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Abstract
High-performance metabolic profiling (HPMP) by Fourier-transform mass spectrometry coupled
to liquid chromatography gives relative quantification of thousands of chemicals in biologic
samples but has had little development for use in toxicology research. In principle, the approach
could be useful to detect complex metabolic response patterns to toxicologic exposures and to
detect unusual abundances or patterns of potentially toxic chemicals. As an initial study to develop
these possible uses, we applied HPMP and bioinformatics analysis to plasma of humans, rhesus
macaques, marmosets, pigs, sheep, rats and mice to determine: 1) whether more chemicals are
detected in humans living in a less controlled environment than captive species, and 2) whether a
subset of plasma chemicals with similar inter-species and intra-species variation could be
identified for use in comparative toxicology. Results show that the number of chemicals detected
was similar in humans (3221) and other species (range 2537 to 3373). Metabolite patterns were
most similar within species and separated samples according to family and order. A total of 1485
chemicals were common to all species; 37% of these matched chemicals in human metabolomic
databases and included chemicals in 137 out of 146 human metabolic pathways. Probability-based
modularity clustering separated 644 chemicals, including many endogenous metabolites, with
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inter-species variation similar to intra-species variation. The remaining chemicals had greater
inter-species variation and included environmental chemicals as well as GSH and methionine.
Together, the data suggest that HPMP provides a platform that can be useful within human
populations and controlled animal studies to simultaneously evaluate environmental exposures and
biological responses to such exposures.
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1. Introduction
A recent biomonitoring survey of Americans by the Centers for Disease Control and
Prevention (CDC) found traces of 212 environmental chemicals, including chemicals from
plastics, pesticides and flame retardants (CDC 2011). Such exposures appear to mostly
reflect common commercial uses, do not exceed relevant safety thresholds and have little if
any evidence for associated adverse health effects. Furthermore, the chemicals in the CDC
study were selected because of postulated high health concerns (e.g., bioaccumulative/
persistent, plasticizers, and chemicals with ongoing exposure) so that the findings suggest
that chemicals with short environmental or biological half-lives are likely to have even
lower internal-dose exposure profiles and even lower potential for adverse health outcomes.

Despite the extensive scientific foundation of the methods and the re-assuring nature of such
findings, contemporary risk assessment and surveillance strategies were devised as an
affordable approach to minimize population risks and have several limitations. For instance,
detection of an exposure of concern is possible only if it occurs at a frequency sufficient to
be detected within the number of samples measured; if 20,000 people are studied in the US
and they are representatively distributed among the 50 states and across the age and sex
distributions of the population, then significant exposures to a single chemical may have to
affect >1% of a relevant subpopulation, such as middle-age men in a single geographical
region, e.g. the Mississippi Delta, to be detected. Second, because of cost limitations,
chemicals are prioritized for targeted analysis based upon evidence of hazard and potential
risk. Unknown or unidentified risks are excluded by this targeted approach. For instance,
effects of low-level (0.001%) contaminants of commercial chemicals may not be readily
detected in toxicology studies but be environmentally relevant if they are stable and
substantial amounts of the agent are produced. Similarly, chemicals with a short
environmental half-life are converted to other chemicals; it is very difficult to know whether
these include minor but persistent products that bioaccumulate. Third, the selection of
chemicals for analysis depends upon in vitro toxicity models, animal testing and
extrapolation. While sound in principle, this approach cannot include the full range of
possible adverse health effects due to complex genetic, epigenetic and co-exposure
interactions in humans. Fourth, the approach assumes that individuals have similar
sensitivities to environmental exposures, i.e., that inclusion of a safety factor is adequate to
account for deviation of individuals from the norm. Knowledge from therapeutic drug use
shows that even an extensively consumed drug like acetaminophen, used safely by hundreds
of millions of people, causes toxicity at therapeutic doses in some individuals (Bonkovsky et
al. 1994; Kwan et al. 1995). Thus, even though environmental health risk assessment and
surveillance are effective in providing cost-effective means to minimize risk, there are
continuing needs to improve this process.

