
Commentary

How does a system respond when driven away from
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I t is widely appreciated that our under-
standing of nonequilibrium phenomena

has not kept pace with its equilibrium
counterpart. In recent years, however,
consideration of the above question,
posed at the microscopic level of statistical
mechanics, has yielded some intriguing
theoretical results distinguished by two
common features. First, the results remain
valid far from equilibrium, that is, even if
the system is disturbed violently from its
initial equilibrium state. Second, they in-
corporate information about the history of
the system over some span of time; effec-
tively, these results are statistical predic-
tions about what we would see if we could
watch a movie of the system filmed at the
atomic level, rather than predictions about
individual snapshots.

To date, this work has been theoretical,
although it has been supplemented with
numerical simulations. However, in the cur-
rent issue of PNAS, Hummer and Szabo (1)
show how to combine these theoretical ad-
vances with single-molecule manipulation
experiments, so as to extract useful equilib-
rium information from nonequilibrium lab-
oratory data. What these authors propose
amounts to a distinctive method of deducing
the equilibrium mechanical properties of
individual molecules.

The scenario, roughly, is the following.
Imagine a molecule, perhaps a linear poly-
mer, that can be stretched like a tiny
rubber band by tugging at one end by using
micromanipulation technology such as
atomic force microscopy or optical twee-
zers. Suppose we want to determine the
equilibrium tension of this molecule as a
function of its elongation or extension at a
given temperature. We therefore stretch
it, pulling out one end of the molecule at
some constant speed while simultaneously
measuring the restoring force. From these
data, we can construct a plot of force vs.
extension, as shown in figure 2 Inset of ref.
1. However, this information might not be
what we are after; if we stretch the mol-
ecule too fast, we drive it out of equilib-
rium, resulting in hysteresis. The mea-
sured force will then tend to overestimate
the equilibrium tension. (The same hap-
pens with macroscopic rubber bands,

which heat up and become more tense
when stretched rapidly.) One solution to
this problem is to pull very slowly, allow-
ing the molecule to maintain a gradually
changing state of equilibrium. Hummer
and Szabo’s surprising alternative (1) in-
volves numerous ‘‘rapid’’ pulling experi-
ments, rather than a single slow pull. The
authors provide a prescription for com-
bining the data from these repeated ex-
periments, so that what ultimately
emerges is the equilibrium tension as func-
tion of elongation, even if the molecule
was driven away from equilibrium during
the pulling process! Moreover, they make
a solid case—by using simulations as well
as analysis of published micromanipula-
tion data—that their method is experi-
mentally feasible.

Hummer and Szabo (1) anchor their
proposal in rigorous analysis, invoking the
Feynman–Kac theorem for stochastic pro-
cesses. Although this analysis is important
for anyone wishing to gain a true appre-
ciation of the theoretical ideas behind the
work, the essence of those ideas can be
conveyed without delving into the techni-
cal details of the derivation. In what fol-
lows, I will present a cartoon version of
the experiments proposed in ref. 1 and use
this model to illustrate the underlying
principles.

Imagine the chain-like, one-dimen-
sional ‘‘molecule’’ shown in Fig. 1. The
three beads depict atoms, the springs rep-
resent the forces between them. One end
of the chain is tethered to a wall (or some
other appropriately immovable object),
while the other is attached to a handle that
we are able to grasp and move at will. The
variable l, denoting the distance between
the wall and the handle, is viewed as an
external parameter. The vector x 5 (x1, x2,
x3) denotes the microscopic configuration
of the molecule, specifying the position of
each atom. Let us furthermore imagine
that this molecule is immersed in a ther-
mal environment at temperature T, so
that, if we fix the value of l, the molecule
will relax to a state of equilibrium.

We now adopt a statistical attitude,
imagining infinitely many copies or real-
izations of the system. We will then make

statements about the response of this en-
semble to a rapid change in l, assuming an
initial state of equilibrium. Effectively, we
will be discussing the statistics of a collec-
tion of microscopic histories, each repre-
senting one possible scenario for the evo-
lution of the molecule over a fixed time
interval during which the handle is drawn
out from one position to another.

In equilibrium, with the handle held
at some distance lA from the wall, the
configurations of the molecule are distrib-
uted according to the Boltzmann–Gibbs
formula:

p~x! } e2E~x,lA!ykBT, [1]

where E is the energy of the configuration
and kB is Boltzmann’s constant. Let us
take this equation to define our initial
conditions. Now imagine that, starting
from this equilibrium state, we perturb the
system by pulling the handle outward from
lA to some new position lB. Unless we pull
very slowly, the state of the ensemble will
soon lag behind the instantaneous equi-
librium state.

It is quite possible that there exists no
simple, general formula describing the
nonequilibrium distribution of configura-
tions at the instant the handle reaches lB;
the ensemble response to the perturbation
may simply be too complicated and too
dependent on numerous details of the
thermal environment. This situation is in
marked contrast to the sweeping general-
ity of equilibrium statistical mechanics,
where at most a few parameters charac-
terizing the environment (e.g., tempera-
ture, pressure, and chemical potential)
suffice to pin down the statistical state of
any system that has been allowed to equil-
ibrate with that environment. However—
and this idea is at the heart of the method
proposed in ref. 1—we can indeed make
statements of comparable generality in
this nonequilibrium situation, if we are
willing to consider the entire evolution of
each realization, rather than just the in-
stantaneous state of the ensemble.

