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Abstract
Objective—Broadly neutralizing antibodies (bNt Abs) against HIV-1 are rarely produced during
natural infection, and efforts to induce such Abs by vaccination have been unsuccessful. Thus,
elucidating the nature and cellular origins of bNt Abs is a high priority for vaccine research. As
the bNt monoclonal Abs (MAbs) 2F5, 4E10 and 2G12 have been reported to bind select
autoantigens, we investigated whether these MAbs display a broader range of autoreactivity and
how their autoreactivity compares with that of pathogenic autoAbs.

Methods—An autoantigen microarray comprising 106 connective tissue disease-related
autoantigens and control antigens was developed and used, in combination with ELISAs, to
compare the reactivity profiles of MAbs 4E10, 2F5 and 2G12 to those of four pathogenic autoAbs
derived from patients with antiphospholipid-syndrome (APS), and to serum from a patient with
systemic lupus erythematosus (SLE).

Results—The APS MAbs and SLE serum reacted strongly with multiple autoantigens on the
microarray, whereas anti-HIV-1 MAb reactivity was limited mainly to HIV-1-related antigens.
The APS autoAbs reacted strongly with CL, yet only 4E10 bound CL at high concentrations; both
2F5 and 4E10 bound their HIV-1 epitopes with a 2–3-log higher apparent affinity than CL.
Moreover, the polyreactivity of 4E10, but not CL15, could be blocked with dried milk.

Conclusion—The reactivity profiles of bNt anti-HIV-1 MAbs are fundamentally distinct from
those of pathogenic autoAbs that arise from dysregulated tolerance mechanisms. This suggests
that the limited polyreactivity observed for the bNt MAbs, and for HIV-1-Nt Abs in general, may
arise through alternative mechanisms, such as extensive somatic mutation due to persistent antigen
selection during chronic infection.
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Introduction
Induction of rare broadly neutralizing (bNt) antibodies (Abs) able to block cellular infection
by a variety of HIV-1 isolates remains the elusive goal of vaccine design. Currently, passive
transfer with bNt Abs is the only means of conferring protection against viral challenge in
animal models [1–4]. Six of the eight bNt monoclonal Abs (MAbs) identified to date have
unusually long third complementarity-determining regions of the heavy chain (CDR-H3s)
(b12, 2F5, 4E10, 447–52D, PG9/16 and HJ16 [5]; D. Corti, Bellinzona, Switzerland,
personal communication), and all are highly mutated, prompting the question of whether
these features are necessary for broad neutralization. MAbs 2F5 and 4E10 recognize
adjacent linear epitopes in the membrane-proximal external region of gp41 (MPER;
reviewed in [6]). Structural studies of these Abs in complex with peptides have revealed that
their CDR-H3s make marginal contact, if any, with their epitopes [7,8]; yet, mutational
studies have shown the hydrophobic tips of their CDR-H3s are required for viral
neutralization [9–13].

In addition to their MPER epitopes, MAbs 2F5 and 4E10 have been reported to bind self
antigens, including cardiolipin and other membrane lipids [9,14–18]. It has been proposed
that 2F5 and 4E10 are polyreactive autoAbs, produced by plasma cells whose autoreactive
precursors emerged due to a loss of tolerance checkpoints during development of the naive
B-cell repertoire [19,20]. Evidence supporting this hypothesis includes the reactivity of 2F5
and 4E10 with self-antigens [14–19]; 4E10’s weak lupus anticoagulant activity [14,21]; the
long CDR-H3s of these Abs, given that tolerance checkpoints may play a role in restricting
CDR-H3 length [22]; and the disruption of B-cell development in IgH knock-in mice
bearing the 2F5 variable region [23]. More recently, it has been shown that the hydrophobic
tip of 2F5’s and 4E10’s CDR-H3 is required for weak interaction with lipid [9–13], and that
residues of synthetic MPER peptides that are critical for interaction with MAbs 2F5 and
4E10 face into detergent micelles and lipid bilayers [24,25], leading to a proposed binding
mechanism in which membrane surfaces are ‘scanned’ for MPER residues, which are then
extracted from the viral membrane [15,25–27]. Based on these studies, it has been suggested
that polyreactive, lipid-binding Abs are initially selected from the naive repertoire and later
recruited into the anti-HIV-1 response by viral antigens [28]. Furthermore, one study has
shown that serum anti-cardiolipin Ab titers are strongly correlated in chronically infected
patients with anti-MPER Ab titers and neutralization breadth [29]. The proposal that HIV-1-
Nt Abs arise from polyreactive and/or autoreactive precursors that are normally absent in the
naive repertoire has fueled speculation that conventional vaccination strategies are unlikely
to elicit bNt Abs, as selection for polyreactive Abs [28] or disruption of immunological
tolerance [20] would be required for their development.