New chemical analysis and profiling technologies can potentially provide cost-effective
approaches to: a) more thoroughly evaluate biological responses of cell and animal studies
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for extrapolation to humans; b) more broadly monitor exposures on a personal basis; and c)
more effectively detect adverse exposure effects within the context of other
pathophysiologic processes under real-life conditions. Such technologies and innovative
applications include advanced biosensors (Rea et al. 2011), microfluidics (Kraly et al. 2009),
ultra-high resolution chemical separations (Nordstrom et al. 2006), and improved sensitivity
mass spectrometry (Soltow et al. 2011), nuclear magnetic resonance spectrometry (Inouye et
al. 2010) and high-resolution imaging (Miura et al. 2010). Development of such approaches
has the promise to provide more comprehensive, rapid and less expensive methods to
identify existing and newly emerging exposures of concern (Want et al. 2010).

High-performance metabolic profiling (HPMP) is a high-throughput chemical analysis
developed as a practical approach for use in personalized medicine (Johnson et al. 2010).
The method uses the high resolution and mass accuracy of Fourier-transform mass
spectrometry (Marshall and Hendrickson 2008) to support measurement of up to 7000
chemicals in 20 µl samples in 20 min (Soltow et al. 2011), thereby making this method
potentially affordable for routine measurement of endogenous metabolites and metabolic
patterns for disease diagnosis and health management. In application of this technology to
biological samples, there is an ambiguity in terminology because “metabolomics” is used as
a general term for all chemicals, yet all chemicals in biological samples are not biologically
relevant “metabolites”. In the present report, we use “chemical” in a non-specific way to
refer to any chemical detected. HPMP was developed as a high-throughput approach to
study metabolism and disease, and we use the term “endogenous metabolite” in the present
study to refer to these biochemicals, as represented by KEGG (Kyoto Encyclopedia of
Genes and Genomes) (Kanehisa 2002; Kanehisa and Goto 2000) human metabolic
pathways. Other chemicals include those derived from diet, enteric flora, pharmaceuticals
and environmental sources, many of which are currently unidentified. The present study is
based upon the observation that HPMP analyses include environmental chemicals, e.g.,
insecticides, fungicides and plasticizers, raising the possibility that HPMP could be adopted
as part of a universal exposure surveillance strategy for health and environmental exposures
(Soltow et al. 2011). In principle, combinations of chemical separation and ionization
strategies could provide an approach to survey the environmental chemical space (Howard
and Muir 2011) measured as the abundance or patterns of chemicals in routine blood or
urine samples from individuals during normal healthcare visits (Soltow et al. 2011; Weis et
al. 2005).

The current study was designed to gain information about potential use of HPMP in
exposure surveillance through study of plasma from seven mammalian species (human,
rhesus macaque, common marmoset, pig, sheep, rat, mouse). We performed HPMP on
plasma and applied bioinformatic approaches to determine the fraction of plasma chemicals
that are common among the mammalian species, characterize these in terms of matches to
metabolic databases and identify ones with low inter-species variation that could be suitable
to support biological response monitoring along with environmental chemical surveillance.

2. Materials and Methods
2.1. Materials

Acetonitrile (HPLC grade), formic acid (puriss. p.a. 98%), water (HPLC grade) and caffeine
were obtained from Sigma–Aldrich (St. Louis) and the reverse phase test mix (Cat#: 47641-
U) was from Supelco Analytical (Bellefonte, PA). Trimethyl-[13C3]-caffeine (Cat#:
CLM-514-0) and [15N]-L-tyrosine (Cat#: NLM-590-0) were obtained from Cambridge
Isotope Laboratories, Inc (Andover, PA).
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2.2. Plasma Samples
For the purpose of characterization of species and/or sex on phylogenetic differences in
metabolic pathways, 2 sample sets (Sample Set 1 and 2) were analyzed at different times. In
Sample Set 1, archival samples from seven mammalian species were studied (Supplemental
Material, Table 1). Samples from animal species were obtained under standard experimental
conditions, respectively differing in diet and environment according to husbandry practices
for the different species (Supplemental Material, Table 1). Samples were stored at −80° C
until analysis, in all cases for <2 y; at present there is no systematic knowledge concerning
the long-term stability of the thousands of chemicals in the samples. Sample Set 2
(Supplemental Material, Table 1) was designed to determine whether metabolic differences
according to sex could be discriminated from phylogenetic differences by HPMP.