See companion article on page 3658.
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For any one of the ‘‘mental copies’’ in
our ensemble, the evolution of the mole-
cule is described by a trajectory x(t), de-
tailing the motion of each atom as the
handle is drawn from lA to lB. From
knowledge of this trajectory, we can com-
pute, among other interesting quantities,
the microscopic external work, W, per-
formed on the molecule by whatever agent
pulls the handle. (In the present context,
W is the tension of the red spring shown in
Fig. 1, integrated over the distance along
which the handle is pulled.) Because the
precise thermal jiggling of each atom dif-
fers from one realization to the next, the
value of W will differ as well. Now imagine
that we note down two pieces of informa-
tion about each realization: the final con-
figuration of the molecule, xf, at the in-
stant the handle reaches lB and the total
work W performed by pulling the handle
from lA to lB. We then use these data to
construct two distributions characterizing
the ensemble: an ordinary, ‘‘democratic’’
distribution of the final configurations xf,
with each realization contributing equally
and a weighted, ‘‘undemocratic’’ distribu-
tion of the same xf values, in which the
contribution of each realization is scaled
by a factor e2WykBT. (See Fig. 2 for a
schematic representation or figures 5 and
6 of ref. 2 for an actual construction of
such distributions.) Although the former
is simply the final nonequilibrium state of
our ensemble, the latter will be propor-
tional to the Boltzmann–Gibbs distribu-
tion corresponding to parameter value lB,
no matter how slowly or quickly we pull
the handle! (Various proofs of this asser-
tion are found in refs. 1–3.)

Of course, there is nothing unique
about position lB; once we start to perturb
the system away from equilibrium, we can
at any time note down—for each realiza-
tion—both the current configuration of
the molecule, x(t), and the work per-
formed up to that instant, W(t). We can
then construct a dynamical picture in
which a collection of trajectories evolves

through configuration space, each bear-
ing a time-dependent statistical weight
e2WykBT. At every instant in time, this
weighted ensemble will be proportional to
the equilibrium distribution associated
with the current value of l. Even if l is
changed very quickly and each realization
barely has time to respond, the weighted
distribution will nevertheless keep up with
the rapidly changing associated equilib-
rium state.

An immediate implication of this result
is that we can extract equilibrium infor-
mation from nonequilibrium data in this
situation, simply by tagging each realiza-
tion with a statistical weight e2WykBT and
computing averages with the weighted dis-
tribution. Essentially, Hummer and Szabo
(1) bring this idea to the experimental
arena of molecular micromanipulation.
Their proposed method is in fact some-
what more sophisticated, taking into ac-
count complicating features of a realistic
laboratory set-up, but the underlying phi-
losophy is the same. The authors show
how to reconstruct the potential of mean
force (PMF) associated with a particular

pulling coordinate, which in the proposed
experiments is guided externally. If this
coordinate also happens to be a good
reaction coordinate that accurately de-
scribes the path taken by the molecule
during a spontaneous transition from one
long-lived state to another—for instance,
from a bound to an unbound protein–
ligand complex—then the deduced PMF
will characterize not only the static prop-
erties of the molecule but its dynamic
behavior as well.

The recent theoretical progress in this
area has included other results as well,
such as the nonequilibrium work relation
of ref. 4 and Crooks’s (5) elegant formula
relating the probabilities of ‘‘forward’’ and
‘‘reverse’’ trajectory segments (a kind of
detailed balance statement for micro-
scopic histories). Taking a broader per-
spective, the idea of studying the statistics
of entire trajectories has enjoyed a certain
popularity in recent years, making appear-
ances in the Fluctuation Theorem (6–8),
the efficient sampling of transition paths
and calculation of rate constants of com-
plex chemical reactions (9–12), and deri-
vations of inequalities for transitions
between nonequilibrium steady states
(13–15).

My primary aim in this commentary
has been to summarize the theoretical
result behind the method proposed in
ref. 1. Namely, when a system is per-
turbed away from equilibrium by the
arbitrary variation of an external param-
eter, then a particular statistical descrip-
tion of its response—constructed via the
weighting procedure outlined above—
behaves with remarkable simplicity; it
exactly follows the instantaneous equi-
librium state associated with the chang-
ing value of the parameter. Hummer and
Szabo (1) have translated this abstract
notion into a concrete proposal for an
experimental method of measuring the

Fig. 1. A ‘‘toy’’ molecule, as described in the text.

Fig. 2. A schematic representation of the ordinary and weighted distributions of molecule configura-
tions. (Left) A simple snapshot of the ensemble at a given moment in time, for instance when the handle
reaches the position lB; each circle represents the current configuration of a specific realization. (Right)
Each realization is additionally assigned a statistical weight, depicted by the size of the size of the circle.
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properties of molecules. Not only does
their method represent a potentially
useful laboratory technique, but an ex-

periment along these lines would provide
the first direct test of the underlying
theory.

I thank Profs. David Chandler and Christoph
Dellago for useful correspondence regarding
this commentary.
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