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Abstract

Studies on human fertility genes have identified numerous risk/protective alleles involved in the occurrence of reproductive
system diseases causing infertility or subfertility. Investigations we carried out in populations at natural fertility seem to
suggest that the clinical relevance that some fertility genes are now acquiring depends on their interaction with
contemporary reproductive behaviors (birth control, delayed childbearing, and spacing birth order, among others). In recent
years, a new physiological role in human fertility regulation has emerged for the tumor- suppressor p53 gene (P53), and the
P53 Arg72Pro polymorphism has been associated with recurrent implantation failure in humans. To lend support to our
previous observations, we examined the impact of Arg72Pro polymorphism on fertility in two samples of Italian women not
selected for impaired fertility but collected from populations with different (premodern and modern) reproductive
behaviors. Among the women at near-natural fertility (n = 98), the P53 genotypes were not associated with different
reproductive efficiency, whereas among those with modern reproductive behaviors (n = 68), the P53 genotypes were
associated with different mean numbers of children [Pro/Pro = 0.75,Pro/Arg = 1.7,Arg/Arg = 2, (p = 0.056)] and a
significant negative relationship between the number of children and P53 Pro allele frequencies (p = 0.028) was observed.
These results are consistent with those of clinical studies reporting an association between the P53 Pro allele and recurrent
implantation failure. By combining these findings with previous ones, we suggest here that some common variants of
fertility genes may have become ‘‘detrimental’’ following exposure to modern reproductive patterns and might therefore be
associated with reduced reproductive success. Set within an evolutionary framework, this change could lead to the selection
of a set of gene variants fitter to current reproductive behaviors as the shift to later child-bearing age in developed
countries.
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Introduction

Human fertility is a complex trait determined by gene-

environmental interactions in which genetic factors represent a

significant component [1,2]. Fertility is regulated by a large

number of genes acting in various different steps to establish both

male and female fertility [3,4]. Besides the numerous rare

mutations associated with infertility, many polymorphic variants

(alleles) have also been identified in fertility genes, but how these

alleles affect human fertility remains unclear [3,4].

Different alleles at a locus are usually thought to be associated

only with small fertility differences (or no differences at all) and

contribute very little to overall fitness, otherwise selection would

lead to their fixation or elimination [5,6]. This scenario would fit

well with the complex trait model proposed for fertility which

predicts the contribution of many genes, each with a small effect.

In recent investigations we were able to examine the way the

variation of some fertility-related genes may influence reproductive

efficiency in natural (or near-natural) fertility populations (i.e. in

the absence of deliberate birth control) [7,8] and could confirm the

absence of a relevant effect of gene variants on total fertility (i.e.,

fertility of subjects at the end of their reproductive lifetime). Other

recent studies on fertility candidate genes have identified risk/

protective alleles involved in the occurrence of reproductive system

diseases causing infertility or subfertility [9–12]. More recently,

some of these polymorphisms have been studied also in relation to

their role in positive outcomes after in vitro fertilization (IVF) or

other assisted reproductive technology (ART) procedures [13–15].

The emerging picture seems to indicate that fertility genes

represent a set of genes whose role is changing, and acquiring

clinical relevance, a phenomenon we hypothesize may be due to

their interaction with the present environmental context, i.e.,

modern reproductive patterns (e.g., birth control, family planning,

delayed childbearing, and spacing birth order) followed in many of

today’s industrialized countries.

Whether for economic, social, or educational reasons, young

couples have begun to postpone starting a family and reduce

family size, and women to delay having first childbirth or decide to

remain childless. In Western Europe, the mean age at which

women deliver their first child rose from 22–25 years in 1950 to
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27–30 years in 2003 [16], i.e., later in life when fertility starts to

decline. Studies on age-related female fertility indicate that it

begins to decline at age 30 years and then more rapidly after age

35. While the decline in male fertility is also age-dependent, it

becomes significant only after age 45 years [17]. Furthermore,

postponement of first childbirth is accompanied by increased

serious health risks for mothers and their children. A major effect

of this shift in reproductive behaviors is a progressive reduction of

fertility. Across Europe, total fertility rates ([TFR], average

number of children per woman) decreased dramatically from

2?6 between 1960 and 1964 to 1?5 between 2004 and 2005, a

value well below 2?1, the TFR needed for generation replacement,

i.e. the level of fertility at which a population exactly replaces itself

from one generation to the next (http://ec.europa.eu/

employment_social/social_situation/docs/sec_2007_638_en.pdf;

last accessed February 23, 2012).

