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Abstract
Hepatitis C virus (HCV) infects 3% of world population and is the leading cause of liver failure in
the United States. A unique feature of HCV is that the viral particles are integral to very low
density lipoprotein (VLDL)-derived lipoprotein particles. The virus is assembled into VLDL in
hepatocytes, and released out of the cells together with VLDL. The virus then infects more
hepatocytes by entering the cells through low density lipoprotein receptor, which mediates uptake
of majorities of VLDL-derived lipoprotein particles. These observations suggest that HCV may
belong to a novel class of viruses that is associated with VLDL. Understanding the relationship
between HCV and VLDL metabolism may reveal new strategies to treat HCV infection.

Hepatitis C virus (HCV) infects more than 170 million people worldwide 1. According to the
Centers for Disease Control and Prevention, 4.1 million Americans are estimated to be
infected by HCV, 3.2 million of whom become chronically infected. These individuals
account for most cases of liver failure in the United States 2. The most effective therapy for
HCV infection involves inhibiting a HCV-encoded enzyme 3. However, the HCV genome
rapidly acquires mutations that render drug resistance owing to the low fidelity of the viral
replication machinery 4. Thus, these inhibitors must be combined with interferon in order to
significantly improve treatment outcome of HCV infection. Because of the expense and
severe side effects that accompany interferon treatment 5, the search for new strategies to
treat HCV infection is merited.

HCV is a single-stranded positive-sense RNA virus of the Flaviviridae family 6. The 9.6-
kilobase HCV genome encodes a single polyprotein that is post-translationally processed
into at least 10 structural and nonstructural (NS) proteins 7 (Figure 1). The amino-terminal
one-third of the polyprotein encodes virion structural proteins: Core, E1 and E2. The
remainder of the genome encodes NS proteins that are not found in viral particles but instead
are required for replication and assembly of the virus. The NS3, NS4A, NS4B, NS5A and
NS5B proteins, which are necessary and sufficient for replication of viral RNA 8, form a
viral replication complex on endoplasmic reticulum (ER) membranes 9-12.

Association of HCV with very low density lipoprotein (VLDL)
An intriguing feature of HCV is that the viral particles are found in complex with VLDL,
which plays an important role in transporting cholesterol and triglyceride from the liver to
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peripheral tissues 13. VLDL contains a hydrophobic core of neutral lipids consisting of
triglycerides and cholesteryl esters surrounded by a surface coat containing phospholipids,
free cholesterol, and lipoproteins including apolipoprotein B (apoB) and apolipoprotein E
(apoE) 14. HCV particles isolated from the serum of virus-infected patients exhibited a
density similar to that of VLDL 15-17. Moreover, these particles were rich in triglyceride and
contained apoB and apoE 15, 16. Recently, Merz et al developed a strain of HCV in which
the E2 protein was tagged with a FLAG epitope, and purified the HCV virion produced from
the human hepatoma Huh7 cells through affinity purification with anti-FLAG 18. The
purified HCV virion appeared to contain more apoE than viral proteins at the surface of the
particles 18. Lipidomic analysis revealed that cholesteryl esters comprised almost half of the
total lipid content in the affinity-purified viral particles 18. In sharp contrast, the viral
envelope derived from host cell membranes is predominantly composed of phospholipids.
The triglyceride content in the purified viral particles were not determined owing to
technical difficulty 18.

Electron microscopy (EM) analysis of HCV either isolated from patient serum or affinity-
purified from the culture medium of virus-infected Huh7 cells revealed structures that
contained lipid-rich cores resembling lipoprotein particles rather than the classical viral
capsid structure 15, 18. These observations suggest that the viral genome and capsid may be
hidden within the hydrophobic core of VLDL. This structure may allow HCV to evade B
cell/antibody-mediated immune surveillance during circulation, thereby providing a
plausible explanation as to why the viral infection cannot be effectively prevented by
vaccination. In contrast to these studies, EM analysis revealed structures resembling
enveloped viral particles in a fraction of culture medium enriched in HCV infectivity 19.
Thus, HCV may exist as multiple forms, and more sophisticated EM analyses such as cryo-
EM capable of visualizing structures within the hydrophobic cores of VLDL may be
necessary to identify capsid structure of HCV.

