
Gene organization and evolutionary history
Proteolysis within the membrane was discovered in 
seemingly rare contexts nearly 15 years ago [1-3]. It is 
now widely appreciated that this fascinating regulatory 
paradigm permeates most areas of modern cell biology 
[4-7]. Of the three protease families that catalyze 

intramembrane proteolysis, rhomboid enzymes are the 
only family that were not discovered from the direct 
study of human disease. The name ‘rhomboid’ has its 
origin deep in the rich folklore of Drosophila genetics. 
Rhomboid emerged from the historic quest to identify all 
genes required to organize construction of a free-living 
organism from a single cell [8,9]. Because genes were 
named after the altered appearance of the mutant larval 
cuticle, the mis-shaped, rhombus-like head skeleton of 
the mutant embryo earned rhomboid its name. Mutating 
the growth factor that rhomboid activates yielded 
indistinguishable head-skeleton defects, and was named 
spitz (‘pointed’ in German).

The rhomboid gene was cloned and sequenced by Bier 
and colleagues in 1990, revealing a seven transmembrane 
(7TM) protein with no homology to any sequence known 
at the time [10]. The spitz sequence was more infor
mative, encoding a clear epidermal growth factor (EGF)-
like protein [11]. The fact that rhomboid mirrored spitz 
phenotypically [9], and encoded a seven TM protein, led 
to the proposal that it might be a serpentine receptor for 
Spitz signaling [11]. But as sequencing of genomes from 
diverse organisms began to reveal rhomboid homologs in 
every form of cellular life [12], it became clear that 
rhomboid proteins may be at the core of very diverse 
biological regulation.

Sequence analysis, however, yielded no clues about the 
underlying biochemical function of rhomboid proteins, 
and no other homologs were as well studied as Droso­
phila rhomboid. A decade of Drosophila genetics had, 
however, set the stage for a biochemical approach: 
rhomboid was definitively implicated as an upstream 
activator of Spitz in the signal-sending cell, providing a 
framework for analyzing its molecular function [12-15]. 
A focused analysis of Spitz activation eventually yielded 
four key pieces of the puzzle [16]: (i) substochiometric 
levels of Rhomboid triggered Spitz proteolysis, implying 
that Rhomboid acts enzymatically; (ii) proteolysis 
depends absolutely only on four Rhomboid residues, and 
their identity is consistent with serine protease catalysis; 
(iii) Spitz proteolysis is blocked only by serine protease 
inhibitors; and (iv) Spitz is cleaved within its TM segment 
at a depth similar to that of the putative rhomboid 

Summary
Rhomboid proteases are the largest family of 
enzymes that hydrolyze peptide bonds within the cell 
membrane. Although discovered to be serine proteases 
only a decade ago, rhomboid proteases are already 
considered to be the best understood intramembrane 
proteases. The presence of rhomboid proteins in all 
domains of life emphasizes their importance but 
makes their evolutionary history difficult to chart with 
confidence. Phylogenetics nevertheless offers three 
guiding principles for interpreting rhomboid function. 
The near ubiquity of rhomboid proteases across 
evolution suggests broad, organizational roles that are 
not directly essential for cell survival. Functions have 
been deciphered in only about a dozen organisms and 
fall into four general categories: initiating cell signaling 
in animals, facilitating bacterial quorum sensing, 
regulating mitochondrial homeostasis, and dismantling 
adhesion complexes of parasitic protozoa. Although 
in no organism has the full complement of rhomboid 
function yet been elucidated, links to devastating 
human disease are emerging rapidly, including to 
Parkinson’s disease, type II diabetes, cancer, and 
bacterial and malaria infection. Rhomboid proteases 
are unlike most proteolytic enzymes, because they 
are membrane-immersed; understanding how the 
membrane immersion affects their function remains a 
key challenge.
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catalytic serine. These pieces fit together into a model in 
which rhomboid acts as an intramembrane serine 
protease for Spitz [16], which was confirmed 4 years later 
by reconstituting cleavage with pure proteins [17-19].

