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Abstract

The abundant concentration of cytochrome oxidase in patches or blobs of primate striate cortex 

has never been explained. Patches are thought to contain unoriented, color-opponent neurons. 

Lacking orientation selectivity, these cells might endow patches with a high level of metabolic 

activity because they respond to all contours in visual scenes. To test this idea, orientation tuning 

was measured in layer 2/3 of macaque V1 using acutely implanted 100-electrode arrays. Each 

electrode recording site was identified, and assigned to the patch or interpatch compartment. The 

mean orientation bandwidth of cells was 28.4° in patches and 25.8° in interpatches. Neurons in 

patches were indeed less orientation selective, but the difference was subtle, indicating that the 

processing of form and color is not strictly segregated in V1. The most conspicuous finding was 

that patch cells had a 49% greater overall firing rate. This global difference in neuronal 

responsiveness, rather than an absence of orientation tuning, may account for the rich 

mitochondrial enzyme activity that defines patches.

Introduction

In patients with lesions of the fusiform gyrus the perception of color is abolished, although 

the ability to detect form remains intact1. It is unclear where the pathways which serve color 

and form begin to diverge in the visual system. In the retina, most ganglion cells do double 

duty, conveying information about both form and color. Once their signals have been 

filtered by the lateral geniculate nucleus and reach the primary visual cortex (striate cortex, 

V1), are the sensations of form and color mediated by separate populations of cells?

There are two compartments in the primary visual cortex, divided by the distribution of a 

mitochrondrial enzyme, cytochrome oxidase (CO). Histochemical staining for the enzyme 

reveals a regular pattern of dark patches (“blobs”, “puffs”), surrounded by paler tissue2, 3. 
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Tangential microelectrode penetrations through striate cortex have shown that neurons 

within blobs do not show orientation selectivity, whereas cells between blobs are highly 

orientation-selective. In addition, blob cells have color-opponent receptive field properties. 

These two key findings – lack of orientation selectivity and color-opponency – have led to 

the view that in V1 “a system involved in the processing of color information, especially 

color-spatial interactions, runs parallel to and separate from the orientation-specific 

system”4, p. 309. This functional segregation could explain the dissociation of color and form 

perception in the visual system, but it has hinged on the considerable challenge of 

correlating the receptive field properties of individual cells with the location of CO patches 

in striate cortex5.

Recently, 100-electrode arrays have become available for recording single cells in the 

cerebral cortex6–9. These devices permit one to carry out a quantitative assessment of any 

receptive field parameter for scores of cells simultaneously, eliminating the one-cell-at-a-

time bottleneck of the single microelectrode. They also eliminate the need to extrapolate 

between lesions along a microelectrode trajectory to infer the position of recording sites. 

Each electrode in the array leaves a small defect, allowing one literally to pinpoint each V1 

recording site with respect to the cortical layers and the CO patches. Although designed for 

chronic implantation in alert, behaving animals, multi-electrode arrays can be used for acute 

recordings6. Here, they have been employed to examine the orientation specificity of cells in 

macaque striate cortex, comparing the tuning of cells in CO patches versus interpatches.

Results

Alignment of Electrodes with Cytochrome Oxidase Patches

Electrode arrays were implanted in opercular V1, representing eccentricities between 2° – 8° 

(Supplemental Fig. 1). When most of the electrodes penetrated only the superficial cortical 

layers, the array footprint was not immediately obvious in histological sections (Fig. 1a). 

Nonetheless, all 100 holes could be located by searching carefully in tangential sections 

through layer 2/3 processed for CO activity (Fig. 1b). It was vital to be sure that each hole 

was truly from an electrode shaft, not a blood vessel. Occasional blood clots, caused by 

hemorrhage along the electrode shafts, and small clumps of red blood cells, were helpful for 

identifying electrode holes. In addition, electrode holes could be distinguished from blood 

vessels by noting their grid-like spacing, absence of bifurcations, lack of endothelium, and 

tendency to end in the same cortical layer as adjacent holes.