2.3. High-Performance Metabolic Profiling (HPMP)
Details have been previously published (Johnson et al. 2010; Soltow et al. 2011). Briefly,
plasma (50 µl) was treated with acetonitrile (2:1) and an internal standard mix (Soltow et al.
2011) and then centrifuged at 13,000 × g for 5 min to remove protein. Extracts were placed
in a refrigerated autosampler and 10 µl volumes were analyzed in duplicate with DC-FTMS
platforms, one using an anion exchange (AE) column (Hamilton PRPX-110S, 2.1 mm ×10
cm, Reno) and the other using a C18 column (17 mm × 2.1 mm, Pompton Plains), both with
aC18 precolumn (Higgins Analytical Targa column, Mtn View). Samples were fractionated
with a formate gradient, ionized with electrospray ionization in the positive mode, and
detected with an LTQ-FT spectrometer (Thermo, San Jose) with m/z from 85–850. Data
were extracted using apLCMS (Yu et al. 2009) as m/z features, where an m/z feature is
defined by m/z (mass/charge), RT (retention time) and ion intensity (integrated ion intensity
for the peak). Endogenous metabolites were annotated using Madison Metabolomics
Consortium Database (MMCD) (Markley et al. 2007), Metlin Mass Spectrometry Database
(Smith et al. 2005) and MS/MS.

2.4. Bioinformatics
Hierarchical Clustering Analysis (HCA) (Pirouette software; Infometrix, Bothell, WA) was
used as a data reduction method to visualize phylogenic similarities of metabolic spectra
among the 7 species. Principal Component Analysis (PCA) (Pirouette software; Infometrix,
Bothell, WA) with autoscaling was used as a data reduction method to visualize
discriminatory factors, shown in two-dimensional (2-D) and three-dimensional (3-D) PCA
score plots. Metabolite pathway mapping was performed using KEGG (Kanehisa 2002;
Kanehisa and Goto 2000) to match high-resolution m/z data to known endogenous
metabolites and metabolic pathways. The large number of m/z features (>3000), most of
which did not match endogenous metabolites in the metabolic databases, precluded
confirmation of chemical identities of most features. However, over 90% of metabolites in
the KEGG human metabolic database have unique m/z at the resolution used, and MS/MS
and coelution studies confirmed identity of many features (e.g., amino acids, intermediary
metabolites, environmental chemicals). One-way ANOVA and Tukey test were used to
compare the relative intensities of chemicals in human plasma to those of 6 different species.
Significance was expressed at p <0.05.

2.5. Probability-based modularity clustering
Probability-based modularity clustering was used to determine associations of chemicals
within species and between species. This is a graph-based technique for automated
clustering that provides numerical optimization across all possible clusterings. The method
is based upon modularity clustering (Newman 2006), an approach which maximizes the
"modularity function", a direct measure of the quality of a particular clustering of nodes in a
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graph. A detailed discussion of maximization and formulation of modularity function is
available (Stone and Ayroles 2009). Briefly, in an undirected graph with nodes and edges,
modularity clustering determines the community structure of by constructing adjacency
between two nodes and, to define the closeness of nodes. A modularity function is defined

