoma progression through
several disease stages, where the goal was to correctly identify the objectively known biopsy
sites.

The interpretation of color information is a major consideration in machine-based analysis
of stained histopathology samples. The sole source of contrast in these samples is the
specific color profile of the stains used, so different color models are expected to have
significant effects on the information content of the images in subsequent processing. We
are able to make direct comparisons between the classification accuracies achievable using
different color models because our analysis system is non-parametric and does not rely on
segmentation. This allows it to be used in the same way with the same original data even
though the source of contrast is significantly altered by the different color models. Similarly,
different downstream processing steps can be compared for their effectiveness in preserving
and interpreting the information present in these samples.

In this study, we show that non-parametric techniques can be used to achieve very high
classification accuracy in this melanoma test-case. Up to 96% accuracy can be achieved for
individual fields of view at 50× magnification, and up to 100% when using several fields for
aggregate classifications of whole TMA cores. Importantly, these accuracies are achieved on
new melanoma cases that were entirely left out of the training phase. We find that the major
factor affecting overall accuracy is the color model used to represent the color information,
where digitally separating the RGB data into stain-specific hematoxylin and eosin channels
produces the best accuracy regardless of the downstream processing techniques used.

The image analysis software used in this study - WND-CHARM (34) - was specifically
designed to be as free from user-supplied parameters as possible. A major source of these
parameters are those used for segmentation to identify cells or subcellular structures used in
downstream processing. Instead, unlike nearly all work on H&E-stained histopathology
samples, the analysis used here relies solely on the grouping of training images into their
respective classes. Our previous work has shown that independence of user parameters
allows this same software to be used in a variety of image processing tasks without
modification or task-specific tuning. These include problems common in machine vision
such as texture identification and face recognition (34), as well as biomedical applications
such as classification of sub-cellular organelles (34), scoring of images in high-content
screens (35), and determining physiological age in C.elegans (36,37) as well as medical
imaging applications such as the diagnosis (38) and prediction (39) of osteoarthritis in
human knee X-rays. The application of this software to the classification of melanoma in
this study implies its potentially general utility in histopathology.

Materials and Methods
Tissue Samples

This study focused on a set of malignant tissues (40) corresponding to all four AJCC stages
of melanoma. We imaged early melanocytic lesions having radial (RD) or vertical (VT)
growth belonging to AJCC stage I. Secondary sites revealed at more advanced stages
include subcutaneous type (SQ, stage II); lymph node metastatic (LN, stage III); and two
distinct forms of stage IV: gastrointestinal (GI) and soft tissue (ST). Additionally, we
included non-malignant tissue as a control (e.g., benign nevus tissue, NV). The melanoma
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progression TMA was constructed as described in Leotlela et al (41). The 1 mm diameter
cores (5 um sections) were arrayed on four glass slides. The H&E staining procedure (42)
was applied simultaneously to all samples, reducing variability between the samples. Fig. 1
shows a portion of one slide with the stained cores of the lymph node metastatic tissues.
Depending on completeness of the cores (absence of tears, etc.), up to nine high-resolution
(50×) non-overlapping fields of view could be taken from a 1 mm core. Magnified
representative samples of all seven tissue types used in the study are shown in Fig. 2. The
primary CMMs contained 52 cores of VT and eight cores of RD types; four secondary sites
included 28 SQ cores, 8 ST type samples, 13 GI samples, and 31 LN samples. We had a
total of 23 cores of the control NV tissue. Overall, we imaged 164 TMA cores. The
melanoma progression TMA was constructed as described in Leotlela et al (41). Tissue
microarrays were built at National Cancer Institute (NCI) using de-identified tissue obtained
from the co-operative human tissue network (CHTN). They are part of the Tissue Array
Research Program (TARP) at the NCI under NIA IRB protocol exemption number
2004-147.

Imaging—We used a light microscope (Zeiss Axioscope) with a 50× objective lens, a color
RGB camera (AxioCam MR5) and halogen bright-field illumination. Imaging conditions
and parameters of the instrument (objective lens, camera, light source, exposure time)
remained unchanged over the course of acquisition, so no further normalization was
performed. The frame size (i.e. a CCD panel or field of view) was set to 1292 × 968 pixels
with 2×2 binning (0.2 um/pixel) and recorded as uncompressed RGB TIFFs at 12 bits/
channel. The 12-bit pixel depth is higher than the more typical 8-bits, and may be important
when converting range-sensitive color spaces, but the effect of channel depth on
classification accuracy was not examined further.