To verify the hypothesis that exposure to different reproductive

behaviors may influence the action of fertility-related genes, we

examined the role of another fertility gene, P53, in two samples of

the Italian population with different reproductive patterns. The

tumor-suppressor p53 gene (P53) has a pivotal role in tumor

prevention and DNA damage response. In response to a variety of

cellular stresses, the p53 protein (p53) is able to activate target

genes to induce cell cycle arrest, apoptosis, and senescence.

Through these mechanisms, p53 promotes DNA repair or the

elimination of damaged cells, thus contributing to tumor

suppression [18].

In the last years, a new physiological role has emerged for p53

as a fertility regulator [19]. In mice maternal reproduction p53

was found to control the implantation of fertilized eggs, a function

p53 exerts by activating leukemia inhibitory factor (LIF), an

essential gene for blastocyst implantation [20]. So too in humans

LIF appears to be involved in egg implantation, given that LIF

levels are significantly decreased in women with unexplained

infertility [21]. The role of p53 in the regulation of female fertility

has been confirmed by more recent observations of how other

members of the p53 family (p63 and p73) participate in the control

of human maternal reproduction [22].

Many single nucleotide polymorphisms (SNPs) of P53 have been

identified in human populations, but the one most extensively

studied is rs1042522, located in codon 72 of exon 4, where the

change CGCRCCC results in an Arg/Pro substitution. The Pro

and Arg alleles at codon 72 are not functionally equivalent: Pro72

encodes a weaker p53 isoform than that encoded by Arg72 to

induce apoptosis and suppress transformation, while it is better at

favoring cell cycle arrest [23]. The two alleles at P53 codon 72

differ also in their transcriptional activity toward a subset of p53-

responsive genes. Notably, cells containing P53 Arg72 produce

twice as much LIF as those containing the Pro72 allele [24]. A

growing body of epidemiological data is consistent with these in

vitro studies: the P53 Pro72 allele was found at increased

frequencies among women undergoing in vitro fertilization (IVF)

and, among such women, it was associated with higher

implantation failure [24,25]. This clinical observation confirms

that p53 regulates maternal reproduction in humans as well.

So far, the P53 Arg72Pro polymorphism has been found to

influence human reproduction in a pathological context. We

examined it in two samples of women not selected for impaired

fertility and collected from populations with different reproductive

patterns. The first was collected from a rural population from

Southern Italy, which, according to population and sample fertility

rate, has reproduced with a pre-modern or near-natural

reproductive pattern. The second was collected from an urban

population from northeastern Italy whose fertility rate indicates a

pattern of reproduction typical of modern societies where birth

control is practiced.

The aim of the present study was to examine the role of P53

polymorphism in fertility at the population (not clinical) level and

the possible effects different reproductive behaviors may have on

it.

Results

The characteristics of the samples are reported in Table 1. The

observed fertility rate for the women in the Southern Italian

sample was 3.762.3 children (range, 0–11). This value was

intermediate with respect to the range of 4.8-3.1 reported for

cohorts of women born in the same geographic area and in the

same period (1900–1930) [26]. The fertility rate for the women in

the Northern Italian sample was 1.860.97 children (range, 0–4).

This value was near the lower end of the range of 2.4–1.7 reported

for cohorts of women born in the same geographic area and in the

same period (1921–1953) [27]. Spontaneous abortion rates were

calculated as the ratio between the number of abortions and the

number of children. No population data concerning cohorts of

women of the same periods are available for a comparison with the

sample data; however, the abortion rates (abortion/livebirths)

reported for the same geographic areas (Northern Italy, 0.13) and

(Southern Italy, 0.12) are available for the period 1997–2001

[http://www3.istat.it/dati/catalogo/asi2004/PDF/Cap3.pdf, last

accessed February/27/2012].

The P53 Arg72Pro polymorphism was examined in the

Southern Italian (n = 152) and the Northern Italian (n = 102)

samples. The observed genotype frequencies (Southern Italy: Pro/

Pro 0.112, Pro/Arg 0.382, Arg/Arg 0.507; Northern Italy: Pro/

Pro 0.069, Pro/Arg 0.363, Arg/Arg 0.568) agreed with those

expected according to the Hardy-Weinberg equilibrium. The P53

Pro allele frequencies of the two samples were 0.250 (Northern

Italy) and 0.303 (Southern Italy), similar to those reported for the

Italian population [28]. Table 2 reports the mean number of

children associated with P53 genotypes in the two samples. Among

the women in the Southern Italian sample, the P53 genotypes

were not found to be associated with a different number of

children. In contrast, among the women in the Northern Italian

sample, the P53 genotypes were associated with different numbers

of children, with a trend among the genotypes (from the lowest

number of children to the highest) Pro/Pro,Pro/Arg,Arg/Arg

(p = 0.056). The power calculation of this analysis is low (1-

b,0.80) and the probability to make a type II error is high

(b.0.20). We calculated that we would need to have approxi-

mately 50 subjects in each class to reach a statistical power of 0.80.