Our goal was to record from cells in layer 2/3, where patches have maximum contrast, to 

compare our results directly to those reported previously4. For this reason, it was crucial to 

figure out the layer in which each electrode tip ended. This was accomplished by 

systematically following each electrode hole from the pial surface, section by section 

through the cortex, until it disappeared (Fig. 2). Sometimes, the pneumatic device used to 

insert the array propelled the electrode tips more deeply than intended into the cortex. In 

these cases, the resulting 10 × 10 grid was easy to identify because the holes were large, 

owing to the fact that the electrodes become thicker at their base. Unfortunately, data from 

deep electrodes could not be used because our aim was to examine orientation tuning in 

layer 2/3 patches.
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The boundaries of the patches were defined by thresholding CO activity in the deepest 

section through layer 3. A circle of 75 μm radius, representing the maximum distance over 

which an electrode would be likely to pick up action potentials from a cell, was centered on 

the hole left in the tissue by each electrode shaft10. For this array, at 42/61 sites the circle 

was located entirely within the territory of a patch or interpatch in layer 2/3 (Fig. 1b). In 

such cases, there was no doubt about the identity of cells recorded by the electrode. 

However, at 19 sites the circle crossed a patch/interpatch boundary. In this situation, the 

cells recorded by the electrode were designated as “patch” or “interpatch” based on the 

location of the center of the circle. Usually, the center pixel was relatively far from a patch 

boundary, so this approach classified most cells accurately. In a later analysis, we deal with 

the problem posed by electrodes which happened to straddle a patch boundary.

Recordings from Electrode Arrays

Immediately after electrode insertion, neurons had low firing rates and their extracellular 

potentials were small in amplitude, presumably from the trauma of driving the array into the 

cortex. Gradually the quality of recordings improved6. The recovery of cortical function was 

monitored at regular intervals by plotting the receptive fields of cells sampled on different 

electrodes. Once responses appeared robust, drifting achromatic sine wave gratings were 

presented on a computer monitor. To assess orientation tuning, the gratings were displayed 

for 2 sec epochs, randomly varying the orientation in 10° intervals. Data were obtained from 

8 successful array insertions in 5 animals. From these 8 arrays, 596 distinct waveforms were 

recorded from 366 electrodes located in layer 2/3.

Recording electrodes landed by chance in patches or interpatches (Fig. 3a). On about half 

the electrodes, multiple distinct waveforms were observed. K-means cluster analysis was 

performed on the first 3 principal component coefficients (Fig. 3b). Because the clusters 

were not always perfectly segregated, it is possible that some waveforms were misassigned. 

To assess the error rate, a silhouette value was calculated, with negative values denoting a 

waveform potentially assigned to the wrong cluster (Fig. 3c)11. Less than 10% of the points 

in each cluster had a negative silhouette value. Average waveforms were derived from each 

cluster (Fig. 3d).

Firing rates as a function of the motion direction of the oriented grating were plotted for 

each distinct average waveform (Fig. 3e). When multiple waveforms were distinguished at a 

given electrode, they generally had a similar preferred orientation. However, they often 

varied considerably in the strength of orientation tuning. This property was defined using 

two different criteria: peak bandwidth and circular variance. Each measure provides useful 

information about a neuron’s orientation selectivity12. Bandwidth reflects how sharply the 

cell’s peak response is tuned, and essentially ignores responses to other orientations. 

Circular variance takes into account the entire tuning curve, reflecting not only the shape of 

the peak, but the firing rate at other orientations as well13. For these example recordings, 

circular variance ranged from 0.30 to 0.73 (0 = oriented, 1 = unoriented) and bandwidth 

ranged from 20° to 34°. To determine the impact of events potentially assigned to the wrong 

cluster, the tuning curves in this example were recompiled after eliminating all points with 

negative silhouette values. This precaution altered the values for circular variance and 
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bandwidth by less than 2%, suggesting that overlap of event clusters had only a modest 

effect on orientation tuning indices.

Orientation tuning curves were plotted for all the waveforms recorded by electrodes in layer 

2/3. For the example array insertion (Fig. 1), 65 tips were located in layer 2/3. CO activity 

was obscured by local hemorrhage around 4 electrodes, so these sites were excluded from 

analysis. Only background noise was recorded at another 10 electrodes. Of the remaining 51 

electrodes, 15 were situated in patches and 36 in interpatches. At first glance, the tuning 

curves show no striking difference between the orientation selectivity of neurons in patches 

versus interpatches (Fig. 4)

Orientation Tuning of Patches versus Interpatches

The population of neurons recorded in the upper layers exhibited a wide range in circular 

variance and bandwidth (Supplemental Fig. 2). For patch cells, the values for circular 

variance were mean 0.64 ± 0.19, median 0.66 (n = 177) (Fig. 5a). For interpatch cells, the 

mean was 0.54 ± 0.20, median 0.54 (n = 419). Overall, orientation tuning was weaker in 

patches than in interpatches (p < 0.001, Wilcoxon rank-sum test). This was true in 3 of 5 

monkeys when analyzed individually (p < 0.05), with a non-significant trend in a fourth 

monkey. In one animal, the circular variance was equal for patch and interpatch cells.