Serum reactivity in clinical anti-cardiolipin assays is associated with antiphospholipid
syndrome (APS), an autoimmune, thrombogenic condition and systemic lupus
erythematosus (SLE) [30]. In contrast, the clinical significance of reactivity with cardiolipin
and other phospholipids that is commonly observed for serum Abs produced during HIV-1
infection is unclear [30,31]. The antiphospholipid Abs that develop during infection by
HIV-1 and other pathogens [32] differ in several respects from those arising in APS and
SLE: they are often transient [31,32], do not cross-react with β2-glycoprotein I [30,31] and
are not associated with lupus anticoagulant activity or thrombosis [31]. Despite their
putative cardiolipin reactivity, sustained passive infusion of MAbs 2F5 and 4E10 is well
tolerated, with no incidents of adverse effects or thrombotic complications [21,33], and an
alternate hypothesis to explain the mechanism of lipid reactivity of 2F5 has been described
[10,34]. Thus, to further clarify the polyreactive and autoimmune nature of bNt anti-HIV-1
MAbs, we compared their reactivity profiles on an extensive panel of autoantigens with

Singh et al. Page 2

AIDS. Author manuscript; available in PMC 2012 April 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



those of autoreactive, thrombogenic MAbs and serum produced by a patient with active
SLE.

Methods
Materials

The NIH AIDS Research and Reference Reagent Program provided 15-mer synthetic
peptides derived from the lab-adapted HIV-1 strain, MN (>80% purity; sequences available
online). Synthetic 2F5 peptide [NH3

+-EQELLELDKWASLWSGK(Biotin)GC-CONH2] and
E4.6 peptide [NH3+-LHEESMDKWSNLMQCCT AEGK(Biotin)-CONH2] were from
NeoMPS (San Diego, California, USA), synthetic 4E10 peptide [NH3

+-
SLWNWFDITNWLWYISGK(Biotin)GC-CONH2] was from the University of British
Columbia’s NAPS Unit Peptide Synthesis Laboratory (Vancouver, Canada) and synthetic
H3N6 peptide (NH3

+-AEPAENNWFML TYFLAAEGC-CONH2) was from EZBiolab Inc.
(Westfield, Indiana, USA); all were more than 95% pure. MAbs CL1, CL15, IS2 and IS4
were provided by P. Chen (UCLA) and Abs 2F5, 4E10 and 2G12 by R. Kunert and H.
Katinger (University of Agricultural Sciences, Vienna). Recombinant gp41 and gp120
envelope proteins (MN strain) were from ImmunoDiagnostics (Woburn, Massachusetts,
USA). Cardiolipin, BSA, oval-bumin (OVA), p-nitrophenyl phosphate (pNPP) and 2,2′-
azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) were from Sigma-Aldrich (St
Louis, Missouri, USA), nonfat dried milk from Bio-Rad (Hercules, California, USA) and
Tween-20 from GE Healthcare (Piscataway, New Jersey, USA). Sources of microarray
antigens are listed in Supplementary Table S1, http://links.lww.com/QAD/A142.

