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The ‘‘social amoebae’’ of species Dic-
tyostelium discoideum roam individ-

ually through the soil as long as their
bacterial food is present. The social
phase for these cellular slime molds be-
gins when the food supply is exhausted.
After some hours, the assemblage of
amoebae aggregate into several large
groups, each of which forms a worm-like
slug that propels itself toward heat and
light. This brings the slug to the surface
of the soil, where it executes a sophisti-
cated internal ballet that eventually re-
sults in a fruiting body, an elegant stalk,
formed by dead cellulose-walled cells,
atop of which perches a bag of spores.
The whole structure is about a millimeter
high. Now in this issue of PNAS Marée
and Hogeweg (1) have provided a com-
puter simulation of the frog-prince trans-
formation of slug into fruiting body.

Scientists have been intensively study-
ing D. discoideum for decades, as a model
system in developmental biology. (Dictyo-
stelium turned up 47,500 entries in a
Google search.) A tremendous boost to
these studies occurred when it was discov-
ered that the initial aggregation is induced
by the pulsatile secretion of a chemoat-
tractant that turned out to be none other
than cAMP, one of a few major second
messengers in mammalian physiology (2).
Dictyostelium has become a ‘‘hydrogen
atom’’ paradigm in development, for in-
stead of hundreds of cell types as in hu-
mans, the slime mold
has only two (princi-
pal) types, stalk and
spore, in a ratio that
is controlled over a
wide range of sizes.
What causes aggre-
gation and then slug
formation and mo-
tion? How are the
proportions of dif-
ferentiated cells con-
trolled? And how is the morphogenetic
movement organized so that it provides
the appropriate geometric structure of
spore-on-stalk?

Evelyn Keller and I used to think that
we wrote the first theoretical paper on
Dictyostelium in 1970 (3) when we formu-
lated and analyzed equations to show how
aggregation might be regarded as an in-

stability in a uniform layer of cAMP-
secreting chemotactic cells. It turns out
that more than 20 years earlier a paper by
the celebrated mathematician Marston
Morse (4) mentioned slime molds as an
example of ‘‘equilibria in nature’’ (the title
of the paper) that could be qualitatively
described by what is now known as Morse
theory.

Many theoretical papers have been
written on various aspects of slime mold
behavior in the last three decades. Ex-
amples are major recent studies of ag-
gregation (5) and the regulation of stalk-
spore proportions (6). Earlier simulation
studies by the authors and their collab-
orators treated slug formation and mi-
gration (7–9). The work of Marée and
Hogeweg (1) is a culmination of all this
effort in two senses. It deals with the
so-called ‘‘culmination phase’’ of Dictyo-
stelium morphogenesis and it caps years
of intensive effort, for the first time
offering a theoretical model that can
reproduce all of the major features of the
structure formation.

A simulation of a developing organism
must represent the motion of a large num-
ber of interacting cells. Like other mate-
rials, cells respect the laws of physics. Each
cell is not only driven by external forces
but also generates internal forces by as-
sembling and disassembling an ephemeral
cytoskeleton under the direction of vari-
ous controlling chemicals. A further com-

plication is that al-
though cell shape
depends on the result-
ant of all of the forces,
the forces themselves
depend on the shape.
Impressive progress has
been made in coping
with much of this com-
plexity. An example is
afforded by Alt and
Dembo’s (10) two-

phase model of cytoplasmic dynamics
even a simple version of which reproduces
such features of cell motility as periodic
ruff le formation, protrusion-retraction
cycles, and centripetal f low.

Marée and Hogeweg (1) wisely avoided
detailed force calculation in their broad-
brush dynamic portrait of D. discoideum
culmination. One major step was replac-

ing force balancing by an alternative ap-
proximate description wherein a type of
potential energy was minimized. To see
what this involves, recall that one way to
describe how and why a ball rolls down a
mountain into a valley is to account for the
gravitational forces that cause the descent.
Often preferable is the alternative expla-
nation that the ball moves to minimize its
height and hence its potential energy.