But because of the P53 Pro allele frequency, we would have to

collect about 800 subjects to find about 50 Pro/Pro homozygotes.

Table 1. Characteristics of the two study samples.

Southern Italy Northern Italy

Age (yrs)* 82.266.0 70.369.4

Total no. of children 342 119

Mean no. of children* 3.762.3 1.860.97

Total no. of abortions 65 6

Abortion/children ratio 0.19 0.05

Childless subjects (%) 7.7 11.8

*Plus-minus value is equal to plus-minus standard deviation.
doi:10.1371/journal.pone.0035431.t001
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A statistically significant result was achieved with a different

approach: the subjects were grouped into different classes

according to the number of children, and the P53 allele

frequencies were calculated for each class (Table 3). The chi

square test for trend of proportions showed a significant negative

relationship between the number of children and P53 Pro allele

frequencies (chi square = 4.9,d.f. = 1, p = 0.028) only in the

Northern Italian sample, where the highest Pro allele frequencies

were found in the class with no children (0.438) and the lowest in

the class with two or more children. No significant trend was

observed among the women in the Southern Italian sample (chi

square = 0.11,d.f. = 1, p = 0.74). In neither sample were differences

observed in the mean number of spontaneous abortions associated

with the P53 genotypes (Southern Italian sample, p = 0.40;

Northern Italian sample, p = 0.62) (data not reported).

Discussion

This study examined the association of the P53 Arg72Pro

polymorphism with fertility at the population level, specifically in

women not selected for fertility disorders. The data show that in

the sample of women at near-natural fertility, the P53 genotypes

are not associated with differential fertility. Conversely, in the

sample of women with modern reproductive behaviors, the P53

genotypes are associated with a different reproductive efficiency,

with the lowest fertility occurring among the Pro/Pro genotype

carriers. The observation of a reduced fertility associated with the

Pro allele was confirmed by subsequent chi square for trend of

proportions test that shows a significant inverse relationship

between Pro allele frequency and classes according to number of

children.

These results should be interpreted with caution. The size of the

samples is relatively small and, fertility being a complex trait,

numerous other genetic and environmental factors, including male

fertility, could have contributed to determine the phenotype

‘‘number of children’’ we examined. Nevertheless, the results

obtained in the sample of women with a modern reproductive

pattern are consistent with those of clinical studies reporting an

excess of P53 Pro/Pro genotypes in women with unexplained

infertility undergoing IVF and, among these, in women with

higher implantation failure [24,25]. The observation that P53

genotypes are not associated with different numbers of spontane-

ous abortions, which, by definition, represent the end of an

established pregnancy, is not unexpected, given that P53 is

involved in egg implantation instead.

It is interesting to observe how the phenotypic effects of P53

genotypes vary according to reproductive environments. In

women from the population at near-natural fertility, P53

genotypes do not influence fertility, suggesting that the possible

small reduction of fertility associated with the P53 Pro allele could

have been offset by the pre-modern reproductive behavior (little or

no birth control, lower age at first birth, etc.). In the sample from

the population where modern reproductive behaviors began to be

followed, the P53 genotype effect begins to shift toward differential

fertility. Set within the broader context of contemporary society,

the role of P53 genotypes eventually tends to acquire clinical

relevance, being associated with infertility and the successful/or

not outcome in women undergoing IVF [24,25].

These findings are similar to what we have observed for other

fertility-related genes. One gene we studied was ESR1, which

encodes estrogen receptor alpha [7]. We examined the association

of two ESR1 polymorphisms (rs 2234693, rs9340799) with fertility

in two populations at near-natural (Italian) and natural (Afro-

Ecuadorian) fertility and observed that the effects of ESR1

genotypes on fertility varied according to the reproductive

environment: in the women from the African-Ecuadorian

populations ESR1 genotypes (pp and xx) influenced the fertility

level, predisposing to have an elevated number of children (higher

than the median value). In the Italian women, the same genotypes

showed an association with a low rate of spontaneous abortions,

but without any impact on total fertility. In today’s industrialized

societies, however, the effects of the ESR1 genotype manifest as a

successful outcome in women undergoing IVF [13,14] or

predisposing to premature ovarian failure [12], or exerting a

protective effect against azoospermia or idiopathic oligospermia in

men [11]. In other words, in populations with pre-modern

reproductive patterns, the ESR1 genotypes influence at most the

number of children, whereas within the context of modern

reproductive behaviors, they seem to be associated instead with

having children or not.