The ability to study Spitz proteolysis as a direct test of 
rhomboid activity was used to determine that even 
distant bacterial homologs are functional intramembrane 
serine proteases [20]. Most bacterial species are now 
known to encode one rhomboid protease, while some 
encode two, and very few encode three [21]. Rhomboid 
proteases are also present in many if not most Archaea, 
but the greatest expansion occurred in multicellular 
organisms and some parasitic protozoa. Although the 
human, mouse and Drosophila genomes encode at least 
seven rhomboid genes, the largest number of rhomboid 
genes are encoded by plants (13 in Arabidopsis), which 
do not have EGF signaling [21-23]. In many of these 
diverse organisms, at least one rhomboid has directly 
been demonstrated to have proteolytic activity (Table 1) 
[16,20,23-26].

Rhomboid proteases are found in all branches of life, 
yet the sequence identity across all family members is 
strikingly low, around only 6% [12,21,22]. We suggest that 
this is not despite rhomboid proteases being so wide
spread but because of it. This divergence is exacerbated 
by their sequences being predominantly transmembrane 
and thus experiencing a different evolutionary pressure 
[27]. This has made phylogenetic analyses noisy, yielding 
few incontrovertible conclusions and inevitably fueling 
debate. Of particular intrigue is their evolutionary origin: 
rhomboid proteins have been argued to be perhaps the 
most widely distributed membrane proteins in nature 
[21] (Figure 1). This near ubiquity is instinctively viewed 
as evidence of an ancient enzyme family that evolved 
early [12]. Although this is likely if the last universal 
common ancestor already encoded several different 
rhomboid proteins, phylogenetic analysis has also raised 
the possibility of a different history in which rhomboid 
proteins are a later invention of bacteria that rapidly 
spread to most other organisms [21]. This scenario 
requires a controversial amount of horizontal gene 
transfer to populate all kingdoms of life. Currently the 
true nature of rhomboid phylogenetic history remains a 
point of inconsolable debate, but three observations serve 
as valuable guiding principles.

Characteristic structural features
The first organizing principle emerging from sequence 
analysis is the observation that rhomboid proteases come 
in three distinct topological flavors (Figure 2) [21]. The 
simplest consists of the 6TM core, which itself is the 
smallest catalytically active unit. This form predominates 
in bacteria, but is also represented, albeit more rarely, in 
eukaryotic organisms, including animals. To this basic 

unit eukaryotes add a seventh TM segment following the 
6TM core (6+1TM form). Five of the seven Drosophila, 
human, and mouse rhomboid proteins are of this form. 
Analogous 7TM forms also occur in bacteria, but are 
rare. Lastly, a distinct form of 7TM rhomboid proteases 
exists in endosymbiotic organelles, adding the seventh 
TM preceding the 6TM core (1+6TM form). The best 
studied are those imported into mitochondria [28-30], 
although interest in plastid-resident rhomboid proteins 
has recently been sparked [31]. Although the sequence 
analysis is clear on these three topological distinctions, 
their functional relevance is unclear. The expectation is 
that they confer different biochemical properties, 
although current evidence, albeit limited, indicates that 
many bacterial 6TM forms and eukaryotic 6+1TM forms 
show similar activity against surrogate substrates, 
including Spitz [17,32,33].

Although protease activity has been reconstituted with 
both the 6TM and 6+1TM rhomboid forms in vitro, it is 
only a 6TM form called GlpG from Escherichia coli and 
Haemophilus influenzae that has proven amenable to 
structural analysis [34-37]. This major breakthrough - the 
first atomic-resolution structure of any intramembrane 
protease - not only confirmed that proteolysis is intra
membrane and catalyzed by a serine protease apparatus, 
but revealed an unanticipated and complex architecture. 
Although a thorough description is beyond the scope of 
the current discussion (see [38] for a comprehensive 
review), two features are characteristic (Figure 3): although 
most TM helices are long and run roughly perpendicular 
to the membrane, the fourth TM segment runs slanted 
relative to the others and enters the center of the protein 
as an extended loop, converting to an α helix at the 
catalytic serine. More unexpected was the orientation of 
the long L1 loop connecting TMs 1 and 2, which forms a 
lateral hairpin that lies half submerged in the membrane. 
This feature, which has not been encountered before or 
since, has major structural implications and results in a 
highly asymmetric protein. It is assumed that the 
structure of the other rhomboid forms will be analogous, 
and recent modeling of the mitochondrial 1+6TM form 
on E. coli GlpG hints at an unanticipated level of 
similarity [39].