Titration ELISA
Protocols were adapted from an optimized procedure [14] (B.F. Haynes, Duke University,
personal communication). Wells of 96-well microtiter plates (Corning Inc., Corning, New
York, USA) were coated with 400 ng MN peptide in 50 μl PBS, pH 7.4 and dried at 55°C
for 4 h; 2 μg cardiolipin in 50 μl methanol and dried at 55°C for 45 min; and protein [50 ng
gp41 in 50 μl PBS, or 50 μl PBS containing 2% (w/v) BSA, dried milk, or OVA] with
overnight incubation at 4°C. Wells were blocked at 37°C for 2 h with 50 μmol/l carbonate–
bicarbonate buffer, pH 9.6, containing 3% BSA, then washed three times with PBS
containing 0.05% (v/v) Tween-20 (PBST). Serial dilutions of 4E10, 2F5 and CL15 IgGs
were prepared in Ab diluent [PBST containing 3% BSA and 2% (v/v) fetal calf serum
(FCS)]; 50-μl aliquots were incubated in each well for 1 h at room temperature (RT). Wells
were washed four times with PBST and then 50 μl alkaline phosphatase-conjugated goat
antihuman IgG (Fab-specific; Pierce, Rockford, Illinois, USA), diluted 1 : 1000 in Ab
diluent, was added for 1 h at RT. Wells were washed four times and developed using a
pNPP tablet dissolved at 1 mg/ml in 100 μl 50 μmol/l carbonate–bicarbonate buffer
containing 2 mmol/l MgCl2. After 45 min, absorbance at 405 nm was measured using a
VersaMax Microplate Reader (Molecular Devices, Sunnyvale, California, USA).

Direct ELISA
Direct ELISAs were performed as described [35] with the following modifications. Wells
were coated with 4E10, H3N6 or MN peptides (400 ng), autoantigens (1 μg), double-
stranded DNA (2 μg) or cardiolipin (2 μg in 35 μl methanol) and dried at 55°C for 1 h and
then other wells were coated overnight at 4°C with 50 ng gp41 or 2% BSA, dried milk or
OVA. MAbs were diluted in TBS, pH 7.2, containing 0.1% Tween-20 and either 5% BSA,
5% dried milk, 50% FCS or 5% FCS as indicated.
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Autoantigen microarrays
Purified autoantigens (0.2 mg/ml in PBS) were deposited in triplicate on nitrocellulose-
coated FAST slides (Whatman, Florham Park, New Jersey, USA) using a VersArray
ChipWriter Pro Robotic Arrayer (Bio-Rad). Arrays were blocked in dilution buffer (PBS,
5% FCS, 0.1% Tween-20) overnight at 4°C. Serum samples were diluted 1 : 300 in dilution
buffer; MAbs were diluted to 35, 7 and 1.5 μg/ml (representing 50, 10 and 2% of total
serum IgG, respectively, given a typical serum IgG concentration of 21 mg/ml) and then
diluted 1 : 300; diluted Ab samples were incubated on slides for 1 h at 4°C. Arrays were
washed twice in dilution buffer and then probed with a 1 : 2000 dilution of Cy-3-conjugated
goat antihuman IgG/IgM (Jackson ImmunoResearch, West Grove, Pennsylvania, USA) for 1
h at 4°C. After two washes in dilution buffer, followed by one in PBS and then in water,
arrays were spun dry and imaged using a GenePix 4000B microarray scanner (Molecular
Devices). Protocols are available at http://utzlab.stanford.edu/protocols/.

Data analysis and heat map generation
Scanned array images were analyzed using Axon GenePix Pro 6.0 software (Molecular
Devices). Median fluorescence intensity (MFI) values of less than 10 digital fluorescence
units (DFUs) were set to 10 DFUs exactly. MFI values minus background from three
replicate spots were averaged for each antigen. Heat maps were generated in TMEV
Multiple Experiment Viewer v4.5.1 software by setting the highest intensity value for a
given Ab–antigen interaction as 1.0 and normalizing the intensity of other Abs to this value,
generating a percentage scale.

Significance analysis of microarrays
Significance analysis of microarrays (SAM) was performed in TMEV Multiple Experiment
Viewer v4.5.1 software to identify significant differences in array reactivities. Raw MFI
values were log2 transformed and two-class unpaired analyses were performed to compare
each HIV-1 MAb to the APS MAb CL15 across all three dilutions tested. For each
comparison, 20 permutations were calculated and threshold parameters were selected such
that the false discovery rate was less than 0.05. Antigens revealed by SAM to be bound
significantly differently were selected for cluster analysis. A hierarchical clustering
algorithm using a Euclidian distance metric and complete linkage method was applied to
order array features into clusters based on similarities in Ab–antigen reactivities.