Another example is the angiotensin I-converting enzyme (ACE)

gene. Recently, the ACE I/D polymorphism was found associated

with recurrent spontaneous miscarriages [29–31]. We analyzed

the relationship between the ACE I/D polymorphism and the

number of spontaneous abortions, the number of pregnancies and

completed fertility in a sample of Italian women at near-natural

fertility [8]. We were able to tease out in this population sample an

association between an ACE genotype (DD) and recurrent

miscarriages, as previously reported in case-control studies [29–

31]; however, no difference in completed fertility was observed

among the women carrying the different ACE genotypes, as those

carrying the ACE risk genotype and prone to miscarriage

overcame the problem by counterbalancing it with a greater

number of pregnancies. In contrast, published data on contem-

porary women appear to indicate that the ACE genotype could

Table 2. Mean number of children (6SD) according to P53
genotype. The number of subjects is given in brackets.

P53 genotype Southern Italy Northern Italy

Pro/Pro 3.662.2(11) 0.7561.0 (4)

Pro/Arg 3.662.1 (30) 1.6760.9 (21)

Arg/Arg 3.762.6 (50) 1.9561.0 (38)

p 0.98 0.056

doi:10.1371/journal.pone.0035431.t002

Table 3. P53 allele frequencies in subjects grouped according
to number of children.

No. of
children Northern Italy Southern Italy

No. of subjects Pro freq.
No. of
subjects Pro freq.

0 8 0.438 7 0.214

1 13 0.231 13 0.231

2 29 0.224 9 0.389

3 11 0.136 17 0.324

4 2 0.0 12 0.250

.4 0 0.0 33 0.287

p 0.027 0.74

doi:10.1371/journal.pone.0035431.t003
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now be associated with reduced reproductive success, presumably

because of their shorter reproductive lifespan due to postponement

of childbearing. Similarly, other fertility related genes which do

not seem to have any effects on fertility in populations with pre-

modern reproductive patterns have been recently associated with

infertility or ovarian stimulation outcome [32–33] (Table 4).

The emerging picture of the interactions between fertility genes

and contemporary reproductive behaviors suggests that fertility

genes may represent a further example of genes ‘‘rendered

detrimental by progress’’. The hypothesis for a ‘‘genotype

rendered detrimental by progress’’ was first advanced by J.V.

Neel [34] in 1962 in an attempt to explain the emergence of

diabetes epidemics in the United States and other technologically

advanced societies. He speculated the existence of a ‘‘thrifty

genotype’’, i.e., a set of genes shaped for our hunter-gatherer

ancestors to survive on an intermittent and unpredictable food

supply and with elevated physical activity. Such a genotype would

be exceptionally efficient in the utilization of food and allow the

storage of fat reserves in times of plenty for later times of shortage.

Once highly advantageous for ensuring survival, these thrifty genes

have become detrimental in modern societies where food is

plentiful or overabundant and overall physical activity has

declined. Moreover, they may be identified with susceptibility

genes for complex diseases like type 2 diabetes or obesity. The

notion that an ‘‘ancient’’ genotype could increase disease

susceptibility has been put forth to account for the growing

prevalence of such complex disorders as hypertension, coronary

heart disease and Alzheimer’s disease. Some 30 years later, in

1998 Neel suggested broadening the original concept to include

the ‘‘civilization syndromes’’ or the ‘‘altered lifestyle syndromes’’

for diseases which can be explained by a similar evolutionary

framework [35]. This hypothesis, originally based on disease

physiology and epidemiology, found recent support from popula-

tion genetic studies showing that, for several susceptibility

polymorphisms for common disease, the risk allele is the ancestral

allele, the result of an ancient adaptation no longer advantageous

in the modern environment [36].

Taken together, our data seem to indicate that fertility genes

might easily fit within the ‘‘altered lifestyle syndromes’’ hypothesis,

and, at least for the P53 and ACE genes, in the ancestral

susceptibility model as well, given that both the Pro allele of P53

and the D allele of ACE are the ancestral alleles [36,37]. There is,

however, an important difference between fertility genes and other

genes ‘‘rendered detrimental by progress’’: the latter are mostly

susceptibility genes for diseases occurring in post-reproductive age

(coronary heart disease, hypertension, Alzheimer’s disease, among

others) and therefore escape selection, while the natural fertility

gene variants may be associated with differential fitness and,

hence, be under selective pressure. This process could promote the

selection of a set of gene variants fitter to the current reproductive

patterns, thus favoring, for example, reproduction at a later age as

well.