In addition to the number of TMs, two further varia
tions provide potential for additional rhomboid diversity. 
First, in all three forms, the cytosolic amino termini are 
highly variable, ranging from large domains to being non-
existent. The implications, however, remain unclear, at 
least partly because achieving well-diffracting crystals 
required absence of this domain, making its relationship 
to the catalytic core speculative. On the simplest level, 
these domains may house sorting signals [40].

Secondly, rhomboid proteins are often encountered 
that clearly lack catalytic residues. These should be 
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considered rhomboid proteins but not rhomboid proteases. 
Two predominant clusters are a distinct 6+1TM form in 
animals, called iRhom proteins [22,41], and a 6TM form 
that is represented widely in eukaryotes by the Derlin 
proteins [42-45]. Both of these have been implicated in 
endoplasmic reticulum-associated degradation (ERAD). 
Derlins have clear sequence homology near the 
membrane-submerged L1 loop, but also less conspicu
ously along their entire length, and are thus likely to 
adopt a GlpG-like 6TM structure. Although clearly not 
proteolytic, their potential similarity to other aspects of 
the rhomboid protease mechanism should not be 
discounted at this early stage (but lie beyond the scope of 
this review).

Localization and function
The second guiding principle stems from the tremendous 
diversity of organisms that encode rhomboid enzymes. 
Since these include organisms that do not encode any 

known forms of cell-to-cell communication, sequence 
information implies that rhomboid proteins perform an 
ancient and fundamental role in cell biology. This 
function is not essential for cell survival, however, 
because several lineages are missing rhomboid genes 
entirely, presumably by gene loss [21]. Although defining 
the cellular functions of rhomboid proteases has proven a 
persistent challenge, focused investigations have succeeded 
in documenting the function of at least one rhomboid in 
nearly a dozen organisms (Table 1). These functions are 
usually regulated by substrate trafficking, and fall into 
four broad categories (Figure 4).

First, rhomboid proteases initiate animal cell signaling 
by releasing growth factors from the membrane. This 
function emerged from detailed genetic study of Droso­
phila development; rhomboid proteases are localized in 
the Golgi apparatus and act as the signal-generating 
component by cleaving Spitz to initiate the pathway in 
neighboring cells [16,46]. Although a role in regulating 

Table 1. Known rhomboid protease substrates and functions across evolution

Rhomboid	 Organism	 Substrate	 Function	 References

Rho-1	 Drosophila	 Spitz, Keren	 EGFR signaling (embryo, most developing tissues, adult)	 [8-16,89]

Rho-2/Stet	 Drosophila	 Gurken,?	 EGFR signaling in oocyte, germline 	 [89,90]

Rho-3/Ru	 Drosophila	 Spitz, Keren	 EGFR signaling in embryo, eye disc	 [12,89,91]

Rho-4	 Drosophila	 Spitz, Keren?	 EGFR signaling?	 [89]

Rho-7	 Drosophila	 DmOpa1-like DmPINK1	 Mitochondrial fusion, mitophagy	 [30,55]

CeROM1	 C. elegans	 LIN-3L	 Amplifying EGFR signaling (vulva)	 [47]

AarA	 P. stuartii	 TatA	 Activating twin-arginine translocon, quorum sensing	 [20,17,61-62,66]

GlpG	 E. coli	 ?	 ?	 [17-20,34-36,
				    77-78,83-85,88]

HiGlpG	 H. influenzae	 ?	 ?	 [37,81]

YqgP	 Bacillus subtilis	 ?	 ?	 [17,18,20]

PA3086	 Pseudomonas aeruginosa	 ?	 ?	 [17,18,20]

AqRho	 Aquifex aeolicus	 ?	 ?	 [17,20]

Pcp1	 Saccharomyces cerevisiae	 Mgm1, Ccp1	 Mitochondrial membrane fusion, pre-sequence removal	 [28,52-54]

