Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1977 Feb;59(2):291–298. doi: 10.1172/JCI108640

The pathophysiology of acid-base changes in chronically phosphate-depleted rats: bone-kidney interactions.

M Emmett, S Goldfarb, Z S Agus, R G Narins
PMCID: PMC333359  PMID: 833276

Abstract

Acid-base disturbances may develop secondary to the changes in renal tubular function and bone dynamics which attend phosphate depletion (PD). This work characterizes the acid-base status of rats fed a low phosphate diet. After 18 days, PD rats had marked calciuria (pair-fed controls: 0.3 +/- 0.2; PD 32.2 +/- 2.5 mueq/h; P less than 0.001), severe bicarbonaturia (controls: 0; PD 17.6 +/- 0.2 meq/h; P less than 0.001), and negative net acid excretion (controls: 44.5 +/- 2.9; PD: --6.6 +/- 2.5 meq/h; P less than 0.001), but plasma pH, HCO3, and PCO2 were equal in both groups. After 45 days, plasma HCO3 fell to 21.1 +/- 0.9 meq/liter in PD (controls: 23.6 +/- 0.5 meq/liter; P less than 0.05), while bicarbonaturia (controls: 0.4 +/- 0.2; PD: 3.8 +/- 1 mueq/h; P less than 0.02) and calciuria were present but diminished. These data suggested the coexistence of bone HCO3 mobilization and renal HCO3 wasting in PD. To test this thesis, bicarbonaturia was eliminated by nephrectomy. 24 h later plasma HCO3 was higher in PD rats (controls: 19.3 +/- 0.02; PD: 22.6 +/- 0.8 meq/liter; P less than 0.05), consistend with the presence of extrarenal HCO3 production. After inhibition of bone resorption with colchicine (1 mg/kg), plasma HCO3 decreased to 16.8 +/- 0.6 meq/liter in PD rats (controls): 26.4 +/- 1 meq/liter; P less than 0.001) while bicarbonaturia persisted. These data indicate that the plasma HCO3 in PD is the net result of renal HCO3 wasting and bone HCO3 mobilization. These combined effects maintain normal blood HCO3 initially (18 days) but with time (45 days), bone resorption diminishes and the acidifying renal tubular defect predominates.