For patch cells, the bandwidth of orientation tuning curves had a mean of 28.4° ± 11.7° and 

a median of 26.8°. For interpatch cells, the values were mean 25.8° ± 10.9°, median 23.5° 

(Fig. 5a). The bandwidth difference between these two populations was 2.6° (p < 0.001, 

Wilcoxon rank-sum test). Neurons in patches had wider orientation bandwidths in 4 of 5 

individual monkeys, although this trend reached significance (p < 0.05) in only one animal.

To assess orientation tuning, drifting gratings were presented at 4 different spatial 

frequencies: 0.5, 1, 2, and 4 cycles/deg. The spatial frequency which produced maximal 

firing at a cell’s preferred orientation was used to calculate circular variance and bandwidth. 

Interestingly, there was no significant difference (p > 0.98 Wilcoxon rank-sum) in the 

optimal spatial frequency for patch units (1.40 ± 0.68 cycles/deg) compared with interpatch 

units (1.42 ± 0.71 cycles/deg).

Single Unit Data

The electrode arrays yielded a mixture of multiple unit and single unit recordings. Multiple 

unit activity might provide an inaccurate, low measure of orientation tuning strength, by 

merging signals from an ensemble of well-tuned cells which prefer different orientations. 

For this reason, an analysis was performed on data gathered only from well-isolated, single 

units.

For the 596 recorded waveforms, signal-to-noise ratio (SNR), defined as peak to trough 

amplitude divided by twice the standard deviation6, ranged from 1.3 to 11.0, with a mean of 

2.89. The SNR of recordings with 100-electrode arrays is usually lower than those from 

conventional microelectrodes6. The lower SNR is due to the fact that array electrodes have 

relatively low impedance (mean 280 kΩ for the array in Fig. 4) and they cannot be advanced 

closer to cells to increase spike amplitude. Consequently, our data set included low-
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amplitude, multiple unit recordings that would not have been collected had the recordings 

been done with mobile, high impedance electrodes.

A histogram of the SNR for our recordings had a two peaked distribution, with a local 

minima at 2.55 (Fig. 5b). This trough corresponded closely to the intersection between the 

SNR distributions for average waveforms with a unimodal versus bimodal morphology (Fig. 

5b). Unimodal average waveforms usually represent composite multiple unit recordings, 

whereas bimodal waveforms are more likely to constitute single units14–16.

Orientation selectivity was analyzed for all waveforms that met two criteria: bimodal 

morphology and SNR > 2.55 (Fig. 5c). This subset was considered separately because it was 

likely to consist predominately of single units. For patches (n = 85) the mean circular 

variance was 0.65 ± 0.21 (median 0.69). For interpatches (n = 197) the mean circular 

variance was 0.53 ± 0.20 (median 0.53). For patches the mean bandwidth was 29.1° ± 12.1° 

(median 27.0°). For interpatches, it was 24.9° ± 11.6° (median 22.1°). For both measures of 

orientation selectivity, cells in patches were more broadly tuned than those in interpatches (p 

< 0.001, Wilcoxon rank-sum test). The elimination of low SNR and unimodal waveforms 

made no significant difference in the mean or distribution of circular variance and 

orientation bandwidth. This implies that SNR and orientation selectivity are not related. 

Indeed, plots of waveform SNR versus circular variance and bandwidth showed no 

correlation (Supplemental Fig. 3).

Correlation of CO Density with Orientation Selectivity

In histological sections processed for CO activity, the darkest 33% of striate cortex is 

commonly designated as patches17, 18. However, the exact percentage chosen to define patch 

boundaries is arbitrary. As mentioned earlier, the division of V1 into just two zones could 

misclassify cells recorded by electrodes located near the borders of patches. In addition, 

dichotomizing the cortex into two compartments might miss subtle trends in the spatial 

layout of oriented cells. For these reasons, circular variance and orientation bandwidth were 

plotted as continuous functions of CO density (Fig. 6). Scatter plots confirmed that neurons 

with broader orientation tuning tended to be located in regions of darker CO activity. The 

correlation was weak, and remained weak even when just single units (bimodal and SNR > 

2.55) were considered. This analysis shows that changing the proportion of cortical territory 

assigned to patches does not alter the basic finding in this study.

Mean Population Tuning Curves

To compare the firing activity of cells recorded in patches (n = 177) versus interpatches (n = 

419), the Gaussian fits for the largest peak of each neuron’s orientation tuning curve were 

averaged to generate mean tuning curves (Fig. 7). These showed a 2.3° greater bandwidth 

for patch cells.

