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Abstract Cell-level kinetic models for therapeutically

relevant processes increasingly benefit the early stages of

drug development. Later stages of the drug development

processes, however, rely on pharmacokinetic compartment

models while cell-level dynamics are typically neglected.

We here present a systematic approach to integrate cell-

level kinetic models and pharmacokinetic compartment

models. Incorporating target dynamics into pharmacoki-

netic models is especially useful for the development of

therapeutic antibodies because their effect and pharmaco-

kinetics are inherently interdependent. The approach is

illustrated by analysing the F(ab)-mediated inhibitory

effect of therapeutic antibodies targeting the epidermal

growth factor receptor. We build a multi-level model for

anti-EGFR antibodies by combining a systems biology

model with in vitro determined parameters and a pharma-

cokinetic model based on in vivo pharmacokinetic data.

Using this model, we investigated in silico the impact of

biochemical properties of anti-EGFR antibodies on their

F(ab)-mediated inhibitory effect. The multi-level model

suggests that the F(ab)-mediated inhibitory effect saturates

with increasing drug-receptor affinity, thereby limiting

the impact of increasing antibody affinity on improving the

effect. This indicates that observed differences in the

therapeutic effects of high affinity antibodies in the market

and in clinical development may result mainly from Fc-

mediated indirect mechanisms such as antibody-dependent

cell cytotoxicity.

Keywords Cell-level kinetics � Pharmacokinetic models �
Therapeutic proteins � EGFR

Introduction

Biotechnologically engineered proteins such as monoclonal

antibodies (mAbs) have demonstrated their potential in

therapies for cancer and other complex diseases [1]. Due to

their ability to specifically bind targets, they allow to

modulate specific cellular targets and signaling pathways.

Various therapeutic proteins on the market use their bind-

ing specificity to inhibit cell surface receptors with critical

biologic function. At the same time, many targeted receptor

systems also constitute a degradation mechanism for such

drugs because binding leads to endocytosis and ultimately

degradation of the drug. A thorough understanding of the

complex interplay between a drug’s pharmacokinetics and

its effect is largely missing.

Empirical or semi-mechanistic compartmental models

are typically used to analyze preclinical or clinical phar-

macokinetic data of protein drugs [2–6]. In these models,

the interaction of the drug with its target is represented by

an empirical or semi-mechanistic term, accounting for the

saturable degradation capacity of the target system. Fur-

ther, models of target mediated drug disposition (TMDD)
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have been proposed as a general semi-mechanistic model

for drugs that bind with high affinity and to a significant

extent to a pharmacologic target such as an enzyme,

receptor, or transporter [7–9]. This is accomplished by

describing the target as an additional binding compartment.

In systems biology, detailed mechanistic models of

targets at the cell level have proven valuable for identifying

potent drug targets [10]. Such mathematical models allow

identifying and ranking potential targets in cellular net-

works for achieving specific downstream effects [11, 12].

A recent prominent example is the use of a kinetic model to

identify critical components in ErbB signaling pathways

[13] and was the basis for the development of a therapeutic

antibody that targets the ErbB3 receptor and is currently in

Phase II clinical trials [14].

Linking pharmacokinetic and systems biology model-

ling approaches allows a multi-level description of the

system as a whole. These kinds of systems pharmacology

models are therefore increasingly advocated by researchers

as well as regulators [15]. A combined model for a drugs’

pharmacokinetic and its cellular effect would be especially

valuable for therapeutic proteins where drug effect and

pharmacokinetics are inherently interdependent. As models

of both, whole-body pharmacokinetics and cellular target

dynamics, are becoming more abundant, the main bottle-

neck in developing multi-level systems pharmacology

models is in how to interface the cellular and whole body

layers levels.

The objective of this article is to develop a systematic

approach to integrate the cellular-level into compartment

models of drug pharmacokinetics. Due to their important

role in the treatment of cancer, we have developed a cell-

level pharmacokinetic/pharmacodynamic model for anti-

bodies antagonistically inhibiting the epidermal growth

factor receptor (EGFR). The binding of one of its natural

ligands to the EGFR results in the activation of signal

transduction pathways that mediate a variety of cellular

responses [16] which include cell proliferation, differenti-

ation, survival, and angiogenesis [17]. We illustrate our

approach by developing a cell-level PK/PD model for the

anti-EGFR therapeutic antibody zalutumumab in cyno-

molgus monkeys. The model integrates a compartment

model developed based on in vivo plasma data for zal-

utumumab [6], and a receptor trafficking model based on in

vitro data of the EGFR [18–24].

mAbs comprise a variable target-specific F(ab) region

and aconstant Fc region [4]. The target-specific part rec-

ognizes the targeted protein, whereas the constant part is

involved in different mechanism which determine the

pharmacokinetics as well as trigger indirect therapeutic

effects such as triggering antibody-dependent cell cyto-

toxicity. Using our combined model and integrating pre-

clinical pharmacokinetic data we have investigated in silico

the impact of biochemical properties of anti-EGFR anti-

bodies on the F(ab)-mediated inhibitory effect. This new

kind of model allows to identify in silico opportunities and

limitations for the optimization of biophysical properties of

future therapeutic antibodies.

Theoretical

Compartment model of in vivo therapeutic antibody

pharmacokinetics

The pharmacokinetic part of the multi-level model will be

based on Zalutumumab (2F8), an IgG1 antibody against

EGFR that inhibits tumor growth in xenograft models and

has shown promising results in phase I/II clinical trials [25,

26]. Lammerts van Bueren et al. [6] developed a 3-com-

partment pharmacokinetic model of zalutumumab in

cynomolgus monkeys which accurately describes experi-

mental plasma data for high and low doses (Fig. 1a). In the

model, Cpla and Cint represent the concentrations of the

mAb in plasma (with volume Vpla) and the interstitial space

(with volume Vint). ARS denotes the amount of drug that is

bound to the targeted receptor. The parameters qpi and qip

denote the transfer flows between the plasma and intersti-

tial compartment, kb denotes some large ’artificial’ rate

constant that ensures quasi-steady state conditions between

the unbound drug concentration in the interstitial space and

the drug bound to the receptor. The amount of drug bound

to the receptor is modeled in terms of a Michaelis Menten

term with Bmax PK denoting the maximal binding capacity

of the therapeutic protein to EGFR and KM,PK denoting the

concentration corresponding to the half-maximal binding

capacity. The rate constant of elimination of EGFR by

internalization and degradation is denoted by kel, while the

target-independent clearance such as proteolysis in the

blood [27] is denoted by CLlin. The values of the param-

eters as used by Lammerts van Bueren et al. are given in

Table 1. The rate of change of the molecular concentra-

tions and amount is given by:1

Vpla

dCpla

dt
¼ �qpiCpla þ qipCint � CLlin � Cpla ð1Þ

1 We transformed the originally published system of difference

equations [6, Supplement] into a corresponding continuous system of

ordinary differential equations. The originally published equations in

[6, Supplement] are identical to a certain discretization of the system

of ODEs (1–3). The advantage of stating the system as continuous

ODEs is that subsequently any numerical scheme can be used to solve

them, in particular high accuracy ODE solver with adaptive step size

control. See also [28].
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Vint