Automated acquisition—The motorized microscope stage and the Zeiss software
interface allow navigating across the slide using a master position list, as discussed below.
The tissue deposition tool stamps the cores on the glass slide (as shown in Fig. 1). The cores
form a grid-like pattern, but the core placement did not have sufficient precision to be
imaged at high resolution directly. Instead, we used low-resolution imaging to find the core
positions on each slide. A 4× objective lens and a 323 × 242 pixel frame (8×8 binning) were
used to image the entire slide in grayscale. These low-resolution images, the position of one
reference core, and the core-to-core pitch (in x- and y-) were used to reconstruct the core
positions of the entire grid. Next, we generated a 3 × 3 template of stage positions for each
core, resulting in a master position list for unattended high-resolution imaging (50×
objective, 1292 × 968 frame size with 2×2 binning and 0.2 um/pixel resolution). Each of the
resulting fields of view were subdivided into a 4 × 4 grid of contiguous 323 × 242 pixel
images for further analysis. Tiling was done to both reduce the number of pixels to be
processed during feature extraction, and to provide a statistical sample for scoring each field
of view. We excluded from the analysis images containing little or no tissue as shown in
Fig. 2.

Representing color—In histopathology imaging problems, color itself is irrelevant
because it acts only as a contrast agent to reveal the underlying cellular morphology
recognized by the chemical properties of the stain. Because these images are typically
acquired with RGB color cameras, the relevant morphological signal must be extracted from
the color representation imposed by the imaging technique. Fig. 3 illustrates several
alternative approaches for color images commonly used in computer vision. Computed
numerical patterns from RGB images can be used directly with some color features (Fig.
3a). The difficulty with this approach is that the color features are sensitive to absolute color
values, and these may vary between stain preparations. A different approach is to compute
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features from each of the RGB channels independently (Fig. 3b) and combine the numerical
patterns into a single feature space. This preserves all of the information captured by the
RGB detector, but a potential limitation is the redundancy of the information in the separate
RGB channels. A nonlinear scaling of RGB colors may address this redundancy by deriving
a color space (Fig. 3b, the frame with a dashed border) different from the original
instrument-specific RGB space, such as the CIE-L*a*b* space (subsequently referred to as
LAB). In LAB, distances between colors are more closely correlated to color perception
than they are in the RGB color space (43,44), making LAB a common choice for
applications with color information (24,31). Lastly, the separate stains can be deconvolved
from the RGB image using an algorithm proposed by Ruifrock and Johnston (45). In this
technique, areas of isolated stain are manually selected in one or more images, which allows
the algorithm to determine the color profiles of the two dyes, and subsequently reconstruct
the stain concentrations into two separate channels (hematoxylin and eosin – HE) based on
the Beer-Lambert law. In this work, areas of “pure” eosin and hematoxylin were selected
from all four slides to get average color profiles, which were then used to reconstruct all of
the RGB images into separate grayscale H and E channels.

Computational Framework
Supervised learning—We used a supervised leaning approach that required ground truth
annotation for the portion of the data used in training the classifier. This ground truth as
provided by the authors (A.T.W. and S.M.H) directly correlates with the tissue origin, so it
did not require manual reading or subjective assessment other than ensuring that each core
was not a heterogeneous mixture of benign and malignant tissue.

Feature extraction—Visual patterns in the pixel plane P form visual cues that are specific
to the imaging problem. These patterns can be analyzed quantitatively, through their

mapping  from the pixel plane to sets of numerical patterns (NPs) , where
P ⊂  and  ∈ . We use general, low-level image features that describe the pixel plane
with no reference to any particular imaging task. We then use a supervised learning
approach to force this general set of descriptors into a context that is specific to the
particular application. These global descriptors are implemented through the Feature Library
(FL) as reported in (34). Briefly, this FL contains a collection of algorithms (feature
families) each contributing to the overall feature vector representation of each image. The
eleven families used were: features derived from coefficients of Chebyshev polynomials,
features derived from coefficients of Chebyshev-Fourier polynomials, coefficients of
Zernike polynomials, features derived from Gabor filters, features derived from the Radon
transform, multi-scale histograms, comb filters for the first four moments, Haralick textures,
Tamura textures, features based on object statistics, and features based on edge statistics.