On the whole, the picture we have outlined suggests the

occurrence of complex interactions between genetic factors and

reproductive environments and that fertility genes are a further set

of genes whose functions are influenced by the lifestyle changes of

modern societies.

Materials and Methods

Study populations
The Southern Italian population sample included 152 appar-

ently healthy unrelated women in the post-reproductive age

collected for a population survey of the elderly population of

Cilento, a rural area in the district of Salerno, Southern Italy. All

subjects were born before 1930 (1900–1930) and lived in a society

where the demographic transition (increase in life expectancy and

declining fertility) had just started [38]. In Italian women born in

the same geographic area and in the same year range, the mean

age at marriage was 22.4 years [26], and the fertility rate was well

over the replacement level (range, 4.8-3.1). All subjects were

recruited consecutively without selection criteria, except age (.70

years) and birthplace. Fertility data (number of children) were

ascertained by interviews and were collected for only 98 women.

Written informed consent was obtained from all subjects. The

protocol for the collection of biological material for the scientific

studies was approved by the institutional committees (Local Health

Unit ASL SA 3).

The Northern Italian population sample comprised 102 healthy

unrelated women recruited as a control sample during an

epidemiological study on Alzheimer’s disease (AD) carried out at

the Verona Hospital. All subjects were born between 1921/1953

in the urban area of Verona, northeastern Italy, and lived in a

society where the demographic transition was already under way.

In the Italian women born in the same geographic area in the

same year range, the mean age at marriage was 25.2 years and the

fertility rate was near/below the replacement level (range, 2.4-1.7)

[27]. All subjects were recruited consecutively without selection

criteria, except age that matched that of AD patients (.60 years)

and birthplace (Verona province). Fertility data (number of

children) were ascertained by interviews and were collected for

only 63 women. Written informed consent was obtained from all

subjects. The protocol for the collection of biological material for

the scientific studies was approved by the institutional ethics

committee (Hospital of Verona, Ethical Committee protocol

no. 1268/131/2006). The study was approved by the Department

Board (12/06/2009 session) of the former ‘‘Department of

Genetics and Molecular Biology’’ of La Sapienza University,

Rome.

Laboratory Methods
Venous blood was drawn in ethylenediaminetetraacetic acid

(EDTA) from all subjects after overnight fasting. High-molecular-

weight DNA was extracted from whole blood according to the

procedure described by Miller et al. [39]. The P53 SNP

(rs1042522) was investigated by an allele-specific PCR according

to Giannoudis et al. [40]. In brief, P53 Arg and Pro sequences

were amplified in a single reaction with an allele-specific primer

pair: P53 Arg sequences were detected using the primer pair p531,

58-GTCCCCCTTGCCGTCCCA-38, and Arg–, 58-

Table 4. Fertility related polymorphic genes which have been
investigated for their role in populations with different
reproductive patterns.

Gene Phenotypes Ref

Premodern pattern Modern pattern

ESR1 fertility level IVF outcome; POFa 7, 12–15

FSHR none IVF outcome 15,32, unpubl.data.

CYP19 none IVF/COHa; POFa 15,33

P53 none infertility; IVF outcome Present invest.,24,
25

ACE none (see text) recurrent miscarriages. 8, 29–31

aPOF:premature ovarian failure; COH: controlled ovarian hyperstimulation.
doi:10.1371/journal.pone.0035431.t004
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CTGGTGCAGGGGCCACGC-38, amplifying a 137-bp frag-

ment; P53 Pro sequences were detected using the primer pair

Pro1, 58-GCCAGAGGCTGCTCCCCC-38 and p53–,8-

GGAAGCCAGCCCCTCAGG-38, amplifying a 206-bp frag-

ment. Visualization of the PCR product on agarose gel revealed

three different genotypic patterns.

Statistical Analysis
Allelic frequencies were determined by the gene-counting

method. The agreement of the genotype distribution with

Hardy–Weinberg expectations was verified with the chi square

test. Comparisons between the mean number of children

associated with different P53 genotypes were performed using

analysis of variance (ANOVA). Estimates of statistical power (1-b)

were calculated according to Cohen [41] i.e. we calculated the

probability of rejecting the null hypothesis, when the null is false.

In this analysis the null hypothesis is that the P53 genotypes are

associated with the same number of children. The Cochran-

Armitage chi square test for trend of proportions [42] was used to

verify the presence of a linear trend between the number of

children and P53 allele frequencies.
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