PARL	 Homo sapiens Mus musculus	 PINK1, others	 Downregulating mitophagy, crista remodeling, 	 [28,29, 56-60]
			   anti-apoptosis

AtRBL2	 Arabidopsis thaliana	 ?	 ?	 [23]

RHBDL2	 H. sapiens	 TM, EphrinB1,2,3, EGF	 Blood clotting? Cell migration? Cancer?	 [24,48,87]

PfROM4	 P. falciparum	 EBA175, TRAP, other adhesins	 Invasion	 [26,69]

PfROM1	 Plasmodium sp.	 AMA1?	 Invasion? Growth	 [26,69,70]

TgROM1	 Toxoplasma gondii	 ?	 Growth	 [25,40,68,75]

TgROM2	 T. gondii	 ?	 ?	 [25,40,68]

TgROM3	 T. gondii	 ?	 ?	 [25,68]

TgROM4	 Toxoplasma gondii	 AMA1, MIC2, MIC6	 Invasion	 [25,68,71,72]

TgROM5	 Toxoplasma gondii	 AMA1, MIC2, MIC6	 Invasion	 [25,26]

EhROM1	 Entamoeba histolytica	 Lectins	 Phagocytosis, immune evasion	 [73,74]

Only those rhomboid proteases whose proteolytic activity has been detected are included in the table. A question mark ‘?’ denotes unknown function. EGFR, 
epidermal growth factor receptor.
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EGF signaling is also seen in Caenorhabditis elegans 
vulval development, CeROM-1 has a surprisingly minor 
role as a target of EGF signaling that sets up a paracrine 
loop to amplify and spread the signal [47]. Even less is 

clear in mammals: recent investigations have localized 
rhomboid proteins to the secretory pathway and cell 
surface and begun to uncover increased rhomboid 
expression in cancer cells with potential links to growth 

Figure 1. Phylogenetic tree of rhomboid proteins. Rhomboid protein sequences are widely scattered throughout all branches of cellular life. 
A subset of 109 Rhomboid and Derlin family protein reference sequences, retrieved from the NCBI RefSeq database, was chosen to illustrate their 
diversity. Mega 5.05 was used to align sequences by MUSCLE and construct an unrooted neighbor-joining phylogenetic tree. Branches are labeled 
according to their common characteristics and are shaded or outlined to denote active or inactive protease sequences, respectively. Individual 
sequence names are colored black, blue, or red to indicate a 6TM, 6+1TM, or 1+6TM arrangement, respectively, with each RefSeq accession number 
included within parentheses. Despite the tremendous number and diversity of rhomboid proteins, structures of only two 6TM rhomboid proteases 
have been solved (yellow stars).
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factor signaling [24,48,49]. However, this is not limited to 
active rhomboid proteases; expression of the iRhom 
RHBDF1, which is localized in the endoplasmic reticu
lum in human epithelial cancer cells, increased secretion 
of the EGF ligand transforming growth factor-α [50]. 
Accordingly, RHBDF1 silencing decreased pathway 
activation through EGF receptor (EGFR), ERK and AKT 
phosphorylation, and limited tumor growth in mice [51]. 
The Drosophila homolog, however, was recently found to 
have the opposite effect of decreasing EGFR signaling by 
promoting the ERAD-mediated degradation of EGF 
ligands [41]. The basis of this remarkable discrepancy is 
currently unclear; knockout mouse studies are expected 
to provide clarity on the physiological roles of rhomboid 
proteins.