Image transforms as expansions of the pixel plane—In general, an image
transform (such as Fourier transform) generates a spectral plane representation of the
original pixel plane. Should an inverse for the given transform exist, the original image
could be reconstructed from this spectral plane. Thus, the spectral plane is an alternative
representation of the original image, and the numerical patterns in it (i.e. image features) can
be computed from the spectral plane similarly to the original image plane. Super-spectral
planes can also be computed, resulting from transforming spectral planes repeatedly, and
may also be used for extracting additional numerical (super-spectral) patterns. Fig. 3c
illustrates the use of transforms in computing NPs. This study used Fourier (FFTW (46)),
wavelets (symlets5, level-1 details – implemented in MATLAB Wavelet Toolbox), and
Chebyshev transforms, as well as compound transforms of Chebyshev of Fourier and
wavelets of Fourier. These types of spectral and super-spectral features have not previously
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been used for the analysis of melanoma in the current literature. The CHARM-set of
numerical image patterns proposed in (34) combines plain, spectral and super-spectral NPs
and is shown in Fig. 3c, resulting in a total of 1025 image features. When multiple channels
are used together (e.g. RGB and LAB), the feature vector is extended by computing the
same features on each channel, resulting in 3075 features for RGB and LAB.

Classifiers—Three statistical classifiers were used in this work. The WND classifier
works in a weighted feature space, and using Fisher scores (47) as weights for the feature
values. Therefore, the distance ρc(t⃗) between a test sample and all training samples in a class

c is a weighted distance: , while t⃗ is the test sample, and X⃗(j(c))

are the training samples of the class c. For a given test sample t⃗ the classifier calls cpred (the
predicted class) by maximizing similarity sc(t⃗) between t⃗ and a class c, where the similarity

is defined as , and the parameter p is fixed at 5 (34). We also used a
classical kNN (48) classifier, where the test sample is classified by checking the labels of the
k nearest neighbors of the same class in training set and then taking a vote comparing all
classes.

Lastly, we used RBF (48) classifier. Although this classifier represents a network, it has only
one hidden layer of neurons, so no topology optimization is necessary. Similarly to the two
other classifiers, RBF performs mapping  →  of the high-dimensional feature space 
(as an input layer) to the low-dimensional , where K is the number of classes. Specifically,
the RBF output is given by y⃗ = Σiw⃗i · φ(X⃗, μ⃗i), where y⃗, w⃗ ∈  (0 ≤ yc ≤ 1 for the output
components) and X⃗, μ⃗ ∈ . The function centers μ⃗k of the Gaussian forms of the radial
functions φ(X⃗, μ⃗k) were assumed to be the cluster centers for the k-mean algorithm. For both
RBF and kNN the feature values were not further weighted by their Fisher scores.

Feature selection—For feature selection (dimensionality reduction), features were added
to a classifier until its performance stopped improving in random train/test splits. The same
greedy hill climbing algorithm was used for all three classifiers used. For comparison, we
also employed mRMR (49) and Pearson correlation (47) to select features instead of greedy
hill climbing.

Marginal probability and classification accuracy—The marginal probability of the

sample t⃗ belonging to a class cpred is defined as . The

class assignment for the given sample t⃗ is given by . Marginal
probability may be used for evaluating accuracy of calling an individual image, as well as
groups of images by averaging. Specifically, when classifying a field of view (16 images),
the marginal probabilities are averaged over all 16 constituent images, and the highest
marginal probability in the average is used for the class assignment. Similarly, when
classifying an entire core with several fields of view, the marginal probabilities are averaged
over all of the core’s constituent images. The reported accuracy is the frequency of correct
class assignments divided by all attempted assignments within the given test set or class.

Cross-Validation
When classifying fields of view, cross-validation is based on eight random splits of the data
set into training and test portions. We used 224 randomly selected images (each 323 × 242
pixels in size) of each class for training the classifier, leaving the remaining images for
testing. Because of differences in core size (due primarily to tears), this resulted in uneven
numbers of test images: 3088, 64, 3488, 1200, 2896, 656 and 60 for NV, RD, VT, SQ, LN,
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GI, and ST respectively. The reported accuracy is the average of eight random test/train
splits.

When testing accuracy of classifying entire cores, up to 144 images from one randomly
selected core (for each class) contributed to the test set, while the remaining cores were used
for training. Here the marginal probabilities of all constituent images were averaged before
making the classification call for the core. The accuracy of classifying the fields of view
available for each core (up to 9) could also be assessed independently from the accuracy
reported for the whole core. As before, there was variation in the number of test images so
that for example, the RD tissue type had 128, 96, 80, and 48 test images in the four CV
splits. The number of training images in each class was fixed at 224 as above.