(1)

where is a partition of the nodes into groups and. Thus, measures the within-cluster sum of
adjacency, measures the sum of adjacency over all edges attached to nodes in cluster, and
measures the sum of all edge adjacency in the graph. The term / relates to the empirical
probability that both ends of a randomly selected edge lie in cluster, and the term relates to
the empirical probability that one specific end of a randomly selected edge lies in cluster.
Hence, the modularity function of partition is the difference between the partition's empirical
within edge probability and the partition's hypothetical randomly-placed edge probability.
Stone and Ayroles (Stone and Ayroles 2009) used this correlation-based adjacency measure
to cluster genes and, based upon this, we used a probability-based adjacency measure to
cluster chemicals for phylogenetic groups. We used the adjacency between chemicals to
measure contribution of individual chemicals to similarity among groups. Specifically, for
(human, non-human primate, rodentia, artiodactyla), is the -th group effect. The adjacency
between chemicals and, denoted by, is defined as the p-value of the test:

With this adjacency measure, high p-values lead to failure to reject the null hypothesis,
which indicates that high p-values relate to the conclusion of the four species being similar.
Adjacency close to 0 leads to rejection of the null hypothesis, meaning that metabolite and
result in quite dissimilar, or divergent, effects of the relative intensities among species. By
maximizing the modularity function as in equation (1), the adjacency constructed as above
produces a partition of clusters that separates chemicals that are non-differentiating (have
the highest average adjacency among groups) from those that are differentiating (have the
lowest average adjacency among groups). A detailed discussion of iterative and automatic
maximization of involving no cut-off value is available (Newman 2006). Within each
cluster, chemicals are ordered according to adjacency within the cluster, with the upper left
chemicals showing best associations among groups and the lower right chemicals showing
greatest divergence among groups. For this analysis, chemicals with >30% zero values were
excluded, leaving 1418 of the common chemicals for reported results. Results were similar
using for all species individually, but the current analysis was used because of the small n
for some species.

3. Results
3.1. HPMP of different species

A complete table of results for m/z features for individuals is available from the authors
upon request. Results for each order, family and species are summarized in Figure 1A and
B. Each order had a similar total number of chemicals ranging from 3382 to 3723. Species
from two families, pig and sheep, had relatively fewer features, but the number of features/
individual was similar so this may reflect the smaller number of individuals studied. Of
interest, the number of chemicals detected in human plasma was similar to that in the
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experimental animals even though the human subjects were not in a controlled research
environment and expected to have more variable diet and environmental exposure.

The distribution of features among the orders is shown as a Venn diagram in Figure 1B. Of
the total 3820 m/z features, less than half (1485) was present in all species (Supplemental
Material, Table 2). A greater number of common features was found between primates and
rodents than between artiodactyls and either primates or rodents.

3.2. Similarities of metabolic profiles using HCA
HCA was performed on the data for the 3820 chemicals in individual plasma samples to
characterize similarity of metabolic spectra. The results (Figure 1C) showed that individuals
within a species were more similar to other individuals within that species than to
individuals from other species. However, species generally were not more similar within
family than between family, e.g., humans and rhesus were more similar to pig and sheep
than to marmoset. Thus, the similarities in metabolic character of plasma reflected in HCA
only partially recapitulate phylogeny.

3.3. PCA of HPMP data for plasma from 7 mammalian species
Data reduction by PCA showed better classification according to taxonomic rank. A 3-D
PCA score plot (Figure 2A), rotated to visualize maximal separation, showed that the 7
mammalian species separated by phyogenetic order (primata, actiodactyla, rodentia) using
PC1, 2 and 3, which represents 63% of total variation. In Figure 2B, a 2-D PCA score plot
representing 56% of total variation showed nearly complete separation according to species.
This sample set did not have equal distribution according to sex, so a second set of samples
was examined to determine whether individuals were separated in a PCA score plot
according to sex. This set of samples contained 5 females and 5 males from human,
marmoset and mouse. The 2-D PCA score plot (Figure 2C) showed that separation was
largely due to species and not to sex. According to the results, the first three principal
components of a PCA analysis of 3820 chemicals separates according to species with
additional separation according taxonomic family and order but not according to sex.