dCint

dt
¼ þqpiCpla � qipCint � kb

Bmax;PK � Cint

KM;PK þ Cint

� ARS

� �

ð2Þ
dARS

dt
¼ kb

Bmax;PK � Cint

KM;PK þ Cint

� ARS

� �
� kelARS ð3Þ

In the above model of Lammerts van Bueren et al., the

interaction of zalutumumab with its target (represented by the

Michaelis Menten term) accounts for the non-linear feedback of

the receptor system on the mAb concentration in the interstitial

space, known as receptor mediated endocytosis. With regard to

drug effect, the above model does not allow us, however, to

analyze the inhibitory effect of zalutumumab on the targeted

receptors. Moreover, the Michaelis Menten interaction term is a

hybrid parameter in the sense that it combines drug related

properties—like binding and dissociation rate constants as well

as internalisation rate constants—with receptor system param-

eters—like receptor synthesis, degradation and internalization

[28]. As a consequence, the parameters Bmax PK and KM,PK are

specific to zalutumuab. An analysis of the impact of changes in

the drug-receptor interaction is not feasible with this model, nor

is the study of the impact of different cell types, like normal and

tumor cells, on the PK and PD of the therapeutic antibody. Both

tasks, however, are feasible at the single cell level using kinetic

models of the targeted receptor system.

Kinetic model of in vitro ligand-receptor interaction

To describe the cell-level kinetics we use a canonical

model of ligand-receptor activation and trafficking [19, 29,

20] which is parameterized using rate constants that have

been experimentally determined and validated in human

fibroblast cells [29, 20] (Fig. 1b). The molecular species

R, Ri, L and RL denote the numbers of free receptors, free

internalized receptors, free extracellular ligand and ligand–

receptor complexes per cell, respectively. In the model, the

ligand L reversibly binds to the free receptors with asso-

ciation rate constant konL, and dissociate with rate constant

koffL. The free membrane receptors R are internalized with

rate constant kdegR and recycled with rate constant krecyRi or

degraded with rate constant kdegRi. The ligand–receptor

complex is internalized with rate constant kdegRL. The rate

of change of the different molecular species is given by:
dR

dt
¼ ksynR � konLR � Lþ koffL � RL� kdegR � Rþ krecyRi � Ri

ð4Þ

dRi

dt
¼ kdegR � R� krecyRi � Ri � kdegRi � Ri ð5Þ

dRL

dt
¼ konLR � L� koffLRL� kdegRLRL: ð6Þ

All molecular species are in number of molecules per cell,

except L which is in molar concentration. An EGF

concentration of L ¼ 2:36 � 10�3 nM was assumed [30].

a bFig. 1 Schematic illustration of

the pharmacokinetic model and

the kinetic cell-level model.

a Semi-mechanistic

pharmacokinetic compartment

model describing the

pharmacokinetics of the the

mAb zalutumumab in monkeys

developed by Lammerts van

Bueren et al. [6]. b Canonical

model of ligand-receptor

activation and trafficking

[19, 29, 20]

Table 1 Pharmacokinetic parameters determined in vivo by Lamm-

erts van Bueren et al. [16]

Name Definition Value Unit

Vpla Plasma volume 70 ml/kg

Vint Interstitial volume 35 ml/kg

kpi Rate constant of plasma-interstitial

transport

0.043 1/h

kip Rate constant of interstitial-plasma

transport

0.043 1/h

kb Constant thatensures quasi-steady

state conditions

0.069 1/h

Bmax,PK Whole-body capacity 2 mg/h/kg

KM,PK Half-maximal binding capacity in

vivo
0:5 � 10�3 mg/ml

kel Elimination of EGFR by

internalization and degradation

0.0055 1/h

qpi Plasma-interstitial transport Vpla � kpi ml/h

qip Interstitial-plasma transport Vint � kip ml/h

CLlin Target-independent drug clearance Vpla � kel ml/h/kg

Units were converted from mg to nmol using the scaling factor

SFmg!lmol ¼ 106=MWmAbs with MW_{mAbs = 148000 g/mol, i.e.,

1mg = SFmg!lmol� nmol
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The model of ligand-receptor interaction can easily be

extended to account for the drug-receptor interaction by

including reactions for drug-receptor association and dis-

sociation (with rate constants konC and koffC) as well as

internalization and subsequent degradation of the drug-

receptor complex (with effective rate constant kdegRC), see

Fig. 2a. The extended cell-level model including the ther-

apeutic antibody Cex [in (nM)] in the extra-cellular space

with volume Vex, and the drug-receptor complex RC [in

(#molecules)] is given by:

Vex

dCex

dt
¼ koffC � SFunit � RC� konC � SFunit � R � Cex ð7Þ

dR

dt
¼ ksynR � konLR � L� konCR � Cex þ koffLRLþ koffCRC

� kdegR � Rþ krecyRi � Ri ð8Þ

dRi

dt
¼ kdegR � R� krecyRi � Ri � kdegRi � Ri ð9Þ

dRL

dt
¼ konL � L � R� koffLRL� kdegRLRL ð10Þ

dRC

dt
¼ konC � Cex � R� koffCRD� kdegRC � RC ð11Þ

where the SFunit = 109/Navog denotes a scaling factor

from [#molecules] to [nmol] with Navo ¼ 6:02 � 1023 1/

mol denoting Avogardo’s constant. We included those

biological processes which are expected to have an

impact on the PK of the drug and provide a possibility

to link detailed systems biology model of downstream

signalling pathway.

To study the inhibitory potential of a therapeutic

antibody on a signalling pathway, realistic time-depen-

dent concentration time profiles are essential. As dis-

cussed, for many therapeutic antibodies, the targeted

system also has an influence on the time-course of the

antibody via receptor mediated drug uptake and degra-

dation. Hence, not only has the drug an effect on the

receptor system, but also does the receptor system

impact on the pharmacokinetics of the drug. As a con-

sequence, we herein propose a novel approach based on

integrating the single-cell level into compartment models

of antibody PK.