Results
We first compared the cardiolipin reactivity of MAbs 2F5 and 4E10 with that of the
pathogenic APS MAb, CL15 [36], using published ELISA conditions [14] (Fig. 1). In
agreement with other works [21,37], cardiolipin binding by MAb 2F5 was undetectable,
whereas binding by 4E10 occurred only at high concentrations; in this assay, 4E10 IgG
bound cardiolipin and OVA approximately equally. There was more than a 2-log difference
in the concentration of 4E10 MAb required to produce a given signal on 4E10 peptide (or
gp41) and that required to produce the same signal on cardiolipin. In contrast, CL15
saturated all antigens tested, with the exception of BSA. Although MAbs 4E10 and CL15
bound the 4E10 peptide at similar half-maximal concentrations, only 4E10 neutralized
HIV-1 strain HxB2 (Supplementary Fig. S1, http://links.lww.com/QAD/A142; provided by
M.B. Zwick, The Scripps Research Institute). These data demonstrate that MAbs 2F5 and
4E10 prefer their cognate gp41 epitopes to cardiolipin by orders of magnitude, compared
with the pathogenic and highly polyreactive autoAb CL15.

To further test the specificity of these MAbs, their binding was studied in ELISA to a panel
of overlapping 15-mer peptides derived from HIV-1 envelope protein isolate MN (Fig. 2).
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When diluted in 5% BSA, MAb 2F5 bound specifically to peptides bearing its cognate
HIV-1 epitope, and MAb 4E10 bound its cognate epitope better than the multiple peptides
with which it weakly cross-reacted. In contrast, the APS autoAb CL15 bound promiscuously
to more than half the assayed peptides and to OVA and dried milk. Dilution in 5% FCS or
5% dried milk abolished nonspecific binding of 4E10 but not of CL15. Linear regression
analysis revealed that CL15 binding, but not 4E10 binding, was associated with a net
negative charge on the peptides (Supplementary Fig. S2, http://links.lww.com/QAD/A142).
These results are consistent with our previous studies in which both MAbs 2F5 and 4E10
selected peptides from phage-displayed libraries that share a core consensus sequence with
their gp41 epitopes [38,39], whereas MAb CL15 selected peptides bearing completely
unrelated sequences [40].

To compare the autoreactivity profiles of bNt anti-HIV-1 MAbs to those of pathogenic APS
MAbs and SLE serum, we developed and validated an autoantigen microarray containing
clinically relevant autoantigens targeted by Abs from patients with systemic autoimmune
diseases [41], HIV-1 antigens and control antigens. For comparison, we analyzed the anti-
MPER MAbs, 2F5 and 4E10, the anti-gp120 MAb 2G12 and four MAbs derived from APS
patients: CL15, CL1 [36], IS2 [42] and IS4 [36]. In a previous study, cross-reactivity of
MAbs 2F5, 4E10 and 2G12 against a panel of 400 mainly non-self, recombinant proteins
was minimal [37]. However, we wanted to more comprehensively assess potential
autoreactivity of these MAbs using an autoantigen microarray that had been previously
validated with pathogenic autoantisera [43–49]. Figure 3a shows the reactivity profiles of
MAbs 2F5, 4E10 and 2G12 against positive and negative control antigens, including
synthetic peptides bearing the 2F5 and 4E10 epitopes, recombinant gp120 and gp41,
overlapping MN peptides covering the gp41 MPER (MPER1-MPER6), cell lysates bearing
gp41 fragments covering the MPER tethered to the cell surface by the gp41 transmembrane
region [50], cell lysates bearing this gp41 fragment containing single Ala substitutions in the
MPER sequence (mutants 3–5 and 11–13) and cell lysates alone. As expected, MAbs 2F5
and 4E10 each bound their cognate peptide epitopes [38,39], and 2G12 bound strongly to its
carbohydrate epitope on gp120. As seen in Fig. 3a, MAb 2F5 reacted only with overlapping
MPER peptides (MPER2 and MPER3) containing its core ELDKWA epitope (shown in
bold). Similarly, MAb 4E10 bound only to peptide MPER5 containing its core NWF(D/
N)ITepitope (shown in bold italics); no binding was observed to peptide MPER4, which
contains the 4E10 core epitope but little additional C-terminal sequence, consistent with
mapping studies [51]. In addition, both MAbs 2F5 and 4E10 bound to lysates of COS-7 cells
transiently transfected with plasmids expressing MPER-TM1, a gp41 fragment covering part
of the C-heptad repeat, the MPER, the transmembrane region and part of the cytoplasmic
domain of HIV-1 JRCSF [50]. Binding was epitope-specific, as substitution of residues in
either the 2F5 or 4E10 core epitope with Ala abrogated binding of the respective MAb (Fig.
3a). Thus, the specific binding patterns of anti-HIV-1 MAbs to their epitopes validated the
sensitivity and specificity of the array platform.