3.4. Pathway analysis of 1485 chemicals common to 7 mammalian species
Metabolic databases provide the capability to search for chemicals that match the high-
accuracy m/z data. Searches against Metlin (Smith et al. 2005) and MMCD (Madison
Metabolomics Consortium Database; (Markley et al. 2007) showed that less than half of the
m/z match known human endogenous metabolites (Draper et al. 2009; Soltow et al. 2011).
KEGG pathway analysis similarly showed that only 673 of the m/z matched known
metabolites (Figure 3). Although these endogenous metabolites represent only about 20% of
the total chemicals detected, they included metabolites in 137 pathways of the total 146
pathways in the KEGG human reference metabolic pathways. Examination of some selected
chemicals (alanine, threonine, tyrosine, methionine, GSH, pirimicarb) showed significant
differences in signal intensities between species (Supplemental Material, Figure 1). Thus,
the results suggest that HPMP could provide a useful approach for comparative studies
evaluating endogenous metabolites and other common chemicals.

3.5. Probability-Based Modularity Clustering of 1485 chemicals common to 7 mammalian
species

We used probability-based modularity clustering as a means to analyze chemicals according
to the significance of their association with other chemicals (Newman 2006). By setting
criteria to classify chemicals according to significance of within-species correlations and
significance of between-species correlations, a distribution was established in which
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modules of chemicals that have similar variation among species (644 chemicals, Module 1,
Figure 4) are discriminated from chemicals that have greater variation among species than
within species (774 chemicals, Module 2, Figure 4). In each module, the heatmap provides a
visualization of the p-value of correlations between chemicals so that chemicals are
classified for how well they fit the classification; additional graphical discrimination
between chemicals in Modules 1 and 2 is provided in Figure 5. Module 1 was enriched in
endogenous metabolites, such as leucine/isoleucine, citrulline, cystine and other amino acids
and metabolites for which we have previously confirmed identities by co-elution and MS/
MS criteria (Johnson et al. 2010; Soltow et al. 2011). Module 2 was enriched in m/z
matching environmental chemicals, such as pirimicarb and di-N-butyl phthalate, and also
included some endogenous metabolites (GSH, methionine and glutamine). We have
previously confirmed identities of the latter endogenous metabolites (Johnson et al. 2010;
Soltow et al. 2011). To confirm identity of some of the presumed environmental chemicals,
co-elution and MS/MS studies were performed on selected m/z that matched pirimicarb,
triethyl phosphate, di-N-butyl phthalate and rotenone. Results confirmed these
identifications except for rotenone (Supplemental Material, Figure 2). The MS/MS for the
m/z corresponding to rotenone had an ion dissociation pattern that matched a minor
contaminant present in the commercial rotenone preparation.

4. Discussion
Toxicology testing is the primary approach to hazard identification (Toxicity testing in the
21st century, Natl Acad Sci Press) (Judson et al. 2008; Judson et al. 2009; Judson et al.
2010), and high-throughput in vitro screening capabilities now allow rapid evaluation of a
range of adverse effects in cell and molecular systems. Coupling knowledge of such hazards
to comparative research in animal models has contributed significantly to understanding of
human risks by helping understand mechanisms and identifying potential exposures of
concern (Bergen and Mersmann 2005; Soucek and Gut 1992). For example, sequencing of
the genomes of many species (Soucek et al. 2003) along with detoxification and
toxicokinetic studies (Butt et al. 2010; Soucek and Gut 1992) has facilitated extrapolations
of human risks (Peng et al. 2010; Soucek and Gut 1992). There are, however, a number of
limitations to this approach, and contemporary comparative biology increasingly relies upon
new information-rich technologies and systems biology approaches (Bergen and Mersmann
2005; Roos et al. 2011; Travlos et al. 2011).