At the peaks, the firing rate was greater for patch cells (patch mean 13.2 ± 11.9 spikes/s; 

interpatch mean 10.7 ± 10.6 spikes/s, p < 0.01 Wilcoxon rank-sum test). However, when the 

offsets were taken into account, the peak amplitude of the response to visual stimulation was 

similar (patch mean 10.0 ± 9.6 spikes/s; interpatch mean 9.0 ± 9.8 spikes/s, p = 0.28 

Wilcoxon rank-sum test). The greater offset for patch cells was due to a stronger response to 
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contours orthogonal to the optimal orientation (3.2 ± 4.2 spikes/sec versus 1.7 ± 1.9 spikes/

sec, p < 0.001 Wilcoxon rank-sum test). The spontaneous activity, measured in the dark with 

no visual stimulation, was also slightly but significantly (p < 0.002 Wilcoxon rank-sum test) 

greater for patch cells (mean 1.2 ± 1.8 spikes/s) compared with interpatch cells (mean 0.9 ± 

1.6 spikes/s).

The area under each mean tuning curve represents the overall firing rate for each population 

of cells. The integrated area was 49% greater for patch cells compared with interpatch cells. 

This marked difference in physiological activity during visual stimulation may explain, in 

part, the stronger CO activity present in patches.

These population mean tuning curves were compiled using the grating which yielded the 

maximum peak discharge rate (patch mean 1.40 cycles/deg; interpatch mean 1.42 cycles 

deg). Even at the lowest spatial frequency tested (0.5 cycles/deg), the peak firing rate was 

significantly greater (p < 0.01) for patch cells (mean 8.1 ± 9.6 spikes/s) compared with 

interpatch cells (mean 6.1 ± 7.0 spikes/s). It did not appear that at a lower spatial frequency 

than optimal, responses of interpatch cells were attenuated more than those of patch cells.

Discussion

The orientation tuning of cells was analyzed quantitatively by several investigators19–22, 

following the original report that selectivity is sharply diminished in CO patches of macaque 

striate cortex4. In these subsequent studies, no relationship was found between the degree of 

orientation tuning and the density of CO staining in the upper layers. However, different 

primate species were examined, or histological sections were not cut parallel to the pial 

surface to reveal the two-dimensional layout of CO patches. It is difficult to delineate 

patches in sections cut perpendicularly or obliquely to the cortical surface, and even more 

difficult to achieve reliable alignment with fragments of electrode tracks marked by 

occasional lesions in serial sections. For these reasons, the orientation tuning of patch cells 

in macaque striate cortex has remained an unresolved issue, although these curious 

structures were discovered more than a quarter century ago2, 3.

The 100-electrode arrays were designed for chronic implantation in alert animals9. No prior 

study has described the appearance of the array footprint post-mortem in cortical tissue. A 

major advantage of the arrays for acute physiological studies is that for each electrode one 

can identify reliably the layer in which it terminates and establish precisely the correlation 

with CO patches. Our data confirm that patch cells are more broadly tuned for orientation 

than interpatch cells. However, the difference between the populations is exceedingly subtle; 

most cells in patches retain strong orientation selectivity (Fig. 7).

We harbored some doubts about the health of the cortex during our recordings, because 

transient depression of neural activity occurred after each array implantation and 

intracortical hemorrhage was usually present post-mortem (Fig. 1). Tissue damage is less 

critical when arrays are used for chronic recordings, because the cortex has more time to 

recover from the insult of electrode insertion. Several factors, however, suggested that the 

discrepancy between our findings and those reported originally4 was not simply an artifact 
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of using electrode arrays rather than single microelectrodes. First, the values for circular 

variance and orientation bandwidth we obtained closely resembled published data obtained 

from V1 using single microelectrodes (Supplemental Fig. 2)12, 19, 23. Second, one would 

expect injury from array insertion to degrade receptive field properties and reduce 

orientation selectivity, not increase it. Third, although multi-units were recorded on many 

electrodes, such recordings could not generate well-tuned orientation curves if patch cells 

truly do lack orientation selectivity. Fourth, while it is true that cell isolation is generally 

inferior with electrode arrays compared with single microelectrodes, our findings held even 

after culling unimodal and low signal-to-noise units (Fig. 5c). This result was consistent 

with a report that the orientation tuning of multi-unit and single unit activity recorded from 

V1 with 100-electrode arrays is highly correlated24.