Assembly of HCV-VLDL complex
The hepatic synthesis of VLDL requires generation of lipid droplets enriched in neutral
lipids such as triglycerides and cholesteryl esters in the ER lumen 14. These lipid droplets
are produced by reactions catalyzed by microsomal triglyceride transfer protein (MTP) 20-22.
Although not formally demonstrated, apoE might also play an important role to generate
these lipid droplets 23. Upon fusion with apoB, these lipid droplets can be secreted out of
cells as nascent VLDL through exocytosis 14. In addition to generating lipid droplets in the
ER lumen, MTP also stabilizes apoB during translation by transferring lipids to the nascent
polypeptide chain of apoB 14, 22. In the absence of this lipid transfer, the secretion of apoB is
blocked and the protein is rapidly degraded in cells 24, 25. VLDL secretion also requires
hepatic synthesis of phosphatidylcholine (PC), the major phospholipid on the surface of the
lipoprotein particles 26. In human hepatoma Huh7 cells, long chain acyl-CoA synthetase 3
(ACSL3)-mediated PC synthesis is required for secretion of apoB 27.

Proteomic analysis of ER membrane vesicles containing HCV RNA and viral replication
complex composed of viral proteins NS3-NS5B revealed that these vesicles were enriched
in apoB, apoE, MTP and ACSL3 12. The reason for co-localization of the HCV replication
and VLDL assembly appears to lie in a requirement for co-assembly and secretion of VLDL
and HCV particles. Thus, secretion of HCV virion from virus-infected Huh7 cells was
inhibited when cells were treated with pharmacological inhibitors of MTP 12, 28, 29.
Secretion of HCV was also inhibited in cells transfected with a siRNA targeting apoE 30 or
ACSL3 27. The results regarding apoB are not consistent: knockdown of apoB was shown to
block HCV secretion in two studies 12, 28 but had no effect on release of HCV virion in
another study 29. This discrepancy is most likely caused by the different HCV infection
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system used in the studies. In the reports showing apoB was required for secretion of HCV,
care was taken to ensure that HCV infection did not result in cellular apoptosis so that viral
particles were only released through exocytosis. In contrast, the study showing the opposite
result used a system known to cause apoptosis of virus-infected cells 31. Consequently,
intracellular infectious HCV particles containing NS5A were released into culture medium
from dying cells 29. Since apoB is not required to produce intracellular HCV particles 29, it
is not surprising to observe apoB-independent production of infectious HCV particles in
culture medium using this system.

A puzzling question regarding assembly of HCV-VLDL complex is how viral genome
synthesized at cytosolic face of the ER is transported across the membrane bilayers to reach
ER lumen where it is packaged into VLDL. A clue to the question may come from a unique
property of HCV-encoded capsid core protein. HCV core protein contains two domains: an
NH2-terminal hydrophilic domain (D1) that binds viral RNA, and a COOH-terminal
hydrophobic domain (D2) that interacts with neutral lipid 32, 33. In HCV-infected Huh7
cells, the majority of core proteins are localized at the surface of cytosolic lipid droplets that
are in contact with ER membranes containing the HCV replication complex 34, which is also
the site for VLDL assembly 12. Thus, HCV may replicate at an ER domain enriched in
neutral lipids that can bud toward cytosol or lumen to form lipid droplets in both locations.
A hypothetic model is proposed in Figure 2 to explain translocation of HCV capsid based on
this localization. Core is targeted to cytosolic lipid droplets through its D2 domain, after it is
cleaved from the viral polyprotein. The hydrophilic D1 domain is exposed to the cytosol,
ready to accept viral RNA synthesized by the viral replication complex (Figure 2A). Once
associated with viral RNA, core protein undergoes a conformational change so that
hydrophilic residues that bind viral RNA are folded inside, whereas hydrophobic residues
are exposed at the surface. This conformational change allows the core-RNA complex to
become completely embedded in the hydrophobic core of lipid droplets (Figure 2B). The
viral capsid-RNA complex then travels through the neutral lipid-rich ER membrane to reach
lipid droplets in the ER lumen. The HCV-containing luminal lipid droplets then fuse with
apoB, acquire two other lipoprotein-like viral structural proteins E1 and E2 35, and are
secreted out of the cells through exocytosis (Figure 2C).

The model shown in Figure 2 predicts that HCV capsids are able to enter the hydrophobic
core of lipid droplets. Although there have not been many studies characterizing localization
of cellular proteins in hydrophobic cores of lipid droplets, such localization was reported
through EM analysis 36, 37. Further studies are required to determine whether these host
proteins facilitate translocation of HCV capsids. This model also predicts that HCV capsids
travel across the membrane through neutral lipid-rich domain of the ER. ApoB has been
reported to translocate from the ER lumen into the cytosol though a mechanism that
involves lipid droplets 38. This observation implies that lipid droplets across ER membranes
are continuous and proteins may be able to transport across ER membranes through lipid
droplet intermediates. More imaging and biochemical analyses will be required to further
validate the model shown in Figure 2.