The present research shows that HPMP could potentially be used to improve comparisons
between species in comparative toxicology research. The analyses of plasma from 7 species
resulted in detection of 3820 total m/z, which can be considered a representation of the
“pan” metabolome of mammals (Figure 6). These data confirm previous findings (Draper et
al. 2009; Soltow et al. 2011) that humans and other mammalian species have thousands of
chemicals in plasma, with over half not represented by chemicals in human metabolic
databases such as Metlin (Smith et al. 2005) and MMCD (Markley et al. 2007). It should be
noted that the full complement of the “pan” metabolome cannot be estimated from this
analysis because plasma does not represent other biologic compartments and there is no way
to evaluate the fraction of the total metabolome that is detected by the methods used. In the
context of the current study, this pan metabolome can be considered to consist of a “core”
metabolome of 1485 chemicals that are common to all species and a “peri-core”
metabolome (i.e., chemicals surrounding the core metabolome) that includes the other 2335
chemicals (Figure 6). The core metabolome includes 644 chemicals with inter-species
variation similar to intra-species variation, indicating that chemicals from this subset are
likely to be useful to study toxic responses (Figure 6). Specifically, toxicity can occur as a
consequence of exposure to chemicals that are relatively rapidly eliminated from an
organism and, as a result, cannot be detected at later times. Comparative toxicity studies of
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Module 1 chemicals could support identification of biomarkers and/or provide response
patterns useful for related epidemiological research of such toxicities in humans.

An important priority to enhance use of HPMP data involves identification and annotation of
the 1485 chemicals to allow subclassification according to endogenous metabolites, dietary
chemicals, microbiome-related chemicals, therapeutic chemicals and environmental
chemicals (Figure 6). Such identification and classification is labor-intensive but is critical
to support environment-wide association studies (EWAS) (Patel et al. 2010) and gene-
environment (G × E) associations (Petronis 2010) (Figure 6). Importantly, the m/z data also
can be used to support metabolome-wide association studies (MWAS) of health and disease
phenotypes and genome-metabolome (G × M) association studies even without
identification and classification. In such cases, however, post-hoc identification will still be
needed to fully understand mechanisms.

The presence of environmental chemicals in research animals highlights a limitation of low-
dose exposure research. Environmental exposures from water and air may not substantially
differ in research animals from that to which humans are exposed. Research animals also
consume food formulated by agricultural industries that also produce human food, and the
animal food is processed using commercial operations sharing many characteristics of
human food production. Furthermore, research animals are exposed to plastics and other
chemicals to which humans are exposed. Thus, despite the concept that research animals are
maintained under highly controlled environmental conditions, the present data show that
plasma of research animals contains a number and quantities of environmental chemicals
similar to humans and therefore cannot be considered “unexposed”.