Results
Color Spaces and Classification

In our work we compared three color spaces for analyzing color images: RGB, LAB, and the
deconvolved HE color space using the Ruifrock and Johnston algorithm (45). Example
image panels in these three color schemes are shown in Fig. 4 using a portion of a TMA core
with benign (nevus) tissue. The component channels of the same color image panels (4a) are
displayed using HE (H and E in 4b and 4c, respectively), LAB (channels L, a*, b* in Fig.
4d–f, respectively), and RGB (R, G, and B in Fig. 4g–i, respectively). As one can easily see
in Fig. 4, visual patterns in the three RGB channels (Fig. 4g–i) appear very similar to each
other. This is not the case for H and E channels (Fig. 4b–c), and the component channels in
LAB space (Fig. 4d–f) appear somewhat less redundant morphologically, but not as
independent as the HE channels. The H&E’s stain concentrations carry the most relevant
biological signal, corresponding to cell nuclei and cytoplasm. The size and shape of nuclei
have been consistently considered important and indicative markers in cancer diagnosis
(50,51), and thus we used the H channel for subsequent classification.

The classification scheme shown in Fig. 3b allows working with arbitrary kinds of multi-
channel data because it relies on a global set of image features and does not rely on
additional parameters or segmentation that may effect subsequent classification. This non-
parametric approach allows for direct comparisons of the relative information content of
different color schemes for classification purposes using one or more channels. Table 1
shows the average classification accuracy for the seven tissues using three classifiers (WND,
RBF, and kNN) and three color spaces (RGB, LAB, and HE). Although the three classifiers
perform similarly to each other in the three color spaces, there is a significant and consistent
difference in classification accuracy between the three color spaces tested. The average
accuracy over the three classifiers in LAB and RGB was modest (72% and 75%,
respectively), but was markedly higher in the HE space (95%). We conclude that the HE
space provides the best signal, allowing the single H-channel to outperform the three-
channel spaces RGB and LAB.

All classifiers performed very similarly to each other within each color space, with the
exception of RGB where WND outperformed kNN and RBF by 10% and 12%, respectively.
We also performed a comparison of different feature selection and ranking methods for the
WND classifier operating on the H channel of the HE color space. The accuracy of the
WND classifier with Fisher ranking and weighting (96%) was similar to the result obtained
using Pearson correlations (94%). We obtained similar results (96%) using the mRMR
algorithm (49), which constructs a feature sub-space using a minimal redundancy and
maximal relevance criterion. These observations led us to conclude that the choice of
classifier and feature selection or ranking method makes little difference in the classification
accuracy of this data set. In contrast, the findings in Table 1 show that the choice of color
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space is more important for accurate classification than the choice of classifier or feature
selection algorithm, and that the reconstructed HE color space provides the best
classification results because it is more representative of the underlying biologically
significant morphological signal.

Cross-Validation Experiments
Table 2 reports average classification accuracies (as an average for the seven tissue types)
using per-field of view and per-core cross-validation tests. Table 2 only shows results for the
WND classifier on the H channel of the HE color space. When classifying fields of view
(the first column), the panels are assigned randomly into training and test data without
regard to the core they originate from. Therefore, the same TMA core could contribute data
to both training and test sets. This type of cross-validation resulted in 95.7% classification
accuracy (for comparison, it is also shown in Table I, as WND/HE result).

Columns two and three in Table 2 show results of cross-validation on whole cores. The
accuracy reported in column 2 is the average accuracy of correctly classifying a field of
view within each core (93.8% for all seven tissue types). Note the full range of variation of
the different cores is not fully represented in each experiment’s training set, potentially
explaining the slight decline in the overall accuracy in this test compared to the per-field test
that used all cores for training (95.7%; Table 2, column 1). The third column in Table 2
reports classification accuracies when the marginal probabilities of all of the constituent
images of a core are averaged together before making the final classification call for the
core. All 28 cores are classified with 100% accuracy when all constituent images “vote” on
the final classification. The per-field accuracies in the per-core cross-validation provide a
measure of reliability for this voting. It remains to be tested if this level of performance can
be maintained through different stain preparations and laboratories, which would also be
required in a “real world” diagnosis setting. The overall accuracy in diagnosing new patients
is quite high even for single panels, indicating that with consistent sample preparation, the
classifier is able to generalize to new cases of melanoma after training on previously known
cases.