Requirement of LDL receptor (LDLR) for HCV entry
Once released out of cells, HCV enters more hepatocytes for a new round of infection.
Several receptors for HCV entry have been identified based on their interaction with E2 39,
including CD81 and Scavenger receptor-B1 40-44. Proteins forming tight junction such as
claudin-1 and occludin have also been implicated in HCV entry 45, 46. However, all of these
receptors appear to function at later stages of viral entry since they are not required for HCV
to bind to the cell surface 45, 47. This initial binding is at least partially mediated by LDLR,
which plays a predominant role in acquiring VLDL-derived lipoprotein particles 48. It has
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been reported that cellular binding or uptake of HCV particles isolated from infected
patients correlated with LDL receptor activity on cell surface 15, 49-51. LDLR was also
required for infectious entry of HCV virion produced from Huh7 cells, and this entry
depended on the interaction between the receptor and apoE on the viral particles 52. LDLR
does not directly interact with viral proteins as the receptor was not required for entry of
HCV pseudo particles, which were assembled by displaying HCV structural proteins E1 and
E2 onto retroviral core particles that were not in complex with lipoproteins 53.

Mutations disrupting the function of the LDLR have been identified in human. These
mutations produce autosomal dominant familial hypercholesterolemia, which affect 0.2% of
world population 54. Affected individuals have elevated plasma levels of LDL-cholesterol,
which causes premature coronary atherosclerosis. However, during evolution when dietary
cholesterol was scant, these mutations may not produce such a severe phenotype but may
actually protect these individuals from infection of HCV or HCV-related virus. An analysis
comparing the frequency of HCV infection in people expressing normal LDL receptor
versus those affected by familial hypercholesterolemia will be needed to test the hypothesis.
This hypothesis may also be tested with mice containing human liver grafts, an animal
model successfully used to study HCV infection 55-57. If this hypothesis is correct, mice
grafted with human liver derived from patients affected by familial hypercholesterolemia are
expected to resist the infection by HCV.

Treating HCV infection with drugs targeting VLDL metabolism
The dependency on VLDL for HCV life cycle offers opportunities to treat the viral infection
with drugs targeting VLDL metabolism. Several MTP inhibitors have already been tested in
clinical trials because of their ability to block VLDL secretion, thereby lowering the plasma
levels of VLDL-triglycerides and LDL-cholesterol 58, 59. Long-term treatment with MTP
inhibitors led to the accumulation of fat in livers thus hampering the drugs to be approved
for treatment of hypercholesterolemia, which may require life-long administration in the
case of familial hypercholesterolemia 58, 59. However, short-term treatment (up to several
weeks) reduced the plasma level of VLDL with only minor adverse effects, which
disappeared after drug removal 58. Since the standard treatment for HCV infection with
drugs targeting the viral enzymes lasts for only about 12 weeks, MTP inhibitors may be
combined with these drugs to treat HCV infection. MTP inhibitors also have the advantage
in that they target a host protein rather than viral proteins so they are less likely to face the
drug-resistance problem caused by mutations in the viral genome.

Another drug that inhibits VLDL assembly is an antisense RNA drug targeting apoB 60.
Unlike MTP inhibitors, apoB antisense RNA lowered VLDL secretion in the absence of
accumulation of fat in livers 61. However, in cultured cells knockdown of apoB by siRNA
was less potent than MTP inhibitors to inhibit HCV production 12, 28. Thus, more studies are
required to determine the efficacy of apoB antisense RNA on treatment of HCV infection in
vivo.
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Figure 1.
Diagram of HCV genome. HCV genomic RNA contains 3′ and 5′-untranslated regions
(UTR) that are required for viral replication. The 5′-UTR also contains an internal ribosomal
entry site (IRES) that directs translation of a viral polyprotein, which is further
proteolytically processed into 10 proteins. The viral structure and nonstructural protein are
labeled in red and green, respectively.
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Figure 2.
A hypothetic model illustrating HCV assembly. HCV RNA is synthesized by HCV
replication complex composed of viral proteins NS3-NS5B at the cytosolic face of the ER
membranes. The viral RNA then binds to the core protein localized at the surface of the lipid
droplets adjacent to the viral replication complex (A). Upon binding with viral RNA, core
goes through a conformational change so that the core-RNA complex enters the core of
cytosolic lipid droplets, allowing the complex to reach lipid droplets in the ER lumen by
traveling through ER domains enriched in neutral lipids (B). The HCV-containing luminal
lipid droplets fuse with apoB, acquire E1 and E2 heterodimer, and are secreted out of cells
through exocytosis (C).
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