Orientation columns in macaque striate cortex converge in regions known as singularities or 

pinwheels25, 26. Neuronal selectivity for orientation varies systematically according to local 

map structure. With 100-electrode arrays, it has been shown that cells near singularities are 

more broadly tuned for orientation than cells located in radiating iso-orientation domains8. If 

CO patches coincide with singularities, this could explain the modest reduction in 

orientation selectivity displayed by patch cells (Fig. 5). Unfortunately, the spatial 

relationship between pinwheels and patches has been hard to establish, because it is difficult 

to achieve secure alignment between intrinsic signal orientation maps and CO histology, or 

even to define the exact location of pinwheel centers27–31. If there is no systematic overlap, 

it is worth pointing out that optical imaging has not revealed any other zones in striate cortex 

which might correspond to clusters of poorly oriented cells4.

Cells in patches send an exclusive projection to CO thin stripes in V2. Dual-retrograde tracer 

injections into adjacent thin and pale stripes have confirmed that projections from patches 

and interpatches to V2 are isolated strictly from one other32, 33. This anatomy hints 

powerfully that patches have a specialized function, distinct from interpatches. Given that 

patches receive a direct projection from blue-yellow koniocellular geniculate neurons, it is 

natural to postulate that they are dedicated to color processing. Single cell physiology and 

optical imaging have provided support for this idea34–37. However, the fact that a structure 

receives direct input from a class of color-coded cells does not mean that it constitutes a 

separate color system. Layer 4Cβ, for example, receives direct input from red-green 

parvocellular neurons, but it is not considered a structure devoted to color, rather than to 

form. A small population of unoriented cells is likely to exist in patches, fed by direct 

koniocellular input. These units may contribute to the slightly broader mean orientation 

tuning of patches. However, the majority of cells in patches are well tuned, presumably 

because their strongest source of input arises from intracortical projections which build 

orientation selectivity38.

Previously, it was thought that V1 color cells have radially symmetric, unoriented receptive 

fields4. Patches were expected to contain unoriented cells, because they mediate color 

perception rather than edge detection. Subsequently, it has been learned that many neurons 

in V1 respond to both equiluminant color and luminance modulation, and that these color-

luminance units are well oriented, with a mean circular variance of 0.4039. Numerous 

studies have confirmed that color-responsive cells in V1 can be orientation selective22, 40, 41. 
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Even double-opponent cells, reportedly prevalent in patches4, are tuned for orientation42. 

These observations suggest that there is no contradiction between the finding that patches 

retain orientation tuning and the idea that they are involved in color vision.

Several recent fMRI studies have shown that blood oxygen level-dependent signals in striate 

cortex can discriminate between stimuli that differ in color and orientation, indicating that 

orientation-selective chromatic mechanisms emerge early in the human visual system43–45. 

In one paradigm, subjects viewed gratings which alternated between red and green or 

between +45° and −45°46. In the “double-conjunction” condition, the stimulus alternated 

simultaneously in color and orientation. The voxels that were most informative for the 

double-conjunction condition were distinct from those that were most informative about 

switches in color and orientation alone. This result implies that V1 contains local groups of 

cells jointly sensitive to orientation and color, perhaps corresponding to CO patches.

Our recordings indicated that neurons in patches had a higher mean peak firing rate (13.2 

spikes/s versus 10.7 spikes/s) in response to visual stimulation (Fig. 7). In addition, the 

response to the anti-preferred orientation was nearly twice as great (3.2 spikes/s versus 1.7 

spikes/s). This difference in the offset of the tuning curves of patch cells contributed to their 

higher circular variance, but did not account entirely for their broader tuning, because their 

peak orientation bandwidths averaged 10% wider (28.4° versus 25.8°). It would be 

interesting to compare surround inhibition for cells in patches versus interpatches, to see if 

this property contributes to the offset in firing rates.

A previous report noted that spike rates recorded in patches are 33% greater than in 

interpatches, but the result did not reach statistical significance because a low number of 

neurons was sampled47. Our 100-electrode array recordings showed that patch cells have a 

49% higher mean overall firing rate compared with interpatch cells. This probably explains 

in part the greater level of metabolic activity exhibited by patches when V1 is processed for 

CO histochemistry. It also explains a curious finding from early 2-deoxyglucose studies. 

Under a wide variety of stimulus conditions, 2-deoxglucose uptake was found to be greatest 

in patches2, 48, 49. This observation led directly to the idea that patches contain unoriented 

cells. It was hypothesized that they are more active metabolically because they respond 

equally to contours of all orientation4. It now appears that most patch cells are well-oriented, 

but simply have a higher intrinsic mean firing rate than interpatch cells, either under 

spontaneous conditions or when driven by visual activity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 
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