Sub-Pattern Discovery
As discussed above, the WND classifier reports a set of marginal probabilities (one per
class) for each field of view by averaging the set of marginal probabilities computed on each
of its sixteen constituent images. For purposes of classification, the entire field is assigned to
the class with the highest average marginal probability. Fig. 5 illustrates how the marginal
probabilities are distributed in the individual images comprising a single field of a vertical
growth primary tumor (VT). The left part of Fig. 5 shows a field of view in grayscale (H
channel of HE) overlaid with the grid pattern of the constituent images. The right part shows
the per-class marginal probabilities of each image as a bar graph. It can be seen that
although the whole panel is classified correctly because in all but one of the images the
highest marginal probability is VT, the individual images display considerable heterogeneity
in their similarity to other classes in the dataset. One reason for that may be that VT (as a
stage) marks the beginning of active metastasis into secondary sites.

Interestingly, the heterogeneity observed in this panel isn’t random. Although the classifier
computes marginal probabilities independently for each image in the panel, when they are
reassembled into the original field, we can see that a substantial subcutaneous (SQ)
probability is present in a contiguous patch of images, and that this pattern is absent in a
contiguous area surrounding this patch. The contiguity of this signal across several images
indicates that this is not likely to be an artifact of the classifier, or random noise. Although
this effect is not present in every panel, we were able to find several examples like this by
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manual inspection. This is an example where the subject specifics (actual observations) can
go beyond the employed techniques (assigned ground truth): supervised learning assumes
homogeneity of the groups, while in reality there can be considerable divergence which can
be used to discover new patterns.

Discussion
Stain-Specific Color Space Provides the Best Classification Signal

Considering that the H-channel is an incomplete representation of the information contained
in RGB and LAB, the higher accuracy obtained with it may seem surprising. In principle,
one could attribute this to an artifact of the classifier or other internal machinery of the
study, or systematic errors in non-HE color spaces. As discussed in the introduction, the
feature bank we used in this study (CHARM) is not application-specific and was used in a
wide variety of imaging studies. We also did not use segmentation, which is expected to be
highly sensitive to image preprocessing such as the representation of color. These two
properties allowed us to directly compare classification performance between different color
representations of the same images. The performance we observed for the three color spaces
was consistent between the three classifiers we tested, and has also been observed when
classifying lymphoma sub-types (52). Taken together, these findings argue against
systematic error, leading us to conclude that the best signal for classifying H&E stained
tissue is a reconstructed HE color space regardless of the classifier employed, or even the
specific tissue being studied.

Histochemical stains are commonly used as colored contrast agents to reveal subcellular
morphology. The underlying biological processes which forms the basis for classification, is
expressed through differential morphology, and is only tangentially related to the specific
color response in the acquired RGB signal. The RGB channels contain a convolution of the
underlying morphological signal because the color response of an RGB camera is not well
matched to the color response of the contrast agents. The use of CIE-L*u*v* and L*a*b* is
very common (24,31) and is well justified because the purpose of these spaces is to
maximize channel independence, thus minimizing the redundancy of information presented
to downstream classifiers. However, the LAB space is still dependent on the specific color
response of the stains and their representation by RGB filters. In contrast, a color space
based on reconstructed stain intensity is a better representation of the underlying
morphology because it effectively factors out the largely irrelevant color responses of the
intervening contrast agents and instrumentation.

Sub-Classification of Primary Tumors
In a previous study of adenocarcinomas (53), a gene expression signature was found that
allowed differentiating primary tumors from secondary metastases. A subset of primary
tumors was found to carry the gene expression signature associated with secondary
metastases, and this subset was associated with increased metastasis and poorer clinical
outcome than primary tumors that did not carry this signature. Similarly, using imaging, we
observed that a subset of primary melanoma tumors carry a morphological signature
associated with secondary sites. This marker allows us to further sub-classify primary
tumors, but the clinical relevance of this sub-classification with regards to better prediction
of disease outcome or prognosis remains to be definitively determined using a dataset with
associated follow-up clinical outcomes.