Accumulating evidence indicates that genetic factors represent only a fraction of total risk
for chronic and age-related diseases (Rappaport 2011; Willett 2002; Willett et al. 2011). The
majority of risk is linked to environmental or gene-environment interactions, emphasizing
the need for systematic study of the exposome (Faisandier et al. 2011; Rappaport and Smith
2010). A pilot EWAS of type 2 diabetes (Patel et al. 2010) using CDC data on
environmental chemicals suggested that environmental factors can be found with effect sizes
comparable to loci found by GWAS (Hindorff et al. 2009). Other studies also link low-level
environmental exposures to health risks, including cancer (Soutar et al. 2000; Whitrow et al.
2003), respiratory diseases (Whitehead et al. 2011; Wright et al. 2001), endocrine disruption
(Reif et al. 2010; Vis et al. 2010), reproductive failure (Bunderson-Schelvan et al. 2011;
Pant et al. 2007) and neurodegenerative diseases (Perrone-Capano and Di Porzio 2000;
Sherer et al. 2001). While current approaches using analytically rigorous methods to
measure subsets of known hazardous chemicals in populations at greatest risk is cost-
effective in minimizing population risk to known hazards, such approaches can be
inadequate to detect unanticipated chemicals, such as exemplified by the widespread
distribution of perfluorooctanoic acid (PFOA), a chemical not recognized to be released into
the environment (Frisbee et al. 2010; Steenland et al. 2010). Cumulative effects from
exposure to multiple similar chemicals (Boas et al. 2010; Pant et al. 2008), and long-term
and multigenerational effects due to genomic and epigenomic mechanisms (Perrone-Capano
and Di Porzio 2000; Ziech et al. 2010), also highlight a need to characterize lifelong
exposure histories (Faisandier et al. 2011; Rappaport 2011; Ziech et al. 2010). However,
surveillance of all possible exposures is effectively impossible because greater than 80,000
agents are registered with EPA for commercial use. Furthermore, more than 2,800 chemicals
have annual production volumes exceeding 454 tons/year (Muir and Howard 2006). If each
such agent has 10 minor contaminants and each agent and contaminant is converted to 10
products in the biosphere, one would need to devise means to identify and perform toxicity
screening for nearly a half-million additional chemicals to appropriately support associated
risk assessment and surveillance.
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The present data suggest an alternative approach could be developed using HPMP for
MWAS studies that complements this risk assessment and surveillance approach and
addresses some of its key limitations. The approach would start with analysis of
representative samples from a large number of individuals (e.g. 10,000–20,000) for whom
associated demographic and health phenotyping information is available. Such analyses
could be accomplished within a single reference laboratory with routine, automated analysis
using one to four high-resolution mass spectrometers (5000–10,000 samples per year per
spectrometer). These samples would be collected, stored and analyzed in duplicate or
triplicate, along with pooled reference plasma samples as available from the National
Institute of Standards (McGaw et al. 2010), with standard analytic procedures and internal
standards (Soltow et al. 2011). The high-resolution mass spectral data would be entered into
a cumulative database structure with accurate mass m/z, chromatographic retention time
(RT) and intensity information. This data would provide a resource for association studies,
such as discovery of associations of chemicals with geographical regions, dietary patterns
and phenotypic information present in the dataset. Known chemicals would be annotated in
this database. For unknowns, the accurate mass m/z is sufficient to predict elemental
composition in many cases, and along with RT, this m/z would provide information for post-
hoc identification and validation studies. Associated MS/MS information could facilitate
post-hoc identification and validation. Although initially limited by the sample size, extent
of associated disease information and knowledge of chemical identities, this reference data
would allow any newly designed study, whether from a specific geographical region or
selected population, to be conducted within a framework allowing comparison to a more
standardized reference population. Importantly, the data would include information on
unknown and unidentified chemicals detected in human plasma, providing a basis to
investigate exposure distributions by geography and other demographic factors. Addition of
data from representative samples on an annual basis would allow detection of exposure
trends, even for unidentified chemicals. Inclusion of disease outcome data would allow
detailed EWAS and G × E studies, and repeat analyses on the same individuals would allow
systematic study of lifelong exposures as conceptualized in the exposome.

5. Conclusions
This study shows that high-performance metabolic profiling (HPMP) detects a spectrum of
low-level environmental chemicals in plasma of research animals that is comparable to that
which is found in plasma of humans. Of 3820 chemicals detected, 1485 were common to all
7 mammalian species, suggesting a general utility of HPMP for comparative environmental
health research. Analysis of the 1485 common chemicals by probability-based clustering
identified a subset of 644 that included endogenous metabolites with characteristics useful
for comparative studies of biologic responses to toxicologic exposure. The other >2000
chemicals can be used to provide a non-targeted surveillance of chemical exposures for
MWAS of health and disease phenotypes and genome-metabolome (G × M) association
studies. Together, the data suggest that HPMP provides a platform that can be useful within
human populations and controlled animal studies to simultaneously evaluate environmental
exposures and biological responses to such exposures.