Recent studies have also placed the mitochondrial 
rhomboid protease at the nexus of key pathways that 
govern mitochondrial fusion, mitophagy and apoptosis. 
All mitochondrial rhomboid proteins are encoded in the 
nuclear genome, and imported into mitochondria. The 
main function of the mitochondrial rhomboid Pcp1 is to 
release the dynamin-like GTPase Mgm1 from the mem
brane [28,52,53]. Because Mgm1 is essential for mito
chondrial fusion and Mgm1 cleavage occurs only in 
healthy mitochondria, this limits fusion to occurring 
between healthy organelles [54]. A similar function was 
described in Drosophila [30], but genetic interactions 

soon revealed further complexity in metazoans; the 
mitochondrial rhomboid DmRho-7 also participates in 
the Parkin/PINK1 pathway that malfunctions in Parkinson’s 
disease [55]. It has recently become clear that the human 
mitochondrial rhomboid PARL cleaves PINK1 to suppress 
its ability to recruit the Parkin ubiquitin ligase onto 
mitochondria [56-58]. Without PARL cleavage, PINK1 
accumulates in mitochondria and fails to be recruited 
properly to damaged mitochondria. A PARL knockout 
mouse suffers tremendous atrophy several months after 
birth resulting from malformed mitochondria and ele
vated apoptosis, although without mitochondrial fusion 
defects [29]. PARL has also been implicated in suppres
sing apoptosis in lymphocytes, potentially through a 
different substrate, High-temperature regulated A (HtrA, 
also called Omi) [59]. Intriguingly, mutations in PARL 
have recently been found in Parkinson’s disease patients 
[58] and diabetes patients [60], although the significance 
of these mutations for disease remains speculative.

The third category of rhomboid function was revealed 
in Providencia stuartii, a Gram-negative bacterial patho
gen. Genetic screens identified its rhomboid homolog, 
AarA, to be required for production of an unidentified 
signal for quorum sensing [61,62]. Once the similarity to 
rhomboid was noted [63], proteolytic activity of AarA 
was demonstrated against Spitz [20], and AarA was found 
to partially rescue tissue development of Drosophila 

Figure 2. Rhomboid proteins exist in three topological forms. The smallest, catalytically active form of a rhomboid protease consists of a 6TM 
core, with variable amino termini (dashed lines). Most eukaryotic and mitochondrial rhomboid proteases have an additional TM segment, added 
either carboxy-terminally (eukaryotes, blue) or amino-terminally (mitochondria, red) to the 6TM core, as depicted. Catalytic residues are in yellow for 
nucleophilic chemistry (hydrolysis) and white for electrophilic residues (oxyanion transition state stabilization). Cytoplasm is down in each diagram.
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mutant in rhomboid [64]. Historically, the intriguing 
similarity of activating Drosophila EGF signaling and 
producing an auto-inducer for bacterial quorum sensing, 
both by a rhomboid, received much attention [63,65]. But 
the similarity proved to be superficial when the substrate 
was identified to be TatA, a component of the twin-
arginine translocation machinery [66]. As such, AarA 
removes a short amino-terminal extension, presumably 
to activate the machinery for signal secretion, rather than 
activating the signal itself. TatA from other bacteria, 
including E. coli, lacks this short extension and is imme
diately active, and the AarA function is therefore an 
exception. Nevertheless, this is the only known function 
for a rhomboid protease in any prokaryote, and it drama
tically highlights the apparent diversity of rhomboid 
function even within similar bacteria.

Finally, rhomboid proteases help to dismantle adhesive 
junctions in unicellular eukaryotic parasites. This is the 
only role that was discovered by searching for rhomboid 
targets using substrate specificity determinants [33]. The 
adhesins of Plasmodium and Toxoplasma are necessary 

for host-cell invasion, making them essential proteins for 
the survival of these obligate intracellular parasites [67]. 
These parasites encode six or more rhomboid proteases, 
two of which in each organism are known to process 
these adhesins at the end of the invasion program [25,26,​
68-70]. The precise need for this dismantling is not entirely 
clear, but has been thought to free the parasite from being 
tethered to the host plasma membrane. Recent knockdown 
experiments indicate that this processing is important for 
efficient invasion [71], although the full extent is incom
pletely understood and may involve later functions during 
parasite replication within the host cell [72]. Even the non-
cell-invasive Entamoeba histolytica encodes a highly active 
rhomboid protease, which is localized to the parasite 
surface but which relocalizes to phagosomes during 
feeding and the bud neck during immune evasion, perhaps 
to shed surface proteins, including lectins [73,74]. The 
functions of other Plasmodium or Toxoplasma rhomboid 
proteases not involved in invasion are not yet understood 
[75], and many other parasites encode rhomboid 
enzymes whose functions have never been explored.