Non-Parametric Pattern Recognition
There are obvious advantages to using multi-purpose features, like those contained in our
feature library. Generality of the features means that a broad range of problems may be
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investigated with a single collection of algorithms. This point appears particularly important
in analyzing cancer tissues: metastatic tissues present diverse cell morphologies, in varying
patterns where often the underlying cellular mechanisms are not yet known. The generality
ensures not only consistency for borderline cases but the potential for discovery of new sub-
types or sub-grades, because the features are not constrained by specific a priori knowledge
of the underlying biological process.

Despite its generality, this method demonstrated high accuracy in discriminating the stages
of melanoma progression without making use of any specific features or parameters relevant
exclusively to melanoma’s morphology. Thus, the techniques should be useful for other
tissue types or imaging modalities. For example, multi-wavelength tissue scanning could be
directly plugged into this framework in the same fashion as we used multiple color channels
in this work. The promise of generalized, non-parametric image processing techniques is
that clinicians and researchers do not have to engage in development or parameter tuning in
domains where they lack expertise in order to address every particular imaging problem.

Conclusions
A major contribution of this study is the demonstrated capacity of a general classifier to
automatically discriminate markers of melanoma progression without selecting algorithms
or adjusting parameters other than assigning images to corresponding groups. The highest
classification accuracy we achieved was 96% (per-field average for the seven tissue types
analyzed) using the WND on the H channel of a reconstructed HE color space. When
classifying whole cores of cases not previously seen by the classifier, we were able to
achieve 100% accurate classification, indicating that accurate diagnostics can be performed
in a clinically relevant setting where new cases must be accurately classified based on
previous training data. We also demonstrate that appropriate, physiologically-relevant
choice of color representation is much more important than the choice of classifier or
feature-selection scheme.
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Figure 1.
TMA cores arranged on a microscope slide (lymph node metastatic tissue – LN - stained
with H&E). The core size is 1 mm.
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Figure 2.
Representative panels from primary and secondary tumor sites: a) nevus (healthy tissue,
NV), b) primary site, radial (Rad) growth phase, c) primary site, vertical (VT) growth phase,
d) gastro-intestinal (GI) tissue, e) lymph node (LN) metastatic tissue, f) subcutaneous (SQ)
type, and g) soft tissues (ST). The panel size is 335 by 251 um. Images with little or no
tissue (as in b, e and f) were excluded from the analysis.
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Figure 3.
Three alternatives for processing color images: a) numerical patterns directly from the color
image; b) separate numerical patterns either from RGB channels or from channels of a
derived color space (marked with a dashed frame. Note that the number of derived channels
might be different); c) the block ‘Compute patterns’ implements the computational
framework as described in the corresponding Section (see Computational framework).
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Figure 4.
Different color spaces used in tissue classification: a) original tricolor RGB, b) HE (H), c)
HE (E), d) Lab (L), e) Lab (a), f) Lab (a), g) RGB (Red), h) RGB (Green), and i) RGB
(Blue).
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Figure 5.
Assignment of marginal probabilities to images in a panel. The WND classifier was trained
on ‘learning’ portion of TMA cores with all seven tissue types present and then tested on
‘test’ TMA cores different from the learning cores. On the left: a panel of the test core split
into 16 images, – primary site, vertical growth stage (the scale is the same as in Figs 2 and 4:
335 um by 251 um). On the right: per-image marginal probabilities computed by the
classifier.
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Table 1

Comparison of classifier accuracy (%) on RGB, LAB and HE data sets (the error is the standard deviation for
eight different data splits). All three classifiers achieved their highest accuracy on HE set; average of all three
accuracies is 94% -- noticeably above the results for RGB and LAB sets.

Data Set RGB LAB HE

WND 82.1 ± 2.3 73.1 ± 2.8 95.7 ± 0.4

RBF 70.3 ± 4.1 73.2 ± 1.6 94.4 ± 1.6

kNN 72.2 ± 0.8 69.9 ± 3.0 93.6 ± 3.3

Classifiers’ average 74.9 72.1 94.6
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Table 2

Comparison of classification accuracies for each class in two cross-validation scenarios: per-field and per-
core. Per-field cross-validation results (eight random splits used) is shown in the first column. For per-core
cross-validation, classification accuracies are reported per-field (second column) as well as per-core (third
column) using “votes” from each field in the core. WND classifier was used on the H dataset in both cases.
The error in the first column is the same as in Table I; the error in the second column is the standard deviation
for 28 test cores used in the per-core test.

Cross-validation Per-Field Per-Core

Classification Per-Field Per-Field Per-Core

Average 95.7 ± 0.4 93.8 ± 11 100
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