Highlights

Six mammal species had low-abundance environmental chemicals similar to humans

Of 3820 chemicals detected, 1485 common metabolites were present in the seven species

Metabolites with low interspecies variability identified for bioeffect monitoring

Analysis detected >2000 chemicals suitable for EWAS and G × E studies
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Figure 1.
A. Phylogenetic relationship of 7 mammalian species with associated number of chemicals
detected by HPMP for each order, family and species. B. Venn diagram of the chemicals
common among families. C. Hierarchical clustering analysis (HCA) of plasma metabolic
profiles after variance scaling shows similarity of individuals of the same species.
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Figure 2.
A. Three-dimensional PCA score plot, in which the first three principal components (PCs)
explained 62% of total variation, is arbitrarily rotated to visualize discrimination according
to species, family and order. B. Two-dimensional PCA score plot with PC1 and PC2
corresponding to Panel D. C. 2-D PCA score plot for Sample Set 2 to evaluate whether
samples from different species (human, marmoset and mouse) were discriminated according
to sex. In A and B, each symbol shows a different class: diamond, primate (human, H, filled;
rhesus, Rh, open; marmoset, Ma, with line); circle, artiodactyla (pig, P, filled; sheep, S,
open); triangle, rotentia (rat, Ra, filled; mouse, Mo, open). In C, males, filled symbols;
females open symbols; human, diamond; marmoset, square; mouse, triangle.
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Figure 3.
KEGG metabolic pathway matches for m/z features that are common to mammalian species.
High mass accuracy m/z for 1485 common chemicals revealed 666 matches as shown in
black, including matches for metabolites in 137 of the total 146 KEGG human reference
metabolic pathways. Corresponding metabolite names are available at
http://www.genome.jp/kegg-bin/show_pathway?13154256908831/hsa01100.args.
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Figure 4.
Probability-based modularity clustering of 1485 common chemicals according to intra- and
inter-species variation. Module 1 (M1) includes chemicals with similar characteristics in all
7 mammalian species while Module 2 (M2) contains chemicals that have different
characteristics among the species. M1 showed a preponderance of endogenous metabolites
while M2 showed a preponderance of other chemicals, including known environmental
chemicals. These data suggest that HPMP can be used both for surveillance of
environmental exposures by focusing on chemicals in M2 and for study of biologic
responses to environmental exposures by focusing on chemicals in M1.
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Figure 5.
The relationship between inter-species variation and within-error variation for selected
chemicals in Module 1 (M1) and 2 (M2) of probability-based modularity clustering analysis
shown in Fig 3. Trajectories above the diagonal line, represented by the arrows in A–C,
indicate that within-species variation is large relative to interspecies variation. In contrast,
trajectories below the diagonal line, represented by arrows in D–F, show that interspecies
variation is large relative to within-species variation. This difference between chemicals in
Module 1 and Module 2 provides a basis to use HPMP for two purposes, direct evaluation of
environmental exposures (Module 2), and biological responses to environmental exposures
(Module 1). A: leucine/isoleucine (M1), B: citrulline (M1), C: cystine (M1), D: glutamine
(M2), E: pirimicarb (M2), F: triethylphosphate (M2).
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Figure 6.
Characterization of HPMP data for comparative toxicology and biomonitoring of exposures.
HPMP analyses detected 3820 m/z, which reflects the total metabolome, designated here as
the “pan” metabolome. The pan metabolome consists of a “core” metabolome that this is
common to the 7 mammalian species and a “peri-core” metabolome that includes all of the
chemicals surrounding the core metabolome. The core metabolome includes Module 1,
consisting of chemicals that have inter-species variation similar to intra-species variation,
and Module 2, consisting of chemicals that have greater inter-species variation than intra-
species variation. Module 1 includes endogenous metabolites and has characteristics suitable
for comparative studies of biologic responses to toxic exposure. Module 2 includes
environmental chemicals, variable endogenous metabolites, chemicals derived from the diet,
chemicals derived from the microbiome, and pharmaceuticals. Module 2 and peri-core
metabolites can be used to support environment-wide association studies (EWAS) and gene-
environment (G × E) studies. Identification and classification of chemicals in Module 2 and
the peri-core metabolome will greatly facilitate interpretation of EWAS and G × E study
results.
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