Figure 3. Structural features of the rhomboid 6TM core. The crystal structure of the 6TM core of the E. coli rhomboid protease GlpG (PDB 2NRF 
molecule A) is shown from three vantage points (‘top view’ is looking at the cell from the outside with the membrane in the plane of the page). 
The protein forms a compact helical bundle, with two characteristic features. A short and slanted TM4 (black) forms a helix below the catalytic 
serine (circled in the ‘back’ view), but an extended loop (L3) above it. This slanted trajectory and extended loop create a cavity above the serine. 
The L1 loop (purple) forms a hairpin structure that nestles between TMs 1 and 3 and protrudes laterally into the outer leaflet of the membrane (red 
dashed lines representing the membrane interface are provided only for reference). Catalytic dyad residues serine and histidine are in cyan; putative 
oxyanion-stabilizing electrophilic asparagine and histidine residues are in red.
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Mechanism
Perhaps the most powerful, yet subtle, guiding principle 
that can be deduced from the near ubiquity of rhomboid 
proteases is that they possess a biochemical property that 
is both very rare and highly useful: but what? Solving this 
riddle requires understanding the enzymatic features of 
rhomboid proteases, and remarkable progress has been 
made towards these goals (reviewed in [38]).

There is now proof beyond doubt that rhomboid 
enzymes are serine proteases. This includes reconstitu
tion of proteolysis with pure proteins [17,19], protease 
inhibitor profiling [16,17,76], extensive analysis of residues 
essential for activity [16,18,19,77], and structural visuali
zation of catalytic residues and with a covalently bound 
inhibitor [34-37,78]. Moreover, the initial paradox of how 

water is delivered to the membrane-immersed active site 
for hydrolysis was largely addressed by structural 
analyses [34-37]: the active site lies submerged about 
10 Å below the presumed membrane surface, but with an 
open cavity above the active site for water access 
(Figure 3).

Structure-function analyses of rhomboid proteases 
have also revealed several unusual proteolytic properties 
that make them unlike most serine proteases. These 
differences are clear evidence of convergent evolution to 
a serine protease mechanism down an independent path. 
First, structural analysis indicates that nucleophilic 
catalysis is achieved by a histidine-serine catalytic pair, 
rather than the more common aspartate-histidine-serine 
catalytic triad [34-37]. Catalytic dyads have been noted in 

Figure 4. The cellular roles of rhomboid proteases fall into four categories. Top left: Rhomboid proteases initiate EGF signaling during 
Drosophila development. Rhomboid-1 is localized in the Golgi apparatus, and cleaves Spitz (green) after it is transported from the endoplasmic 
reticulum by Star (purple). Cleaved Spitz is secreted to activate EGF signaling in neighboring cells. Top right: The mitochondrial rhomboid 
PARL cleaves PINK1 to reduce Parkin recruitment to mitochondria and downregulate mitophagy. Cleavage may depend on changes in PINK1 
topogenesis in response to mitochondrial potential. Bottom right: Malaria parasite-encoded rhomboid proteases cleave adhesins to disassemble 
the junction formed between parasite and host erythrocyte at the end of invasion. Note that adhesins (in black), initially held in internal organelles, 
encounter rhomboid only when they are secreted onto the surface and motored to the posterior of the parasite. Bottom left: The Providencia 
rhomboid protease AarA activates TatA by removing a small amino-terminal extension. This allows TatA to assemble into the machinery required for 
protein (and presumably quorum-sensing signal) export. In the left two roles rhomboid cleavage activates a latent factor whereas in the right two 
roles cleavage inactivates the target protein.
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a minority of exceptional serine proteases [79]. The 
identity of the residues that stabilize the oxyanion 
transition state is uncertain, but this stabilization is most 
likely mediated by asparagine and/or histidine side-
chains [36,78] (Figure 3). Use of an asparagine for oxy
anion stabilization is uncommon but strikingly analogous 
to the mechanism of the conventional serine protease 
subtilisin [80].

The third unusual catalytic property of rhomboid 
proteases relates to the direction in which substrates lie 
across the active site cleft relative to the catalytic resi
dues. Although initially thought to be similar to nearly all 
other serine proteases [34,37], identification of the sub
strate gate on the opposite side of GlpG relative to expec
tation mandated that substrates approach the catalytic 
residues from the so-called ‘si’ face [35,77,81]. This 
stereochemical arrangement is very uncommon and had 
only been encountered in α/β-hydrolyses [82]. Consistent 
with this stereochemistry are rhomboid’s resistance to 
most canonical serine protease inhibitors and a weak but 
specific sensitivity to monocyclic β-lactams [16,17,76]. It 
should be stressed that the definitive evidence for 
substrate orientation, identity of the oxyanion hole, and 
the nature of substrate stabilization await a co-structure 
with a peptide substrate.

Rhomboid proteases have been studied largely within 
the framework of an established serine protease prece
dent as a way to interpret rhomboid mechanism, which is 
instructive but does not help to understand how they are 
different. Although deciphering the specifics of the cata
lytic chemistry is essential for designing effective inhibi
tors, the key functional properties of rhomboid enzymes 
that are relevant to the cell are unlikely to be determined 
by its catalytic mechanism. These defining features most 
likely result from membrane-immersion of the enzyme, 
and more recent investigations have started to study 
rhomboid proteases as integral membrane proteins 
directly.

The greatest impact of membrane immersion is on how 
substrates and rhomboid proteases behave (as reviewed 
in [38]). The closed ring of TM segments observed in the 
first crystal structure suggested that something must 
move to clear a path for lateral substrate entry [34-37]. 
Only mutations that weaken TM5 packing with TM2 
were found to enhance protease activity by up to ten-fold, 
thereby identifying the gate functionally [77,81,83]. This 
dramatic enhancement also revealed that gate opening is 
the rate-limiting step for intramembrane proteolysis. 
Molecular dynamics simulations and structural analysis 
in a bicelle also suggest membrane thinning surrounding 
GlpG, but its mechanistic implications remain unclear 
[84,85]. Investigating the role of the membrane in greater 
detail promises to reveal the defining features of the 
rhomboid proteolysis system.

Frontiers
The rhomboid gene was identified in the Drosophila 
screens of the late 1970s and early 1980s [8], and it was 
cloned and sequenced about a decade later [10]. It took 
another decade, until 2001, for its biochemical function 
as an intramembrane serine protease to be revealed [16]. 
It has now been a decade since that turning point, and 
advances in the intervening period have culminated in 
rhomboid proteases becoming widely regarded as the 
best understood of all intramembrane proteases [38]. 
Biochemical insights and defined roles in parasitic 
protozoa (reviewed in [6]) place rhomboid study on the 
cusp of becoming applicable in a therapeutic setting. A 
major lingering obstacle is a rudimentary understanding 
of its unusual enzymatic mechanism, but these questions 
are being pursued intensively, and momentum towards a 
sophisticated understanding is building [38].

By contrast, defining the cellular roles of rhomboid 
proteases has been a slow process [86]. Although even 
early biochemical insights have led to the identification of 
substrates that can be cleaved, whether these candidates 
are indeed physiological targets, and if so, whether they 
truly represent a major rhomboid function, remain 
unknown. For example, although the study of human 
RHBDL2 over the past 7  years has uncovered at least 
three well-cleaved substrates (thrombomodulin [24], B‑type 
ephrins [87], and EGF [48]), it is still unclear which, if 
any, are actual physiological targets, and whether 
cleavage represents a bona fide contribution to cellular 
function. Perhaps the most humbling example is E. coli 
GlpG, whose atomic details have been revealed in over a 
dozen structures and countless mutants, yet its cellular 
function remains a complete mystery [88]. In reality, it is 
not the ability to find substrate candidates but rather 
their validation that has proven to be the bottleneck in 
these studies. Refining search algorithms is unlikely to 
contribute much towards solving this problem. The 
urgent need is for approaches with which to study 
enzymes under physiological settings on a higher 
throughput scale. This, in turn, will focus biochemical 
investigations by providing physiological targets and new 
functional contexts.
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