Linking whole-body and single-cell level

On the whole-body level, the interaction of zalutumumab

with its target is represented by a Michaelis Menten term

that describes the apparent drug-receptor interactions. At

the cellular level, this apparent interaction comprises

several kinetic processes, including association and dis-

sociation of the drug-receptor complex, internalization and

subsequent degradation of the internalized drug-receptor

complex. The assumption underlying our approach is that

the apparent drug-receptor interaction on the whole-body

level collectively represents the drug-receptor interaction

of all relevant cells at the cellular level, i.e., all target–

expressing cells that are exposed to the drug. The idea is

then to replace the apparent drug-receptor interaction in

the compartment model (1–3) by the detailed cell-level

model (7–11), scaled from the single-cell to the whole-

body level with the number of relevant cells. As a result

of this integration process, we obtained a cell-level PK/

PD model that allowed us to study the pharmacokinetics

on the whole-body level and at the same time the

inhibitory effect on the cellular level. For the integration,

we determined (i) the apparent drug-receptor interaction of

a single cell; and (ii) number of all relevant cells Ncell as

the scaling factor that links the apparent drug-receptor

interaction of a single-cell to the apparent drug-receptor

interaction of the whole-body level.

The apparent drug-receptor interactions of a single

cell was determined as the reduced description of the

cellular model (7–11) using the quasi-steady state

assumption on the receptor species R, Ri, RL and RC

(see, e.g, [28] for illustrative examples). This resulted in

the reduced model for the extra-cellular drug concen-

tration Cex, the membrane-bound amount of drug ARS

and the total drug concentration Ctot = Cex ? ARS/Vex,

where Vex denotes the extra-cellular volume associated

with a single cell:

Vex

dCtot

dt
¼ �kdegRC �

Bmax;cell � Cex

KM;cell þ Cex|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ARS

ð12Þ

Cex ¼
1

2
CD þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCDÞ2 þ 4KM;cellCtot

q� �
ð13Þ

with CD = Ctot - (Bmax,cell/Vex) - KM,cell. The parameters

Bmax,cell and KM,cell denote the maximal binding capacity of

a single cell and the concentration of drug at which the

binding capacity is half-maximally saturated. The model

reduction process also provided us with the relationship

between the effective parameters Bmax,cell, KM,cell and the

parameters of the original cellular model (7–11):

Bmax;cell ¼ SFunit �
ksynR

kdegRC

ð14Þ

KM;cell ¼
kdegRC þ koffC

kdegRC � konC|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
drug specific

� kdegRikdegR

kdegRi þ krecyRi

þ L � konL � kdegRL

koffL þ kdegRL

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

drug independent

: ð15Þ

Note that the maximal binding capacity Bmax cell is only a

function of the receptor system and independent of any drug
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properties, while the Michaelis-Menten constant KM,cell

depends non-linearly on both, receptor parameters as well

as drug parameters. Due to the above relationship (14–15),

we are able to explicitly compute the parameters Bmax cell and

KM,cell based on the in vitro determined parameters

ksynR, kdegR, kdegRC, krecyRi, konL, koffL, kdegRL of the single-

cell model, the in vivo determined EGF concentration L, and

the drug-specific parameters konC, koffC, kdegRC.

We then determined the number of relevant cells N as

the factor that scales the single-cell binding capacity

Bmax,cell to the whole-body binding capacity Bmax,PK:

Bmax;PK ¼ Ncell � Bmax;cell: ð16Þ

Inserting the relationship (14) of Bmax,cell, we obtained

Ncell ¼
kdegRC � Bmax;PK

ksynR � SFunit

: ð17Þ

Note that all parameter values are known, so we may

explicitly determine Ncell from Eq. 17. In addition, we

defined the in vitro-in vivo scaling factor SFiviv between

the concentrations of half-maximal binding capacity by

KM;PK ¼ SFiviv � KM;cell ð18Þ

The scaling factor SFiviv accounts for potential differences

between conditions in vitro and in vivo.

Next, we present our approach based on a single cell

type as a reference cell. We remark that the underlying

compartment model including the linear clearance part was

taken from the model by Lammerts van Bueren et al. as

stated in Eqs. 1–3. In the second part of this article we then

extend the cell-level PK/PD model to include multiple

reference cell type (tumor and normal cells). Along the

same lines, entire distributions of cell types could be

integrated e.g., to account for spatial inhomogeneities as

they are expected in solid tumors.

Cell-level pharmacokinetic/pharmacodynamic model

The presented approach allowed a systematic integration

of the single-cell level into the compartment model.

Based on the number of relevant cells Ncell, we replaced

the apparent drug-receptor interaction term in Eqs. 2, 3 by

the the drug-ligand-receptor model. The terms accounting

for the drug-receptor interaction were scaled to the whole-

body level by Ncell. The resulting single-cell PK/PD

model is given by:

Vpla

dCpla

dt
¼ �qpiCpla þ qipCint � CLlin � Cpla ð19Þ

Vint

dCint

dt
¼þqpiCpla� qipCint

þNcell � koffC �SFunit �RC� konC �SFunit �R �Cintð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
whole�body single�cell level interaction

ð20Þ
dR

dt
¼ ksynR � konLR � L� konCR � Cint þ koffLRL

þ koffCRC � kdegR � Rþ krecyRi � Ri

ð21Þ

dRi

dt
¼ kdegR � R� krecyRi � Ri � kdegRi � Ri ð22Þ

dRL

dt
¼ konL � L � R� koffLRL� kdegRLRL ð23Þ

dRC

dt
¼ konC � Cint � R� koffCRC � kdegRC � RC ð24Þ

that describe the rate of change of the therapeutic antibody

in plasma Cpla and in the interstitial space Cint, the free

receptor R, the internalized receptor Ri, the drug-receptor

complex RC, the EGF ligand in the interstitial space L and the

ligand-receptor complex RL. Rather than just re-estimating

parameters of the single-cell PK/PD model, the above

approach established a mechanistic link between the kinetic

model of the receptor system at the single-cell level and the

apparent term in the whole-body compartment model. As part

of our approach, we provided a systematic way of determining

an apparent drug-receptor model from a detailed cell-level

description. This has been further elaborated in [28], where we

have also shown that the reduced model (12–13) is a more

appropriate description of the apparent drug-receptor

interaction in the compartment model (1–3), since it

eliminates the use of the artificial rate constant kb.

Measures of receptor saturation, residual activity

and inhibition

Receptor saturation by the drug, defined as

receptor saturation ¼ RC

Rþ RLþ RC
; ð25Þ

is often taken as a measure of the inhibitory potential of a

drug. We compared receptor saturation with the residual

receptor activation

residual receptor activity ¼ RL

RL�
; ð26Þ

defined relative to the pre-treatment level RL* of activated

receptors.

We analyzed the impact of mAb treatment of target cells

with respect to three quantitative measures. The measures
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of transient response are illustrated in Fig. 2c and are

defined as follows:

– The integral of inhibition: Cumulative EGF receptors

that are not activated as a consequence of drug treat-

ment. More formally, the integral of inhibition is defined

as area under the curve of the active receptors with

respect to their steady state pre-treatment level RL*, i.e.,

E ¼
Z1

0

ðRL� � RLðtÞÞdt: ð27Þ

– The peak inhibition: Maximal reduction in activated

EGFR as a fraction of pre-treatment level RL*:

peak ¼ RL� �minfRLg
RL�

: ð28Þ

– The duration of inhibition: Time needed to recover to

75% of the pre-drug level of activated receptors.

The chosen measures of inhibition resemble important

characteristics of drug effect. For small molecule drugs, the

integral of inhibition (exposure) is often related to the drug

effect, while the peak inhibition or the duration of inhibi-

tion (measuring some threshold characteristics) are often

related to the side effects.

For different cell types, e.g., normal and tumor cells, we

defined the antibody specificity S as the ratio of the

inhibitory effect on tumor to normal cells. For the three

measures of transient response, this amounted to

SE ¼
Etumor

Enormal

; Sp ¼
peaktumor

peaknormal

; Sd ¼
durtumor

durnormal

; ð29Þ

where ’dur’ denotes duration.

Cell-level pharmacokinetic/pharmacodynamic model

with normal and tumor cells

To illustrate our approach and its potential application to

different cell types, we integrate tumor cells into the cell-

level PK/PD model. For this purpose, we consider only

tumor cells that are exposed to the same drug concentration

time profile as normal cells. This assumption is expected to

hold for tumor cells close to the vasculature, but it is most

likely inadequate for cells in solid tumors (in which case

model the should be extended to account for a tumor dis-

tribution model). To compare the response of normal and

tumor cells to anti-EGFR antibodies, we extended our

model by integrating a kinetic cellular model representing

tumor cells with elevated EGFR levels (Fig. 2d). The rate

of change of all molecular species is given as follows,

L D

+
konC

koffC

ksynR

kdegR

+
konL

koffL

initializes 
downstream 
signalling

RL R RC

krecyRi

kdegRL

kdegRi

changes in 
gene 

transcription

Ri

receptor activation model

kdegRC

C
pla

u
i
(t)

C
ex

CL
lin

q
ip

q
pi

C
int

V
pla

V
int

a b

c d

C
pla

u
i
(t)

C
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q
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q
pi

C
int

V
pla

V
int

time

duration of inhibition

peak inhibition

ac
tiv

e 
re

ce
pt

or
s/

ce
ll

integral of inhibition

Fig. 2 Schematic illustration of

the cell-level PK/PD model for

analyzing the inhibitory effect

on receptor activation of anti-

EGFR antibodies. a Cell-level

receptor model of receptor

activation and inhibition. The

cellular model describes the

transient inhibitory effect of a

therapeutic antibody by

competitively binding the

targeted receptor and thereby

decreasing the active ligand-

receptor complexes. b Cell-

level PK/PD model used to

study the trajectory of the drug

concentration and the impact of

biophysical properties of anti-

EGFR antibodies. c Three

different transient measures of

the reduction in the number of

active receptors: the integral,

the peak, and the duration of

inhibition. d Extended cell-level

PK/PD model including tumor

cells with elevated EGFR levels

due to alteration of receptor

dynamics used to compare the

inhibitory effect of therapeutic

antibodies on tumor cells and

normal cells to optimize tumor

specificity
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where the subscripts N and T refer to normal and tumor

cells:

Vpla

dCpla

dt
¼ �qpiCpla þ qipCint � CLlin � Cpla ð30Þ

Vint

dCint

dt
¼þqpiCpla�qipCint

þNN � koffC �SFunit �RCN� konC �SFunit �RN �Cintð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
normal cells

ð31Þ

þNT � koffC � SFunit � RCT � konC � SFunit � RT � Cintð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
tumor cells

ð32Þ
dRN

dt
¼ksynR;N � konLRNL� konCRNCint þ koffLRLN

þ koffCRCN � kdegR;NRN þ krecyRiRiN ð33Þ
dRi;N

dt
¼ kdegR;N � RN � krecyRi � Ri;N � kdegRi � Ri;N ð34Þ

dRLN

dt
¼ konLL � RN � koffLRLN � kdegRL;NRLN ð35Þ

dRCN

dt
¼ konCCint � RN � koffCRCN � kdegRC � RCN; ð36Þ

dRT

dt
¼ksynR;T � konLRTL� konCRTCint þ koffLRLT

þ koffCRCT � kdegR;TRT þ krecyRiRi;T ð37Þ
dRi;T

dt
¼ kdegR;T � RT � krecyRi � Ri;T � kdegRi � Ri;T ð38Þ

dRLT

dt
¼ konLL � RT � koffLRLT � kdegRL;TRLT ð39Þ

dRCT

dt
¼ konCCint � RT � koffCRCT � kdegRC � RCT: ð40Þ

The parameters for tumor cells are identical to those of

normal cells, except for those specified below. Elevated

EGFR levels may be caused by a variety of alterations at the

target cell level. In the sequel, we analyzed the dynamics

response of two tumor cell types that have comparable ele-

vated EGFR levels prior to drug treatment: (i) cells with

increased receptor synthesis rate (ksynR,N vs. ksynR,T); and (ii)

cells with decreased receptor internalization (kdegR,N, kde-

gRL,N vs. kdegR,T, kdegRL,T). Both tumor cell types have been

observed experimentally [31– 34]. We set the number of

tumor cells to 1% of the normal cells so that it had little

impact on the pharmacokinetics (comparable to the situation

in Bleeker et al. [25] in mice). The tumor cell model repre-

sents those tumor cells exposed to drug concentrations

equivalent to the exposure of cells with normal EGFR levels.

Methods

For the single-cell PK/PD model with normal cells only,

the system is assumed to be in steady state prior to any drug

administration, resulting in a number of free receptors R*,

active receptors RL*, and zero drug–receptor complexes

RC* = 0. Similarly, for the model with normal and tumor

cells, the steady state levels are defined by RN
* , RLN

* , and

RCN
* = 0, RT

*, RLT
*, and RCT

* = 0.

The response to a bolus dose C0 is obtained by numer-

ical integration of the corresponding system of ODEs with

the following initial conditions

RNð0Þ ¼ R�N RTð0Þ ¼ R�T Cpla ¼ C0

RLNð0Þ ¼ RL�N RLTð0Þ ¼ RL�T Cint ¼ 0

RCNð0Þ ¼ 0 RCTð0Þ ¼ 0:

For numerical simulations, we used the parameter values

given in Table 2. The model was build and simulated using

MATLAB (R2011b).

Results

Predicting the inhibitory effect of the anti-EGFR

therapeutic antibody zalutumumab in cynomolgus

monkeys

We determined a single-cell PK/PD model for the anti-

EGFR therapeutic antibody zalutumumab in cynomolgus

monkeys. The model based on in vivo data for zal-

utumumab in cynomolgus monkeys [6], in vitro data of

human fibroblast cells [29, 20] and determined drug-

receptor affinities [35]. Importantly, our approach does not

involve any fitting of parameters; all parameter values were

either inherited from the original compartment model,

determined in vitro, or explicitly calculated.

Evaluation against in vivo data

To evaluate the single cell PK/PD model, we compared our

model predictions with the experimental data of zal-

utumumab in cynomolgus monkeys. Based on the descri-

bed integration process, we determined the number of

relevant cells as Ncell ¼ 5:2 � 109 and the in vitro-in vivo

scaling factor as SFiviv = 2.1. The small scaling factor

SFiviv was considered as supporting evidence for the cho-

sen single-cell model. Furthermore, the predicted time-

courses of the drug concentrations showed very good

agreement for the high, medium and low dose of 40 mg/kg,

20 mg/kg and 2 mg/kg dose (Fig. 3a).
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At the same time, the cell-level pharmacokinetic model

was used to predict the dynamics of the receptor system

upon drug administration (Fig. 3b). In agreement with

experimental findings reported in [6] (Table 3), the model

predicted that a saturation in monkey tissue which

expresses normal receptor levels was established at doses

between 2 and 20 mg/kg (Fig. 3b, inset). We considered

the agreement between our model and the data available in

[6] as validation to proceed confidently in our study. The

available data considers 2 and 20 mg/kg doses, and

therefore in the sequel we will restrict our analysis to these

doses only.

Predicting residual EGFR activity per cell

The cell-level PK/PD model then was used to predict the

number of activated receptors over the duration of the

treatment, which is difficult to examine in vivo. Our model

predicted that the low dose (2 mg/kg) of antibody reduces

the number of active receptors by about 35%. The steep

initial decrease in receptor activation is followed by a

recovery period secondary to a slow reduction of drug

concentration (Fig. 3b). On the other hand, the higher dose

(20 mg/kg) almost completely inhibited receptor activation

for a period of about 20 days. The start of the recovery

period coincided with the transition from saturated to linear

pharmacokinetics between days 20 and 25. The model

therefore suggests that changes in pharmacokinetics mays

act as a biomarker for changes in the inhibitory response.

Comparing receptor saturation (25) with residual

receptor activity (26), we found that both characteristics

only corresponded initially, while at later points in time the

receptor saturation underestimated the inhibitory effect of

the antibody (e.g. compare with the 20 mg/kg dose after 50

days). This highlights the importance of adopting an

integrated kinetic model to translate the binding of the drug

into its actual inhibitory effect on receptor activation.

Impact of drug characteristics on receptor inhibition

One advantage of the cell-level PK/PD model is its ability

to predict the impact of drug properties such as the dose,

drug-receptor affinity, and drug induced receptor internal-

ization on the inhibitory response under in vivo conditions.

We assumed that the target independent PK distribution

parameters Vpla, Vint, qpi and qip do not change when

changing properties of the F(ab) region. Since all the

analyzed antibodies are either of IgG1 or IgG2 isotype,

their target-independent clearance was also assumed to be

identical [36].

Affinity and dose

We studied the inhibitory effect for a range of affinities,

including those of anti-EGFR mAbs on the market or in

clinical development: zalutumumab, panitumumab, cetux-

imab, IMC-11F8, and nimotuzumab (see Table 4). All

these antibodies act antagonistically [37]. Different affini-

ties KD were realized by changing the dissociation rate

constant koffC, while the association rate constant konC was

assumed to be diffusion-limited and therefore left

unchanged. Our analysis focused on the F(ab)-mediated

direct inhibitory effect, i.e., on the reduction in the number

of activated receptors at the cell membrane.

The percentage of active receptors over time is shown in

Fig. 4a. Despite 20-fold differences in target affinities (see

Table 4), the transient inhibition pattern were surprisingly

similar. As can be seen in Fig. 4b–d, this phenomenon is a

consequence of an effect plateau in the inhibitory respon-

ses. For high affinity drugs located in the plateau range, an

increased affinity does not translate into a noticeable

Table 2 Parameter values for the EGF receptor system

Name Definition Value Unit References

konL Ligand–receptor binding 7:2 � 10�2 1/(nM�min) [20]

koffL Ligand–receptor unbinding 0.34 1/min [20]

kdegR Free receptor internalization 0.03 1/min [20]

kdegRL Ligand–receptor complex internalization 0.03 1/min [20]

kR,N Receptor expression rate in normal cells 130 Receptors/min per cell [20]

krecyRi Free receptor recycling 5:8 � 10�2 1/min [20]

kdegRi Free receptor degradation 2:2 � 10�3 1/min [20]

konC Drug–receptor binding konL 1/(nM�min)

kdegRC Drug–receptor complex internalization 0.005 1/h [6]

MWmAbs Molecular weight 148000 Dalton (g/mol)

For monkeys, krecyRi and kdegR were multiplied by a factor of 4 and 1/4, respectively to account for species differences
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stronger inhibition. Mathematical analysis of the model

(Appendix) for the integral effect suggests that this is a

structural feature of the system that does not depend on

specific parameter values. Shankaran et al. [19] identified

the ‘‘consumption parameter’’, i.e, the ratio of the disso-

ciation and downregulation rate constants (kdegRC/koffC), as

a key parameter to characterize cell surface receptor

systems. It quantifies the likelihood that a drug, upon

binding the receptor, is internalized rather than dissociated.

We found that this is also an important parameter for

antagonistic mAbs, since those with a high consumption

parameter are located on the effect plateau such that their

F(ab)-mediated direct inhibitory effect could not be further

increased. When decreasing the affinity of the mAb, the

clearance effect of binding and internalization became less

important than the target independent clearance. As a

consequence we found that the drug effect, which is related

to receptor binding, decreases for lower affinity.

Downregulation

Receptor downregulation denotes the drug-induced process

of the reducing the number of free receptor at the membrane

that is available for binding to the natural ligand. Enforcing

receptor downregulation by therapeutic antibodies is argued

to be an important part of the drug effect [17]. In Fig. 4b–d,

we predicted the inhibitory effect of antibodies with a 5-fold

and 10-fold increased internalization rate constant (relative

to the rate constant of zalutumumab) for different affinities

and low and high doses. We found that for high-affinity

antibodies, receptor downregulation only contributes to a

negligible extent to the F(ab)-mediated direct inhibitory

effect. For medium affinity antibodies, however, an

increased downregulation rate constant could increase the

direct inhibitory effect to some extent.

Tumor cell specificity

Upregulation of EGFR expression and aberrant activation

of EGFR has been shown in many human epithelial
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Fig. 3 Pharmacokinetics of zalutumumab in cynomolgus monkeys

and prediction of the inhibitory effect on a cellular level using

themodel depicted in Fig. 2b. a Predicted plasma concentration of

zalutumumab by the cell-level PK/PD model (solid line) and the

compartment PK model of Lammerts van Bueren et al. [6] (dashed
line) for a high, medium and low dose of 40, 20 and 2 mg/kg. The

experimental data for zalutumumab in cynomolgus monkeys are

marked with circles (40 mg/kg), squares (20 mg/kg) and diamonds (2

mg/kg). Experimental data courtesy of Wim Bleeker, Genmab,

Utrecht, The Netherlands. b Predictions of the residual EGFR

activation per cell based on the cell-level pharmacokinetic model

(Fig. 2b) for the high dose (dashed dotted line), the medium dose

(solid line) and the low dose (dashed line). The inset depicts the

corresponding receptor saturation according to Eq. 25

Table 3 Pharmacodynamics of zalutumumab in cynomolgus mon-

keys for different doses as reported in Lammerts van Bueren et al. [6]

and predicted by the single-cell PK/PD model (see Fig. 3)

Dose (mg) In vivo experiment In silico prediction

2 Not fully saturated Max. 60 % saturated

20 Fully saturated 100% saturated

40 Fully saturated 100% saturated

Table 4 Affinities and isotypes of the different therapeutic antibod-

ies against the EGFR. Values taken from Peipp et al. [35]

Antibody Affinity/avidity (M) Isotype

Panitumumab 5 � 10�11 IgG2

Cetuximab 4 � 10�10 IgG1

IMC-11F8 3 � 10�10 IgG1

Nimotuzumab 1 � 10�9 IgG1

Zalutumumab 7 � 10�9 IgG1

The KD (affinity) values were subsequently scaled with SFiviv, i.e.,

KDðinvivoÞ ¼ SFiviv � KDðinvitroÞ to account for differences between

conditions in vitro and in vivo. While potentially the scaling factors

for KM (see Eq. 18) and KD could be different, we used the same

scaling factor SFiviv due to lack of further information and based on

the principle of parsimony. See also footnote to Table 1 of [35],

where affinity values are reported
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cancers, including those of the colon, lung, kidney, head

and neck, breast, prostate, brain and ovary [38–43]. The

extent of overexpression also correlates with a poorer

clinical outcome [44, 45].

The cellular model for the tumor cells with increased

receptor synthesis was chosen to resemble the character-

istics of A431 cells, a human squamous carcinoma cell line

with high EGFR levels [31– 33]. The overexpression in

A431 cell is due to amplification of the EGFR gene [46]

and correlates with increased EGF receptor mRNA levels

[32]. A431 cells express about 10 times more EGFR at the

cell surface than normal cells [31]. The cellular model for

the tumor cells with decreased receptor internalization was

chosen to resemble the characteristics reported in [34].

Reddy et al. [34] report about an alteration of EFGR where

a truncated cytoplasmic domain exhibits a decreased

ligand-induced internalization rate constant. Figure 5a

illustrates the predicted inhibitory effect in tumor and

normal cells in cynomolgus monkeys.

Figure 5b compares the predicted transient inhibition for

both alterations, increased synthesis rate and reduced inter-

nalization. For both alterations, the inhibitory ef fect is strong

er for tumor cells than for cells with nor mal EGFR levels.

Although both cell alterations resulted in similar steady-state

activation levels, their responses to mAbs are remarkably

different with cells with decreased receptor internalization

showing a higher integral and duration of inhibition com-

pared to cells with an increased synthesis of the receptor.

Discussion

The objective of this article was to develop a systematic

approach to integrate the cellular-level into compartment

models of drug PK, and to apply the approach to analyze

the F(ab)-mediated inhibitory effect of therapeutic anti-

bodies in cancer therapy.

Several mAbs on the market have a high receptor

affinity in the sub-nM range, but the traditional design

criterion that ‘‘the best binder makes the best drug’’ has

been challenged [47–49]. Using our combined model we

evaluated the effect of different affinities of antibodies

targeting the EGFR. In cynomolgus monkeys, our cell-

level PK/PD model predicts almost identical F(ab)-medi-

ated direct inhibitory effects for a range of antigen-binding

affinities. Since current anti-EGFR antibodies are located

on the observed effect plateau, this relativizes the affinity

amongst the properties that could be further tuned to

optimize antibody efficacy.

A high affinity is thought to allow panitumumab to

compete more effectively with EGF in binding to EGFR

and to saturate EGFR in vivo at lower doses relative to
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Fig. 4 F(ab)-mediated

inhibitory effect of different

antibodies using the cell-level

PK/PD model shown in Fig. 2b.

a Predicted transient inhibitory

effects of five anti-EGFR

antibodies on the market or in

clinical development with

different affinities (see Table 3)

for a 20 mg/kg dose (solid line)

and a 2 mg/kg dose (dashed
line). The different mAbs show

a similar transient inhibitory

effect despite their affinities

vary 20-fold. b–d Inhibitory

effect resulting from different

affinities (KD = 1/affinity =

koffC/konC) and

downregulation rates (kdegRC).

The F(ab)-mediated effect is

quantified by three different

measures: b the integral of

inhibition, c the peak inhibition,

and d the duration of inhibition,

for the 20 mg/kg dose (solid
line) and 2 mg/kg dose (dashed
line). The shaded area indicates

the affinity range of the five

considered antibodies
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mAbs with lower affinity [16]. This is not supported by our

analysis, and instead our findings predict that the F(ab)-

mediated effect of panitumumab and cetuximab are com-

parable. This prediction of the model is in agreement with

experimental results by Messersmith and Hidalgo [50]. We

further investigated if this result is due to the specific

values of the parameters we used to simulate the model by

calculating an analytically solution of the integral of the

effect. The analytical solution shows that the existence of

an effect plateau is a generic feature of this drug-target

system and does not depend on specific parameter values.

Therefore this result suggest that such an effect plateau

might exist for other receptor systems with receptor

trafficking.

Crombet et al. [48] argued that the low degree of

adverse effects observed for Nimotuzumab in the clinics is

due to its intermediate affinity compared to other anti-

EGFR antibodies. Their conclusions are based on a math-

ematical model that only takes into account receptor

binding, but neglects the important process of receptor

internalization and target specific degradation. Based on

our single-cell PK/PD model for cynomolgus monkeys, we

find that an intermediate affinity does not result in opti-

mized tumor effect or specificity. Recently, Talavera et al.

[51] suggested an alternative explanation for the low

degree of adverse effects observed for Nimotuzumab.

Based on the existence of an effect plateau in the F(ab)-

mediated direct inhibitory effect, our findings suggest that

the clinically observed differences among mAbs are likely to

arise from Fc-mediated indirect effects, such as the action of

immune effector functions (such as antibody dependent cell

mediated cytotoxicity or complement dependent cytotoxic-

ity), rather than the direct antagonistic effect. This is con-

sistent with a study of Bleeker et al. showing that effects in

vivo of zalutumumab and cetuximab differed only by their

ability to trigger such indirect effect and not by their direct

inhibitory effect [25]. Possible extensions of the model could

address the likelihood of triggering such Fc-mediated indi-

rect effects. Since the model predicts the time course of the

different receptor species, it may serve as a starting point to

estimate the proportion of bound antibody that are presented

to the extracellular space and trigger Fc-mediated immune

effects.

Alterations of a number of kinetic processes can result in

elevated EGFR levels. The combined systems biology/

pharmacokinetic model allows us to study two different

tumor cell alterations with elevated EGFR levels resulting

from (i) an increased receptor synthesis rate; and (ii) a

decreased receptor internalization rate. Both types have been

observed experimentally [46, 32, 34]. We found that receptor

inhibition over time strongly depends on the underlying

molecular alteration that caused the elevated EGFR level.

Our in silico studies show that the inhibitory effects at

normal and tumor cells are correlated, and therefore sup-

port the hypothesis that the side effects may serve as a

marker for the desired effect at the tumor cells. This is in

line with experimental observations that the most common

side effect of anti-EGFR antibodies are cutaneous toxici-

ties, affecting 45–100% of patients [52]. Since this skin

rash follows from the inhibition of epidermal cells

expressing normal levels of the EGFR, using the rash as a

marker of drug activity and clinical outcome was proposed

[53] and our theoretical study supports this.

The compartment model (1–3) describes the distribution

of the drug to the target expressing cells. In this case we

described distribution as reversible linear process as pre-

viously done when relating plasma concentration to

potential pharmacodynamic effect [54]. However,
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Fig. 5 The mechanism underlying increased receptor levels influ-

ences tumor specificity of mAbs. a Predicted transient inhibition

based on the extended cell-level pharmacokinetic model shown in

Fig. 2d for normal cells, tumor cells with a 10-fold increased receptor

expression, and tumor cells with a 10-fold decreased internalization of

the free and bound receptor. Profiles are shown for the 20 mg/kg

(solid line) and 2 mg/kg (dashed line) dose. Both scenarios show

similar steady-state activation levels of the receptor, but their

response to drug treatment is substantially different. b Antibody

specificity as defined in Eq. 29. Cells with a decreased receptor

internalization have a much longer duration of inhibition and

therefore a higher integral of inhibition than tumor cells with an

increased receptor expression
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processes such as convective movement, lymphatic circu-

lation and filter effects can affect the distribution of anti-

bodies. In these cases, detailed models for antibody

distribution e.g. a two pore model (Rippe and Haraldsson,

1994, Physiological reviews) could be integrated into the

model. Further, predictions of EGFR inhibition in tumor

cells are limited to those malignant cells which are exposed

to similar concentrations than normal cells, such as avas-

cular metastases embedded in healthy tissue [55, 56]. In

solid tumors, due to heterogeneous drug distribution, only

malignant cells close to capillaries may be exposed to such

concentration. Taken together, more detailed models of

mAbs distribution, such as physiologically based pharma-

cokinetics models [57, 58], should be included in cases

where distribution of the drug to target cells can not be

described by reversible linear processes. The current model

also predicts only the decrease in receptor activation rather

than the actual biological response of the cell. While

Knauer et al. [29] reported a linear dependence between

the number of activated EGFR at steady-state and the

cellular responses of fibroblasts and epithelial cells, other

models describe a more complex relationship between

receptor activation and downstream signalling [59].

Established models to study antibody pharmacokinetics

include models of TMDD (e.g., Gibiansky et al. [8, 9]). Our

cell-level PK/PD model has three important differences

compared to TMDD models. First, the model includes the

competition of natural ligands with the antibodies for the

binding to the receptor. This allows us to study the change

of the number of receptor-ligand complexes due to the drug

treatment. Second, the model includes more details of the

cellular mechanisms. For example, the internal pool of

receptors and the recycling to the cell surface are part of the

detailed receptor trafficking model, but not of current

models of TMDD. We investigated if we could remove this

pool together with receptor recycling to make the model

more TMDD-like. However, we found this internal pool to

be important to describe the initial PK without refitting of

the experimentally derived parameters. Our findings sup-

port the hypothesis in [6] stating that ‘‘possibly, EGFR

surface expression can temporarily be replenished with

EGFR present in the cell’’. Third, and most notably, our

cell-level PK/PD model integrates in vitro determined

parameter values instead of fitting all parameters to the in

vivo data. This is useful to avoid over-paramerization of the

model, which has be reported to be a critical problem when

using the original TMDD model [8].

Combining modelling approaches from pharmacokinet-

ics and systems biology allows us to quantitatively analyse

the dynamic interaction between drugs and biological

systems [15]. One remaining question concerns the vali-

dation of multi-level models. We here used the approach to

validate the model prediction using pharmacokinetic data

while integrating an in vitro validated cell-level model.

Furthermore, we validated the full model using available

PK data together with limited PD data. Ideally however,

validation should be done using datasets that integrate

pharmacokinetic and cell-level data (e.g. receptor phos-

phorylation) from one source.

We envision that a cell-level PK/PD modeling approach

will prove valuable in the emerging field of systems phar-

macology. The use of more detailed systems biology models

describing downstream signaling processes relevant to

human diseases [13, 60, 61] may eventually allow to translate

plasma drug concentration into responses of tumor cells.
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Appendix

Theoretical analysis of the integral of inhibition

The inhibitory effect can be studied by looking at the

response of the model linearized around the steady state

activation level. In what follows we derive a formula for

the integral of inhibition in the linear system, which pro-

vides an estimate for that of the original system.

The steady state of model (20–40) is

x� ¼ ½C�int C�pla R�N R�i RL�N RC�N R�T R�i;T RL�T
RC�T�;

and we know that Cint
* = Cpla

* = RCN
* = RCT

* = 0. We

assume that the steady state is exponentially stable, which

for any realistic scenario is trivially satisfied. This

guarantees that the integral of the inhibition

E ¼
Z1

0

ðRL�N � RLNðtÞÞdt; ð41Þ

is a finite number. The deviations of the model variables

with respect to the steady state are
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�RN ¼ R�N � RN
�RT ¼ R�T � RT