Here, too, an energy can be defined,
one that limns in broad strokes the influ-
ences that induce cell motion. Two such
influences are differential cell adhesion
and chemotaxis toward relatively high
cAMP concentrations. Promotion of rel-
atively strong cell-cell contacts (which
minimize the relevant energy function)
tends to yield clumps of like cells. This
tendency can be overridden by the pro-
pensity of cells to move toward higher
cAMP concentrations. (Motion resulting
from this propensity is not simple, because
it turns out that the cells are exposed to
traveling waves of cAMP, with their mov-
ing maxima and minima.)

The Marée-Hogeweg simulations save
computer time by considering only a two-

See companion article on page 3879.
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Fig. 1. Representation of simulated cell move-
ment. The heavily outlined square of cell A is more
likely to switch to be part of cell B (corresponding
to a ‘‘pushing’’ of B by A) if the square’s ‘‘energy’’
is decreased by a combination of factors.
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dimensional cross section of the fruiting
body. An individual amoeboid cell is rep-
resented by a blob formed of about 30
squares. [Early simulations represented a
cell by a point, but this appears to be an
oversimplification. The connected blob
representation is a grandchild of the Potts
generalization of the Ising model, fa-
thered by the physicists Glazier and
Graner (11).] Each simulated cell has a
target volume; deviation from this volume
is penalized by an increase in energy. Cells
continually check whether a shift of their
boundaries will decrease the overall en-
ergy. If the decrease is large enough then
the new position is accepted. A smaller
decrease makes the motion likely but not
certain (the simulations are stochastic).
Cells thus move in such a way as to in-
crease cAMP concentration in their envi-
ronment while adhering with different
strengths to the various cell types. As it
moves, cell A ‘‘pushes’’ cell B when the
boundary of A fluctuates to invade what
was previously the territory of cell B (see
Fig. 1).

As mentioned, simulating energy-
diminishing boundary fluctuations per-
mits side-stepping the more accurate but
dauntingly complex approach via differ-
ential equations. But differential equa-
tions enter the simulations when the dif-
fusion and reaction of secreted cAMP is
accounted for. Here, too, a simplification

is made—the ‘‘true’’ cAMP dynamics is
replaced by the FitzHugh-Nagumo
caricature of excitability borrowed from
neurobiology (14, 15).

Can one trust simulations that ignore
much biological detail? Certainly the
omission of known phenomenology is no a
priori reason to scorn a model or simula-
tion. For example, classical Newtonian
models, bare of relativistic or quantum
effects, are universally accepted to offer
the right approach to problems ranging
from bacterial swimming to hurricane pre-
diction. The art is to fulfill the dictum
attributed to Einstein, ‘‘simplify as much
as possible but no further.’’

The robustness peculiar to biology plays
an interesting dual role in the evaluation
of relatively simple models. On the one
hand, robustness implies that variations in
detail are without major significance.
Such variations are unlikely to alter the
essence of phenomena that are essential
for survival—such as fruiting body con-
struction in slime molds. On the other
hand, this very robustness implies that a
model that flawlessly reconstructs much
phenomenology might well be seriously
wrong in the underlying detail that it
assumes.

Concerning this second point, how-
ever, new developments have indicated
that the picture is more subtle and more
interesting than has been thought. In

their study of developing segment polar-
ity networks, von Dassow et al. (12)
found that their 50-parameter model
gene networks were indeed remarkably
robust when and only when their original
mathematical translation of known inter-
actions between relevant genes was sup-
plemented by two crucial additions. E.
Shochat, S. Stemmer, and I (unpublished
work) found a similar phenomenon in an
unpublished large-scale model of hema-
topoeietic cell kinetics. In essence, re-
placing a parameter by a small model
(compare ref. 13) very considerably en-
larged the range of other parameter
choices that could lead to a fit with
a number of kinetic results. It appears
that a biological model enjoys robustness
only if it is ‘‘correct’’ in certain essential
features.

Years ago the slime mold biologist
Maurice Sussman said to me that the goal
of theoretical biologists should be to
‘‘compute an organism.’’ This has now
been done by Marée and Hogeweg (1).
The necessity of refining and generalizing
the calculations and the importance of
linking changing gene expression with cell
movement means that this achievement is
not the beginning of the end but rather the
end of the beginning.

Thanks to J. T. Bonner, P. Hogeweg, and E. F.
Keller for helpful comments on an earlier
version.
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