Full text

PDF
291

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barzel U. S. Systemic alkalosis in hypoparathyroidism. J Clin Endocrinol Metab. 1969 Jul;29(7):917–918. doi: 10.1210/jcem-29-7-917. [DOI] [PubMed] [Google Scholar]
  2. Baylink D., Wergedal J., Stauffer M. Formation, mineralization, and resorption of bone in hypophosphatemic rats. J Clin Invest. 1971 Dec;50(12):2519–2530. doi: 10.1172/JCI106752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CARLSSON A. Experiments with radio-calcium on the interrelationships between vitamin D and dietary calcium and phosphorus. Acta Pharmacol Toxicol (Copenh) 1953;9(1):32–40. doi: 10.1111/j.1600-0773.1953.tb02926.x. [DOI] [PubMed] [Google Scholar]
  4. CHANEY A. L., MARBACH E. P. Modified reagents for determination of urea and ammonia. Clin Chem. 1962 Apr;8:130–132. [PubMed] [Google Scholar]
  5. Clinical conference: Hyperparathyroidism: recent studies. Ann Intern Med. 1973 Oct;79(4):566–581. [PubMed] [Google Scholar]
  6. Coburn J. W., Massry S. G. Changes in serum and urinary calcium during phosphate depletion: studies on mechanisms. J Clin Invest. 1970 Jun;49(6):1073–1087. doi: 10.1172/JCI106323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crumb C. K., Martinez-Maldonado M., Eknoyan G., Suki W. N. Effects of volume expansion, purified parathyroid extract, and calcium on renal bicarbonate absorption in the dog. J Clin Invest. 1974 Dec;54(6):1287–1294. doi: 10.1172/JCI107874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Sousa R. C., Harrington J. T., Ricanati E. S., Shelkrot J. W., Schwartz W. B. Renal regulation of acid-base equilibrium during chronic administration of mineral acid. J Clin Invest. 1974 Feb;53(2):465–476. doi: 10.1172/JCI107580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dousa T. P., Barnes L. D. Effects of colchicine and vinblastine on the cellular action of vasopressin in mammalian kidney. A possible role of microtubules. J Clin Invest. 1974 Aug;54(2):252–262. doi: 10.1172/JCI107760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dousa T. P., Duarte C. G., Knox F. G. Effect of colchicine on urinary phosphate and regulation by parathyroid hormone. Am J Physiol. 1976 Jul;231(1):61–65. doi: 10.1152/ajplegacy.1976.231.1.61. [DOI] [PubMed] [Google Scholar]
  11. GOODMAN A. D., LEMANN J., Jr, LENNON E. J., RELMAN A. S. PRODUCTION, EXCRETION, AND NET BALANCE OF FIXED ACID IN PATIENTS WITH RENAL ACIDOSIS. J Clin Invest. 1965 Apr;44:495–506. doi: 10.1172/JCI105163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gold L. W., Massry S. G., Arieff A. I., Coburn J. W. Renal bicarbonate wasting during phosphate depletion. A possible cause of altered acid-base homeostasis in hyperparathyroidism. J Clin Invest. 1973 Oct;52(10):2556–2561. doi: 10.1172/JCI107447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Halperin M. L., Goldstein M. B., Haig A., Johnson M. D., Stinebaugh B. J. Studies on the pathogenesis of type I (distal) renal tubular acidosis as revealed by the urinary PCO2 tensions. J Clin Invest. 1974 Mar;53(3):669–677. doi: 10.1172/JCI107604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harter H. R., Santiago J. V., Rutherford W. E., Slatopolsky E., Klahr S. The relative roles of calcium, phosphorus, and parathyroid hormone in glucose- and tolbutamide-mediated insulin release. J Clin Invest. 1976 Aug;58(2):359–367. doi: 10.1172/JCI108480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heath D. A., Palmer J. S., Aurbach G. D. The hypocalcemic action of colchicine. Endocrinology. 1972 Jun;90(6):1589–1593. doi: 10.1210/endo-90-6-1589. [DOI] [PubMed] [Google Scholar]
  16. Holtrop M. E., Raisz L. G., Simmons H. A. The effects of parathyroid hormone, colchicine, and calcitonin on the ultrastructure and the activity of osteoclasts in organ culture. J Cell Biol. 1974 Feb;60(2):346–355. doi: 10.1083/jcb.60.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kildeberg P., Engel K., Winters R. W. Balance of net acid in growing infants. Endogenous and transintestinal aspects. Acta Paediatr Scand. 1969 Jul;58(4):321–329. doi: 10.1111/j.1651-2227.1969.tb04728.x. [DOI] [PubMed] [Google Scholar]
  18. Lemann J., Jr, Litzow J. R., Lennon E. J. The effects of chronic acid loads in normal man: further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis. J Clin Invest. 1966 Oct;45(10):1608–1614. doi: 10.1172/JCI105467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Malnic G., De Mello Aires M., Giebisch G. Potassium transport across renal distal tubules during acid-base disturbances. Am J Physiol. 1971 Oct;221(4):1192–1208. doi: 10.1152/ajplegacy.1971.221.4.1192. [DOI] [PubMed] [Google Scholar]
  20. Narins R. G., Blumenthal S. A., Fraser D. W., Tizianello A., Solow J. Streptozotocin-induced lactic acidosis. A case report and some experimental observations. Am J Med Sci. 1973 Jun;265(6):455–461. doi: 10.1097/00000441-197306000-00003. [DOI] [PubMed] [Google Scholar]
  21. Narins R. G., Relman A. S. Acute effects of acidosis on ammoniagenic pathways in the kidneys of the intact rat. Am J Physiol. 1974 Oct;227(4):946–949. doi: 10.1152/ajplegacy.1974.227.4.946. [DOI] [PubMed] [Google Scholar]
  22. RECTOR F. C., Jr, BLOOMER H. A., SELDIN D. W. EFFECT OF POTASSIUM DEFICIENCY ON THE REABSORPTION OF BICARBONATE IN THE PROXIMAL TUBULE OF THE RAT KIDNEY. J Clin Invest. 1964 Oct;43:1976–1982. doi: 10.1172/JCI105071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Raisz L. G., Holtrop M. E., Simmons H. A. Inhibition of bone resorption by colchicine in organ culture. Endocrinology. 1973 Feb;92(2):556–562. doi: 10.1210/endo-92-2-556. [DOI] [PubMed] [Google Scholar]
  24. SCHWARTZ W. B., BANK N., CUTLER R. W. The influence of urinary ionic strength on phosphate pK2' and the determination of titratable acid. J Clin Invest. 1959 Feb;38(2):347–356. doi: 10.1172/JCI103808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SCHWARTZ W. B., ORNING K. J., PORTER R. The internal distribution of hydrogen ions with varying degrees of metabolic acidosis. J Clin Invest. 1957 Mar;36(3):373–382. doi: 10.1172/JCI103433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sammon P. J., Stacey R. E., Bronner F. Role of parathyroid hormone in calcium homeostasis and metabolism. Am J Physiol. 1970 Feb;218(2):479–485. doi: 10.1152/ajplegacy.1970.218.2.479. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES