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ABSTRACT

Mutations in mitochondrial DNA (mtDNA) are
implicated in a broad range of human diseases
and in aging. Compared to nuclear DNA, mtDNA is
more highly exposed to oxidative damage due to its
proximity to the respiratory chain and the lack of
protection afforded by chromatin-associated
proteins. While repair of oxidative damage to the
bases in mtDNA through the base excision repair
pathway has been well studied, the repair of
oxidatively induced strand breaks in mtDNA has
been less thoroughly examined. Polynucleotide
kinase/phosphatase (PNKP) processes strand-
break termini to render them chemically compatible
for the subsequent action of DNA polymerases and
ligases. Here, we demonstrate that functionally
active full-length PNKP is present in mitochondria
as well as nuclei. Downregulation of PNKP results
in an accumulation of strand breaks in mtDNA
of hydrogen peroxide-treated cells. Full restoration
of repair of the H2O2-induced strand breaks in
mitochondria requires both the kinase and phos-
phatase activities of PNKP. We also demonstrate
that PNKP contains a mitochondrial-targeting
signal close to the C-terminus of the protein.
We further show that PNKP associates with the
mitochondrial protein mitofilin. Interaction with
mitofilin may serve to translocate PNKP into
mitochondria.

INTRODUCTION

Single- and double-strand DNA breaks are induced
directly by external and internal genotoxic agents such
as ionizing radiation (IR), UV light and reactive oxygen
species (ROS), or indirectly as a result of aborted topo-
isomerase action or during base excision repair (BER).
Radiation and ROS-induced strand breaks frequently
bear strand-break termini that require processing before

ligation can occur, including 30-phosphate and
phosphoglycolate and 50-hydroxyl end groups (1–3).
Similarly, trapping of topoisomerase 1 by agents such as
camptothecin or the presence of abasic sites or nicks
adjacent to the cleavage site, followed by tyrosyl-DNA
phosphodiesterase 1 (TDP1)-mediated cleavage of the
covalent bond linking the DNA to the topoisomerase,
generates single-strand breaks with 30-phosphate and
50-hydroxyl termini (4,5). BER performed by bifunctional
DNA glycosylases, such as the Nei family members,
NEIL1, NEIL2 and NEIL3, remove damaged bases and
then cleave the DNA at the abasic sites through a lyase
activity that involves b,d-elimination to generate
30-phosphate termini (6–8). The damaged DNA termini
have to be restored to 30-hydroxyl and 50-phosphate func-
tionality prior to the completion of the repair process by
DNA polymerases and DNA ligases.

Polynucleotide kinase/phosphatase (PNKP) plays a
major role in the restoration of correct DNA termini fol-
lowing strand cleavage by IR, ROS or NEIL-dependent
BER (3,7,9,10). PNKP contains a forkhead-associated
domain, which is a protein–protein interaction domain
required for the association of PNKP with CK2-
phosphorylated XRCC1 and XRCC4 (11–14), and inde-
pendent DNA 30-phosphatase and 50-kinase domains
(15,16). It has been shown that the DNA 30-phosphatase
activity of PNKP takes precedence over its DNA 50-kinase
activity in vitro (17). Downregulation of PNKP sensitizes
cells to IR and hydrogen peroxide (18,19).

In addition to damage to nuclear DNA, mitochondrial
DNA (mtDNA) is also subject to DNA damage. MtDNA
is a 16.5 kbp circular molecule, encoding 37 genes
including 13 proteins, 22 tRNAs and 2 rRNAs.
Eukaryotic cells can have more than 100 mitochondria
and each mitochondrion may contain 10 mtDNAs. In
general, mtDNA constitutes about 1% of the total
cellular DNA. ROS produced in relatively large quantities
in mitochondria during respiration are the major source of
mtDNA lesions (20). Damage to mtDNA, if not repaired,
can develop into mutations, and mutations of the
mtDNA are associated with different diseases including
diabetes (21,22), cancer (23), neurodegenerative disorders

*To whom correspondence should be addressed. Tel: +1 780 432 8438; Fax: +1 780 432 8428; Email: michael.weinfeld@albertahealthservices.ca

3484–3495 Nucleic Acids Research, 2012, Vol. 40, No. 8 Published online 30 December 2011
doi:10.1093/nar/gkr1245

� The Author(s) 2011. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



(24) and aging (25). The rate of mutations in some regions
of mtDNA is 20- to 100-fold higher than the nuclear DNA
(26). This could be explained by the lack of protection of
mtDNA by chromosomal proteins and the proximity of
mtDNA to the inner membrane that contains the electron
transport chain, which is a constant source of ROS (27).

As in the nucleus, BER is the main DNA repair
pathway in mitochondria that deals with ROS-induced
DNA lesions (8,27,28). Several DNA glycosylases have
been identified in mitochondria including Nth and Nei
family members (27). Mitochondria also contain a
truncated form of APE-1 that can process abasic sites
and DNA ends produced by b-elimination by DNA
glycosylases/lyases such as NTH1 (29). In mitochondrial
BER, replacement of missing nucleotides at damaged sites
is performed by DNA polymerase g (Polg) instead of
DNA polymerase b found in the nucleus (30), and
ligation of DNA at single strand breaks is mediated by
DNA ligase III (31). Recent studies have highlighted the
importance of mtDNA ligase III for cell survival (31).
Topoisomerase 1 and TDP1 are also present and function-
al in mitochondria (32). The presence of ROS, an active
BER pathway and topoisomerase 1/TDP1 pathway point
strongly to a need for PNKP or similarly acting protein to
correct strand break termini in mitochondria.

Here, we demonstrate that functionally active full-length
PNKP is present in mitochondria. Downregulation of
PNKP results in a decrease of both mitochondrial and
nuclear PNKP and accumulation of DNA damage in
mtDNA, in addition to the previously documented
increase in the nuclear DNA damage (18). Furthermore,
we demonstrate that PNKP contains a C-terminal
mitochondrial-targeting signal (MTS) (33,34). This
C-terminal MTS is functional and is required for the lo-
calization of PNKP to mitochondria. Our results also
indicate that PNKP associates with the mitochondrial
protein mitofilin.

MATERIALS AND METHODS

Cell culture and transfection

A549 cells (human lung adenocarcinoma) and MCF7 cells
(breast carcinoma) were obtained from ATCC (Manassas,
VA, USA). PNKP-depleted cells were prepared by stable
transfection of A549 cells with a pSuper expression
vector containing an shRNA directed against PNKP as
previously described (18). Cells were grown in DMEM/
F12 nutrient mixture (1 : 1) and supplemented with 10%
FBS, 50 Uml�1 penicillin, 50 mgml�1 streptomycin, 2mM
L-glutamine, 0.1mM non-essential amino acids and 1mM
sodium pyruvate (Invitrogen, Burlington, ON, USA) in a
5% CO2 humidified incubator at 37�C.

Cells were plated at �80–90% confluency in normal
media without antibiotics and Lipofectamine 2000 was
used the next day for transient transfections, according
to the manufacturer’s instructions (Invitrogen).

Immunoprecipitations and western blots

Cells were harvested from >90% confluent dishes by
trypsinization, washed in cold PBS, pH 7.4. Cell pellets

were resuspended in IP lysis buffer (200mM NaCl,
2.5mM MgCl2, 20mM Tris–HCl pH 7.4 and 0.05%
NP40) or lysis buffer (150mM NaCl, 2mM EDTA,
50mM Tris–HCl, pH 7.4 and 1% NP40) plus 2mM
DTT, 1mM4-(2-aminoethyl)benzenesulfonyl fluoride
hydrochloride (Sigma, St Louis, MO, USA), 1�
complete protease inhibitor cocktail (Roche, Laval, QC,
USA), followed by incubation on ice for 30–60min. Next,
cells were sonicated three times briefly in their correspond-
ing buffer, centrifuged at 20 000g for 10min at 4�C and the
supernatants were snap-frozen and transferred to �80�C
freezer for later use for either immunoprecipitation or
western blots.
Cell lysates were precleared prior to immunopre-

cipitation by addition to Protein A-Sepharose beads
(Sigma) and rotation at 4�C for 1 h followed by a spin
to discard the beads. Then antibodies were added to the
precleared lysates and rotated at 4�C for 1–3 h. Next, fresh
beads were added to the lysate and rotation continued
overnight. Finally, beads (now associated with antibodies)
were harvested and washed three times with the lysis
buffer, boiled in sample loading buffer and protein
samples were run on a 10% PAGE gel. Samples were
treated exactly the same for bead controls, except that
no antibody was used. For immunoprecipitation of
HA-tagged PNKP (HAPNKP), anti-HA affinity matrix
(Roche) was used following the manufacturer’s recom-
mendations. Western blots were performed using an
ECL kit (Roche). Western blot images were scanned and
quantified using ImageQuant for Windows version 5.2.
The reading from the PNKP knock-down (KD) cell line
in each experiment was normalized to the reading from
A549 control cells. The P value was calculated using a
two-tailed student’s t test.
Antibodies used included polyclonal and monoclonal

antibodies against PNKP (35), monoclonal mitofilin
antibody (cat. # MSM02, Mitosciences, Eugene, OR),
PCNA (cat. # 9857) and actin (cat. # SC1616,
Santa Cruz Biotechnology, Santa Cruz, CA), HA
(cat. # 12013819001, Roche, Brampton, ON), COX IV
(ab16056-100) and VDAC1 (ab15895-100, Abcam, San
Francisco, CA).

Generation of constructs and site-directed
mutagenesis

RNAi-resistant PNKP was prepared by mutating PNKP
cDNA at the shRNA targeting sequence, using the follow-
ing primers:

Forward 50-CAACCGGTTTCGAGAAATGACCGA
TTCCTCTC ATATCCCCG-30

Reverse 50-CGGGGATATGAGAGGAATCGGTCAT
TTC TCGAAACCGGTTG-30.

The kinase negative PNKP was generated by
site-directed mutagenesis using RNAi-resistant PNKP
cDNA and the following primers:

Forward 50-GGGATTCCCTGGGGCCGGGGCCTC
CACCTTTCTCAAGAAGC-30
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Reverse 50-GGGATTCCCTGGGGCCGGGGCCTCC
ACCTTTCTCAAGAAGC-30

The phosphatase negative PNKP was generated by
site-directed mutagenesis using RNAi-resistant PNKP
cDNA and the following primers:

Forward 50-AAGGTGGCTGGCTTTAATCTGAAC
GGGACGCTCATCACC-30

Reverse 50-GGTGATGAGCGTCCCGTTCAGATTA
AAGCCAGCCACCTT-30

The RNAi-resistant PNKP bearing a C-terminal haem-
agglutinin epitope tag (PNKPHA) was generated using
RNAi-resistant PNKP cDNA and the following primers:

Forward 50-TGACTGAATTCGCACCCAGGATGG
GCGAGGTGGAGCCC-30

Reverse 50-TGACTGCGGCCGCTCAAGCGTAATC
TGGAACATCGTATGGGTACGGGAGCCTCTTGA
CCGTC-30.

The RNAi-resistant amino terminally-tagged HAPNKP
was generated using RNAi-resistant PNKP cDNA and
the following primers:

Forward 50-TGACTGAATTCGCACCCAGGATGTA
CCCATACGATGTTCCAGATTACG CTGGCGAGG
TGGAGCCCCCGG-30

Reverse 50-TGACT GCGGCCGCTCAGCCCTCGGA
GAA CTG GC-30.

The RNAi-resistant HAPNKP mutated at the
mitochondrial-targeting signal (HAPNKP-mts) was
generated by site-directed mutagenesis using cDNA from
RNAi-resistant HAPNKP and the following primers:

Forward 50-AACCCAGACGCCGCGAGCCGCGAC
GGGGACGTCCAGTGTGCCCGAGCC-30

Reverse 50- GGCTCGGGCACACTGGACGTCCCCG
TCGCGGCTCGCGGCGTCTGGGTT-30.

All of the above constructs were prepared in
pIRESpuro3 from Clontech (Mountain View, CA,
USA). Stable cell lines were prepared using the aforemen-
tioned cDNA constructs for transfection, followed by
addition of 1mM puromycin to the media and selection
of surviving clones.
The constructs composed of the C-terminal region

of PNKP, with and without the putative mitochondrial-
targeting sequence, fused to GFP (CmtsPNKP+GFP and
the CPNKP+GFP, respectively) were prepared using the
pmEGFPN1 vector from Clontech. To prepare
CmtsPNKP+GFP the following primers were used:

Forward 50-TGACTAAGCTTGCACCCAGGATGG
CCAGGTACGTCCAGTGTG-30

Reverse 50-GCTGATGGATCCCGGCCCTCGGAGA
ACTGGCAG-30

To prepare CPNKP+GFP we used the reverse primer
from CmtsPNKP+GFP and the forward primer 50- TGA
CTAAGCTTGCACCCAGGATGGGCGTCCCCTGCC
GCTG-30

To mutate MTS in CmtsPNKP+GFP (mutCmtsPNKP
+GFP) we used CmtsPNKP+GFP as a template. The

site directed mutagenesis was accomplished using the fol-
lowing primers:

Forward 50-GCTCAAGCTTGCACCCAGGATGGA
CGGGGACGTCCAGTGTGCCCGAGCC-30

Reverse 50-GGCTCGGGCACACTGGACGTCCCCG
TCCATCCTGGGTGCAAGCTTGAGC-30

We used QickChange II XL kit (cat. # 200521-5,
Stratagene) for all site-directed mutagenesis experiments.

Purification of mitochondria, trypsin and proteinase K
treatments

Mitochondria were purified essentially as described (36),
with minor modifications. Briefly, cells grown in
thirty 150-mm tissue culture dishes were harvested by
trypsinization at >80% confluency, resuspended in hypo-
tonic buffer (20mM HEPES-KOH pH 7.4, 5mM MgCl2,
5mM KCl and 1mM DTT) plus DTT and EDTA-free
complete protease inhibitors (Roche) on ice (10min),
and homogenized in a Dounce homogenizer with 10–20
strokes. During homogenization cells were monitored
by microscope to avoid break down of their nuclei.
Immediately after homogenization, 2�MSH buffer
(20mM HEPES-KOH pH 7.4, 4mM EDTA, 2mM
EGTA, 5mM DTT, 420mM mannitol, 140mM sucrose)
was added to the homogenate to stabilize the nuclei and
samples were centrifuged two times at 1200g for 10min
each to prepare post-nuclear supernatant (PNS). The PNS
then was centrifuged at 10 000 g to pull down crude
mitochondria (CM). CM pellets were resuspended in
1�MSH/50% Percoll (Sigma) and loaded on top of a
1�MSH/50% Percoll column followed by ultracentrifuga-
tion at 50 000g for 70min at 4�C. The white band of pure
mitochondria that forms in the middle of the column was
extracted by syringe, washed twice in 1�MSH and
protease inhibitors, aliquoted, snap frozen and stored at
�80�C. Prior to each experiment samples were thawed on
ice and treated with trypsin (10mg ml�1) for 20min at room
temperature followed by trypsin inhibitor treatment (29),
or proteinase K (36) as required. An Artek Sonication
Dismembrator model 150 was used to sonicate mitochon-
drial samples briefly when needed.

For isolation of rat liver mitochondria, normal Wistar
rats were sacrificed and livers were removed quickly,
rinsed with MSH buffer and diced. Small pieces of rat
liver were homogenized by 10 strokes in a Dounce hom-
ogenizer and spun three times at 1200g for 10min to
remove cell debris. PNS was then treated the same as
described for the cell lines.

Kinase and phosphatase assays of mitochondrial
preparations

Kinase and phosphatase assays were performed essentially
as described (18). Briefly, pure mitochondrial preparations
were thawed on ice, trypsin-treated, pelleted by centrifu-
gation, sonicated or not and resuspended in buffer
C (70mM sucrose, 210mM mannitol, 80mM succinic
acid, pH 5.5, 10mM MgCl2, 1mM DTT and protease in-
hibitors) for kinase assays or in buffer D (70mM sucrose,
210mM mannitol, 50mM Tris–HCl, pH 8.2, 10mM
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MgCl2, 5mM DTT, 1mM spermidine) for phosphatase
assays. A 21-mer oligonucleotide with a 50-OH terminus
and a 20-mer oligonucleotide bearing a 30-phosphate
group were used as the substrates for the kinase and phos-
phatase assays, respectively.

MtDNA repair assay using extra large-qPCR

H2O2 was added for 1 h to the media of PNKP knock
down (KD) A549 cells transfected with different con-
structs or vector only (18). Whole-cell (genomic and mito-
chondrial) DNAs were extracted using a miniprep kit
according to the manufacturer’s instructions (Qiagen)
from untreated (control) and H2O2-treated cells after 0,
0.5, 2 or 4 h of repair. Extra large qPCR (XL-qPCR)
was performed using a Gene Amp kit (Applied
Biosystems) following conditions and primers described
(37). Fluorescence quantification of XL-qPCR products
was achieved using Quant-iT Pico Green dsDNA assay
kit (Invitrogen).

Immunofluorescence imaging

A549 and MCF7 cells were grown to 20% confluency on
coverslips, fixed and stained as previously described (38).
GFP constructs were transfected into A549 or MCF7 cells
using Lipofectamine 2000 and cells were used for imaging
within 24 h post-transfection. Fluorescently stained cells
were viewed on a Zeiss LSM 710 laser scanning con-
focal microscope mounted on an AxioObserver Z1
inverted microscope (Carl Zeiss, Jena, Germany) with a
plan Apochromat 40� (NA 1.3) oil immersion lens.
Individual immunofluorescence channels were collected
sequentially to avoid signal bleeding through. GFP and
mitofilin (using an Alexa 488-conjugated secondary
antibody) were detected using 488-nm laser excitation
and collected with a bandpass filter of 493–552 nm.
PNKP and COX IV were detected with a secondary
antibody conjugated with rhodamine, which was imaged
with 561 nm laser excitation and emission capture with a
bandpass filter of 562–638 nm. DAPI-stained DNA was
imaged with a 405 nm laser and a bandpass filter of
410–497 nm. Images were collected at Nyquist sample
rate with pinhole of 1 Airy unit.

RESULTS

Full-length PNKP is present in mitochondria

Mitochondria were purified from rat liver and human
A549 lung cancer cells by centrifugation through a
Percoll gradient (36), and then subjected to limited
trypsin-treatment to improve the purity of the mitochon-
drial preparation by digesting extramitochondrial proteins
(29). Western blot analysis of the mitochondrial prepar-
ation revealed the presence of apparently full-length
PNKP (Figure 1A). The purity of the preparation was
confirmed by the absence of PCNA as a nuclear marker
and the presence of COX IV (cytochrome C oxidase—
subunit IV) or VDAC1 (Voltage Dependent Anion
Channel) as mitochondrial markers. Notably no PNKP
was detectable in mitochondria isolated from A549 cells

depleted of PNKP by shRNA. To further ensure that the
PNKP signal came from inside the mitochondria and not
due to contamination of the mitochondrial fraction with
the nuclear PNKP, we also performed a proteinase K di-
gestion assay. Purified human PNKP protein isolated
from Escherichia coli was readily digested by proteinase
K, being completely degraded by concentrations as low as
10 mgml�1 (Figure 1B). However, mtPNKP recovered in
the mitochondrial preparation was refractory to much
higher concentrations of proteinase K (Figure 1C),
indicating that the protein was protected by the mitochon-
drial membranes. Further titrations demonstrated that the

Figure 1. Full-length PNKP is present in mitochondria.
(A) Mitochondria were isolated from rat liver and wild-type (WT)
and PNKP knock-down (KD) A549 cells. Mitochondrial protein
extracts were immunoblotted with a monoclonal antibody to PNKP.
Antibodies against PCNA (nuclear marker) and COX IV or VDAC1
(mitochondrial markers) were used to ensure the purity of the mito-
chondrial preparation. (B) Purified human PNKP protein is sensitive to
proteinase K, and is completely digested even at the lowest concentra-
tion used (10 mgml�1). (C) PNKP signal detected in purified
mitochondria isolated from A549 cells is protected from proteinase K
digestion. Proteins in nuclear extracts are shown on the left and
purified PNKP protein on the right.
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mtPNKP was resistant to proteinase K digestion up to
400mgml�1 and significant digestion only started at
1mgml�1 (data not shown). That the mtPNKP is full-
length was also confirmed by purification of mitochondria
from A549 cell lines stably expressing either N- or C-
terminally HA-tagged PNKP followed by trypsin treat-
ment (Supplementary Figure S1).
Next we employed immunofluorescence confocal mi-

croscopy to localize the endogenous PNKP in A549 cells
(Figure 2). PNKP in both nuclei and mitochondria was
detected with a polyclonal antibody to PNKP, and the
mitochondrial PNKP signal colocalized with the mito-
chondrial markers mitofilin and COX IV (Figure 2A).

Similar data were obtained with a monoclonal antibody
to PNKP (Supplementary Figure S2). To further demon-
strate the specificity of the signal for PNKP, we re-
peated the experiment with a PNKP KD A549 cell line
(Figure 2B). Comparison of upper and lower panels in
Figure 2B demonstrates a marked reduction of both
the nuclear and mitochondrial signals in the PNKP KD
cells.

Based on western blotting mtPNKP appears to be
the same size as the nuclear protein. However, we
wanted to ensure that there is no major internal
change in the functional domains of the enzyme that
could interfere with their activities. We therefore directly

Figure 2. Endogenous PNKP colocalizes with mitochondrial markers. (A) Immunofluorescence of PNKP in A549 cells. PNKP localizes to
mitochondria (in addition to the nuclei) as demonstrated by colocalization with the mitochondrial markers mitofilin and COX IV. (B) The
shRNA KD of PNKP (lower panel) results in a decrease of the fluorescence signal for PNKP in both nuclei and mitochondria of A549 cells
compared to the control cell line carrying scrambled shRNA (upper pannel).
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examined the DNA kinase and phosphatase activities of
mtPNKP (Figure 3A and B). Mitochondria were purified
on a Percoll gradient, trypsin-treated and either sonicated
or not before DNA kinase and phosphatase assays were
performed (39). The kinase assay involves the transfer of
radiolabeled phosphate from ATP to the 50-terminus of an
oligonucleotide, while the phosphatase assay monitors the
loss of 30-phosphate from a 50-radiolabeled oligonucleo-
tide (39). As shown in Figure 3, very minor kinase and
phosphatase activities were observed in the absence of
sonication of the mitochondrial membrane (probably
due to release of mitochondrial proteins as a result of
freeze-thawing of the samples), and both activities
increased substantially following sonication. In contrast,
no DNA kinase or phosphatase activity was detected with
mitochondrial preparations isolated from PNKPKD cells
(Figure 3). It is possible that other mitochondrial enzymes
may have 50-kinase or 30-phosphatase activity (e.g. APE1),
but presumably they do not act efficiently on the
single-stranded substrates used to test PNKP activities.
Thus this experiment indicates that mtPNKP possesses
both DNA kinase and phosphatase activities and
although we have not examined the protein at the amino
acid sequence level, it would suggest that mtPNKP does
not differ substantially, if at all, from the nuclear protein.

mtPNKP is required for mtDNA repair

To show that mtPNKP is required for DNA repair in
mitochondria, stable PNKP KD (A549+PNKP shRNA)
and control (A549+scrambled shRNA) cell lines were
exposed to 1.5mM H2O2 for 1 h and repair was monitored
0, 2 and 4 h later. Total DNA was recovered from the cells
(Supplementary Figure S3) and mtDNA repair was
measured by (XL-qPCR) of an 8.9-kbp fragment of
mtDNA (37). A 221-nt fragment of mtDNA was also
amplified as an internal control and to show that the
mtDNA was not degraded by H2O2, since such a small
fragment would sustain only very limited damage under
the conditions used. We employed picogreen to quantify
the amount of large and small fragments amplified from
mtDNA based on fluorescence reading. Finally, we
compared the relative level of mtDNA amplification
(large/small fragment) between the two cell lines. Our
data (Figure 4A) clearly indicate that exposure of the
PNKP-depleted (KD) cells to H2O2 ablated the signal
from the 8.9-kbp fragment, strongly suggesting that
PNKP is required for mtDNA repair. The decreased
signal observed at 2 and 4 h in PNKP KD cell line
(compared to the modest signal at 0 h) probably reflects
an increase in the cleavage of mtDNA by DNA
glycosylases/lyases during repair. Next, we wanted to de-
termine the relative importance of the two enzymatic
activities of PNKP for mtDNA repair in response to
hydrogen peroxide. The PNKP KD cell line was transi-
ently transfected with empty vector or HA-tagged
wild-type PNKP (HAPNKP) as controls, and the kinase
or phosphatase negative constructs (HAPNKP�kin and
HAPNKP�phos), respectively. All the constructs carried
mutations in the shRNA recognition site that prevented
inhibition by shRNA but maintained the correct amino
acid sequence (Supplementary Figure S4). The partially
enzyme-inactivated PNKP constructs were prepared by
site-directed mutagenesis of key residues in the kinase
(K378A) or phosphatase (D171A and D173A) domains
(17). The assay (Figure 4B) revealed intermediate
activity for the kinase- and phosphatase-mutated PNKPs
in dealing with H2O2-induced mtDNA damage in com-
parison to the wild-type PNKP and suggests that both
the kinase and phosphatase activities of PNKP are
required for the maintenance of mtDNA integrity.

PNKP contains a functional mitochondrial-targeting
signal close to its carboxy-terminus

Mitochondrial-targeting signals (MTS) are most
frequently found at the N-termini of proteins, but some
of the mtDNA repair proteins reported to date do not
contain an amino-terminal MTS. A computer-based
analysis using multiple programs (including Mitoprot
II and Predotar) showed that PNKP does not contain a
canonical (N-terminal) MTS. However, a closer inspection
of the sequence of PNKP revealed the presence of a
‘cryptic’ MTS close to the carboxy-terminus of the
protein. This putative MTS consisted of amino acids
432–441 (ARYVQCARAA) and was identified by
several computer programs, as mentioned. To determine
if this MTS is functional, we fused the carboxy-terminus

Figure 3. Mitochondrial PNKP displays both DNA kinase and phos-
phatase activities. (A) DNA kinase activity was measured by transfer of
32P-phosphate from ATP to an oligonucleotide (21-mer) with a
50-hydroxyl terminus. Mitochondria were purified from wild-type
(WT) and PNKP KD A549 cells and treated with trypsin to digest
any possible residual extramitochondrial protein contamination.
Trypsin-treated mitochondria, either sonicated (+) or not sonicated
(�), were used for DNA kinase assays. Sonication increased the
DNA kinase activity of the purified mitochondrial preparation in WT
cells. DNA kinase activity of T4 PNK is shown as a positive control.
(B) DNA 30-phosphatase activity in mitochondrial preparations from
WT and KD A549 cells was determined by dephosphorylation of a
50-32P-labelled 30-phosphorylated oligonucleotide (p20p), as substrate,
resulting in conversion of p20p to p20 (markers shown on left).
Sonication of the purified mitochondrial preparation substantially
increased DNA phosphatase activity in WT cells.
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of PNKP with (CmtsPNKP) or without the MTS
(CPNKP) to GFP, generating CmtsPNKP+GFP and
CPNKP+GFP (Figure 5A). The constructs were then
transfected into A549 (Figure 5B) and MCF7 (data not
shown) cells. In both cases an additional methionine was
added to the amino terminus of the fusion protein. The
carboxy-terminal region of PNKP incorporating the MTS
was functional as a mitochondrial-localization signal and
transferred most of the expressed CmtsPNKP+GFP into
the mitochondria (Figure 5B, row 1). However, when the
MTS was not included with the carboxy-terminal region
of PNKP no CPNKP+GFP was transferred into
mitochondria (Figure 5B, row 2), a result similar to the
situation seen with GFP alone (Figure 5B, row 4). Further
confirmation was provided by mutating the first three
amino acids of the MTS as follows: A432D, R433G and
Y434D. Computer analysis indicated that these mutations
would dramatically decrease the capacity of
the identified MTS to function as a true mitochondrial-
localization signal. We observed that the protein expressed
by this mutated construct (mutCmtsPNKP+GFP)
failed to localize to the mitochondria (Figure 5B, row 3).

To test if the MTS is functional in the context of
full-length PNKP, XL-qPCR was used to compare the
functionality of HAPNKP-mts (MTS-mutated form of
HAPNKP incorporating the same mutations to the
MTS as described above) to HAPNKP in mtDNA
repair. HAPNKP (positive control), vector only and
HAPNKP-mts were transfected into PNKP KD cell
lines prepared from A549 cells. As shown in Figure 6,
the loss of the MTS resulted in a clear decrease in the
activity of PNKP during mtDNA repair, similar to trans-
fection with the vector only. The control western blot
showed that the level of expression of HAPNKP-mts
was the same as HAPNKP and thus the observed effect
was not due to a lower level of protein expression of the
mutated form of PNKP.

PNKP interacts with the mitochondrial proteins

It would be expected that the presence of PNKP in
mitochondria would give rise to interaction of mtPNKP
with mitochondrial proteins. We therefore expressed
HAPNKP in an A549 PNKP KD background and
immunoprecipitated the PNKP using anti-HA antibodies.
We were able to identify mitofilin as one of the mitochon-
drial proteins that coimmunopreciptated with
PNKP (Figure 7A). Interaction with mitofilin was
further confirmed by reciprocal immunoprecipitation
of HAPNKP by antibodies to mitofilin (Figure 7B).
Mitofilin is a transmembrane protein of the inner mem-
brane of mitochondria that has been shown to interact

Figure 4. Functional PNKP is required for DNA repair in
mitochondria following exposure to H2O2. (A) Total (i.e. nu-
clear+mitochondrial) DNA was purified from A549 cell lines stably
transfected with PNKP shRNA (KD) or scrambled shRNA (control)
(Supplementary Figure S3) following exposure to 1.5mM H2O2 for 1 h
and repair for 0, 2 and 4 h. Controls (�) were not exposed to H2O2.
Upper panel: XL-qPCR performed on mtDNA, as described in
Materials and Methods, amplified an 8.9-kbp PCR product following
H2O2 exposure and repair in A549 cells expressing scrambled shRNA,
but not in PNKP KD A549 cells. Lower panel: PCR of a 221-bp
fragment from both cell lines indicating that both lines contain com-
parable amounts of mtDNA and that the H2O2 treatment did not
degrade the DNA. (B) DNA repair in mitochondria in PNKP KD
cells complemented with empty vector, wild-type (HAPNKP) or

Figure 4. Continued
kinase (HAPNKP�kin) or phosphatase inactive (HAPNKP�phos)
PNKP. XL-qPCR was used to examine the level of DNA repair
30min after exposure to 1mM H2O2 for 1 h. The signal from the
amplified 8.9 kbp mtDNA following XL-qPCR was normalized to the
signal from the 221-bp fragment using Quant-it Pico Green Assay Kit.
Error bars show the SD for three independent experiments. The
western blot shows that similar levels of PNKP protein were expressed
in the PNKP KD background.
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with PARP-1 (40), and DISC1 (disrupted-in-
schizophrenia 1) (41). Interestingly, western blot analysis
indicated that downregulation of PNKP by 70–90% in
A549 cells reduced the level of mitofilin (Figure 7C). A
similar reduction of the level of mitofilin in DISC1 KD
cells has also been reported (41).

DISCUSSION

PNKP is a bifunctional end-processing enzyme involved
in BER, and repair of single- and double-strand breaks.
PNKP has been reported to be a nuclear protein by us and
other laboratories (39,42). Here, we provide evidence that
PNKP is also found in mitochondria. Given the abun-
dance of ROS and the presence of other BER and single
strand break repair proteins in mitochondria including
uracil-DNA glycosylase, NEIL1, TDP1, APE1 and

DNA ligase III (27,28,32), the appearance of PNKP in
mitochondria is perhaps not surprising. Our data
indicate that mtPNKP is the same size as the nuclear
protein. Several of the BER proteins found in the
mitochondria differ from their nuclear isoforms due to
alternative splicing, as seen with mitochondrial uracil-
DNA glycosylase (43), or post-translational processing,
as observed with mitochondrial APE1 (29), or through
the use of an alternative translation-initiation start site,
as seen with mtDNA ligase III (44). Based on the
western blots (Figure 1) coupled with observing both
N- and C-terminally HA-tagged PNKP in the
mitochondria (Supplementary Figure S1), we conclude
that mtPNKP appears to be the same protein as nuclear
PNKP.
Mitochondrial proteins often differ from their nuclear

counterparts to incorporate a mitochondrial-targeting

Figure 5. Mitochondrial localization of PNKP is dependent on the presence of a mitochondrial-targeting signal (MTS) in proximity to its carboxy
terminus. (A) Computer programs (Mitoprot, Psort II and Predotar) predicted the presence of a mitochondrial-targeting signal (MTS) close to the
C-terminus of PNKP (shown in blue). To further examine this potential MTS we generated three constructs (i) CmtsPNKP+GFP containing the
GFP fused to the PNKP C-terminus including the putative MTS, (ii) CPNKP+GFP, which is essentially the same as CmtsPNKP+GFP but lacking
the MTS sequence and (iii) mutCmtsPNKP+GFP, a mutated form of CmtsPNKP+GFP with the first three amino acids of the putative PNKP
MTS mutated as follows: A432D, R433G and Y434D. In all cases a methionine was included at the amino-terminus. (B) The constructs were
transfected into A549 cells and the cellular localization of GFP was monitored. Only the GFP fusion protein containing the wild-type MTS localized
to mitochondria (row 1) as shown by colocalization with Mitotracker Orange (Molecular Probes). CPNKP+GFP, mutCmtsPNKP+GFP and GFP
alone showed a diffuse signal throughout the cell (rows 2–4).
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sequence (MTS) or to shed a nuclear localization signal
(NLS). About 50% of mitochondrial proteins contain an
MTS at their amino terminus. For example, aprataxin,
which has recently been shown to play a role in mtDNA
repair, possesses an amino-terminal MTS (45). However,
localization to mitochondria does not necessarily require
an amino-terminal MTS (46). Several mtDNA repair
proteins, such as TDP1 and PARP-1, appear to lack an
MTS (32,40). An MTS has been identified at the
C-terminus of APE1 (47), and it appears that the redirec-
tion of APE1 into the mitochondria occurs after proteo-
lytic removal by a mitochondria-associated N-terminal
peptidase of the first 33 amino acids of APE1 that
contains an NLS (29). A putative NLS has been previous-
ly identified in PNKP (amino acids 301–304), but it lies in
the phosphatase domain of the protein (39,42,48,49) and is
presumably retained in the mitochondrial PNKP.
Alternatively, it has been shown that a C-terminal MTS
can direct proteins to mitochondria in a carboxy to
amino-terminal direction (34,50), and C-terminal
MTSs have been found in several other mtDNA process-
ing enzymes including the yeast DNA helicase Hmi1p (33)

and the human nuclease/helicase DNA2 (51). An in silico
analysis of the PNKP sequence uncovered a putative MTS
located near the carboxy-terminus of the protein. We
determined that this sequence is a functional MTS
required for PNKP repair activity in mitochondria
(Figure 6). It was also able to target GFP to mitochondria
when placed at the N-terminus of GFP (Figure 5).
Interestingly, using a similar in silico analysis with
Mitoprot II and Predotar software, we detected a poten-
tial MTS in PARP-1 (amino acids 846–860) but this will
require experimental verification.

We observed that mtPNKP retains both the DNA
kinase and phosphatase activities (Figure 3), and that
both activities are required for timely repair of
mtDNA following damage induced by hydrogen
peroxide (Figure 4). We have previously shown that
shRNA-mediated depletion of PNKP sensitizes A549
cells to hydrogen peroxide (18). Further experimentation
will be required to determine the relative importance of
nuclear versus mitochondrial PNKP in response to
hydrogen peroxide and other ROS, since this may have
implications for the recently identified autosomal recessive
neurological disorder, MCSZ, associated with mutations
in PNKP (52). Although a direct comparison of the
relative importance of PNKP kinase versus phosphatase
activity for the repair of nuclear DNA has yet to be
carried out, the phosphatase activity has been shown to
play a critical role in single-strand break repair following
oxidative damage by hydrogen peroxide and IR (19,53).
The phosphatase activity of PNKP is also significantly
more active than the kinase activity (17). Oxidative
damage is more frequently associated with modifications
to DNA 30-strand-break termini than the 50-termini (1,2).
That the expression of a kinase-mutated PNKP had a
similar outcome as the phosphatase-mutated PNKP on
the repair of mtDNA suggests that 50-hydroxyl termini
are generated in similar quantities to modified 30-termini,
maybe through the intervention of trapped topoisomerase
I complexes, or it may reflect differing levels of other mito-
chondrial repair proteins that may compensate for
reduced PNKP activity. Alternatively, the relative import-
ance of the kinase and phosphatase activities might be
skewed by incomplete shRNA-mediated downregulation
of endogenous PNKP that leaves cells with sufficient levels
of the DNA phosphatase activity to partially compensate
for the loss of phosphatase activity when expressing the
phosphatase-mutated PNKP.

Our examination of an interaction between PNKP and
mitofilin was predicated on a recent finding by Rossi et al.
(40) that mitochondrial PARP-1 interacts with mitofilin.
These authors further established that the presence of
PARP-1 in mitochondria was dependent on the level of
mitofilin and, based on the observation that mitofilin as-
sociates with proteins implicated in protein import into
the mitochondria (54), they suggested that mitofilin may
be involved in the translocation of PARP-1 across the
mitochondrial membranes. Thus, interaction of mitofilin
with PNKP could also assist with mitochondrial localiza-
tion of PNKP. Knock down of PNKP resulted in a stat-
istically significant decrease in the level of mitofilin. It is
not readily apparent why the absence of PNKP should

Figure 6. The MTS of PNKP is required for its function in mtDNA
repair. XL-qPCR was used to monitor mtDNA repair in
PNKP-depleted A549 cells treated with hydrogen peroxide as described
in Figure 4B. Transient complementation of the cells with PNKP
mutated in the first three amino acids of the MTS (HAPNKP-mts),
as opposed to the wild-type protein (HAPNKP), reduces DNA repair
in mitochondria to a level similar to the vector only control. The
western blot of whole-cell extracts shown at the bottom of the figure
indicates that similar levels of HAPNKP-mts and HAPNKP proteins
were expressed in the A549 cells.
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affect the level of mitofilin, but similar observations have
been made with two other proteins, DISC1 (41) and the
inner mitochondrial membrane protein ChChd3 (55). In
the case of DISC1, its downregulation appears to increase
proteasomal-mediated proteolysis of mitofilin (41).
It remains to be determined whether downregulation of
PNKP affects the level of mitofilin at the transcriptional
or post-transcriptional level.
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