�Cpla ¼ �Cpla

�Ri ¼ R�i � Ri
�Ri;T ¼ R�i;T � Ri;Y

�Cint ¼ �Cint

�RLN ¼ RL�N � RLN
�RLT ¼ RL�T � RLT

�RCN ¼ �RCN
�RCT ¼ �RCT

We define a state vector as

�x ¼ ½ �Cpla
�Cint

�RN
�Ri

�RLN
�RCN

�RT
�Ri;T

�RLT
�RCT�T ð42Þ

Linearizing the model around the steady state leads to

d�x

dt
¼ A�x: ð43Þ

The matrix A 2 R
10�10 is given in Eq. 53 and

corresponds to the Jacobian of the right hand side of

(30–40) evaluated at the steady state. Integration of (43)

from t = 0 up to t ¼ 1 gives

�xð1Þ � �xð0Þ ¼ A

Z1

0

�xðtÞdt: ð44Þ

For a bolus dose C at t = 0 the initial condition for (43) is

�xð0Þ ¼ ½�C 0 0 . . . 0�T : ð45Þ

The stability of the equilibrium implies that �xð1Þ ¼ 0,

which upon substitution in (44) yieldsZ1

0

�xðtÞdt ¼ �A�1�xð0Þ: ð46Þ

From (42) we notice that the integral of inhibition E is the

5th entry of the vector in (46). Hence

E ¼
Z1

0

�x5ðtÞdt ¼ �½A�1�xð0Þ�5: ð47Þ

Computing the inverse A�1 we get

E ¼ aRL�N
bþ c 1

konC

1
CP
þ 1

� �; ð48Þ

with the constants:

a ¼ VplaR�NqcpC
kdegR

konLL

koffL þ kdegRL

krecyRi þ kdegRi

� �
; ð49Þ

b ¼ ksynR;NSFunitðqcp þ CLlinÞðNNR�N þ NTR�TÞ ð50Þ

c ¼ kR;NCLlinqpc ð51Þ

The parameter Kd = 1/affinity and the ‘‘consumption

parameter’’ defined by in [19] are given by

KD ¼
koffC

konC

CP ¼ kdegRC

koffC

: ð52Þ

The effect E is a decreasing function of koffC and shows

little variations for the values of KD for the mAbs in

Table 4. All these mAbs are located in a plateau region of

the effect E. This linear analysis suggests that the effect

plateau is a structural feature of the system and does not

depend on the parameter values.

a11 ¼
�1

Vc
ðqcp þ CLlinCÞ ð54Þ

a22 ¼
�1

Vp
ðkonCNNSFunitR

�
N þ konCNTSFunitR

�
T þ qpcÞ ð55Þ
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30. Brzeziński J, Lewiński A (1998) Increased plasma concentration

of epidermal growth factor in female patients with non-toxic

nodular goitre. Eur J Endocrinol 138:388–93

31. Masui H, Castro L, Mendelsohn J (1993) Consumption of EGF by

A431 cells: evidence for receptor recycling. J Cell Biol 120:85–93

32. Lin C, Chen W, Kruiger W, Stolarsky L, Weber W, Evans R,

Verma I, Gill G, Rosenfeld M (1984) Expression cloning of

human EGF receptor complementary DNA: gene amplification

and three related messenger RNA products in A431 cells. Sci

Agric 224:843–8

33. Ullrich A, Ullrich A, Coussens L, Coussens L, Hayflick JS,

Hayflick JS, Dull TJ, Dull TJ, Gray A, Gray A, Tam AW, Tam

AW, Lee J, Lee J, Yarden Y, Yarden Y, Libermann TA, Liber-

mann TA, Schlessinger J, Schlessinger J et al (1984) Human

epidermal growth factor receptor cDNA sequence and aberrant

expression of the amplified gene in A431 epidermoid carcinoma

cells. Nature 309:418–425

34. Reddy CC, Wells A, Lauffenburger DA (1994) Proliferative
response of fibroblasts expressing internalization-deficient epi-

dermal growth factor (EGF) receptors is altered via differential

EGF depletion effect. Biotechnol Prog 10:377–84

35. Peipp M, Dechant M, Valerius T (2008) Effector mechanisms of

therapeutic antibodies against ErbB receptors. Curr Opin Immu-

nol 20:436–43

138 J Pharmacokinet Pharmacodyn (2012) 39:125–139

123



36. Morell A, Terry W, Waldmann T (1970) Metabolic properties of

IgG subclasses in man. J Clin Invest 49:673–680

37. Yang X, Jia X, Corvalan J, Wang P, Davis C (2001) Development

of ABX-EGF, a fully human anti-EGF receptor monoclonal

antibody, for cancer therapy. Crit Rev Oncol Hematol 38:17–23

38. Sargent ER, Gomella LG, Belldegrun A, Linehan WM, Kasid A

(1989) Epidermal growth factor receptor gene expression in

normal human kidney and renal cell carcinoma. J Urol 142:

1364–8

39. Ogiso Y, Oikawa T, Kondo N, Kuzumaki N, Sugihara T, Ohura T

(1988) Expression of proto-oncogenes in normal and tumor tis-

sues of human skin. J Invest Dermatol 90:841–4

40. Sakai K, Mori S, Kawamoto T, Taniguchi S, Kobori O, Morioka

Y, Kuroki T, Kano K (1986) Expression of epidermal growth

factor receptors on normal human gastric epithelia and gastric

carcinomas. J Natl Cancer Inst 77:1047–52

41. van der Laan BF, Freeman JL, Asa SL (1995) Expression of

growth factors and growth factor receptors in normal and

tumorous human thyroid tissues. Thyroid 5:67–73

42. Henzen-Logmans SC, van der Burg ME, Foekens JA, Berns PM,

Brussée R, Fieret JH, Klijn JG, Chadha S, Rodenburg CJ (1992)

Occurrence of epidermal growth factor receptors in benign and

malignant ovarian tumors and normal ovarian tissues: an immu-

nohistochemical study. J Cancer Res Clin Oncol 118:303–307

43. Terada T, Ohta T, Nakanuma Y (1994) Expression of trans-

forming growth factor-alpha and its receptor during human liver

development and maturation. Virchows Archiv Int J Pathol

424:669–675

44. Mendelsohn J (2002) Targeting the epidermal growth factor

receptor for cancer therapy. J Clin Oncol 20:1S–13S

45. Grandis JR, Melhem MF, Gooding WE, Day R, Holst VA, Wa-

gener MM, Drenning SD, Tweardy DJ (1998) Levels of TGF-

alpha and EGFR protein in head and neck squamous cell carci-

noma and patient survival. J Natl Cancer Inst 90:824–32

46. Merlino G, Xu Y, Ishii S, Clark A, Semba K, Toyoshima K,

Yamamoto T, Pastan I (1984) Amplification and enhanced

expression of the epidermal growth factor receptor gene in A431

human carcinoma cells. Science 224:417

47. Rao BM, Lauffenburger DA, Wittrup KD (2005) Integrating cell-

level kinetic modeling into the design of engineered protein

therapeutics. Nat Biotechnol 23:191–4

48. Crombet T, Osorio M, Cruz T, Roca C, del Castillo R, Mon R,

Iznaga-Escobar N, Figueredo R, Koropatnick J, Renginfo E,
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