As seen in Fig. 3b, the bNt MAbs 2F5, 4E10 and 2G12 bound their cognate HIV-1 epitopes
but had limited reactivity with all autoantigens tested (shown in alphabetical order), whereas
the APS autoAbs and SLE serum IgGs displayed extreme polyreactivity. Consistent with the
ELISA results, binding of MAbs 2F5 and 4E10 to cardiolipin was minimal, and 4E10
reacted significantly with cardiolipin and other autoantigens only at the highest
concentration tested (35 μg IgG/ml). In contrast, most APS MAbs tested (CL1, CL15 and
IS4) displayed strong binding to cardiolipin even at lower concentrations. The cardiolipin
reactivity of MAb 4E10 was not associated with binding to β2-glycoprotein I (a well
characterized APS autoantigen), whereas two APS MAbs (CL1 and CL15) reacted with both
antigens. Binding of MAb 2F5 to centromere protein B (CENP-B), whole histones or
histone subunits was undetectable, conflicting with previous reports [14]; MAb CL15,
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however, was particularly histone-reactive, and MAbs CL15 and IS4 bound CENP-B. MAbs
2F5 and 2G12 bound lysozyme at lower concentrations but not at higher ones, casting doubt
upon this result. Together, these data provide further evidence that the bNt anti-HIV-1
MAbs 2F5 and 2G12 are not especially autoreactive or polyreactive, whereas MAb 4E10
exhibits modest polyreactivity at concentrations reflecting high levels of serum Ab (the
equivalent of 50% of the average serum concentration of total IgG in healthy individuals).

We used SAM, a well validated algorithm [52] that we and others have used in comparing
serum autoAb reactivities [43–49], to identify differences in the reactivity profiles of MAbs
2F5, 4E10, 2G12 and CL15. Table 1 lists antigens that were bound significantly differently
(q <0.05) by a given pair of MAbs. MAb CL15 bound significantly better than anti-HIV-1
MAbs to a variety of autoantigens such as cardiolipin, CENP-B and double-stranded DNA
as well as control antigens such as OVA and BSA, and in some cases, even HIV-1 antigens.
Importantly, the only antigens to which MAbs 2F5, 4E10 and 2G12 bound significantly
better than CL15 were antigens bearing their cognate HIV-1 epitopes; the same was true for
pairwise SAM comparisons between each HIV-1 MAb and the least polyreactive APS MAb,
IS2 (data not shown). Furthermore, statistical comparison of MAbs 2F5 and 4E10 confirmed
that the only antigens shown to be bound differently by these MAbs bore their respective
cognate epitopes (Table 1). MAbs were also arranged by hierarchical clustering based on
reactivity similarities [53]. In each case, MAbs 2F5, 4E10 and 2G12 belonged to a distinct
clade from MAb CL15 and SLE serum (Supplementary Figs S3–S6,
http://links.lww.com/QAD/A142); the same overall trend was observed when hierarchical
clustering was conducted using all antigens (data not shown). Thus, the behavior of MAbs
2F5, 4E10 and 2G12 is unlike that of pathogenic APS autoAbs and polyclonal SLE sera, as
demonstrated by their minimal reactivity with self antigens.

To validate reactivity patterns to selected autoantigens observed in the microarray, ELISAs
were performed using antigens revealed by SAM to be bound differently by anti-HIV-1
MAbs and APS MAbs. Without exception, all differences between anti-HIV-1 and APS Abs
observed by ELISA (Fig. 4a) were reflected in the microarray analysis (Fig. 4b), although
the magnitudes of these differences were not always accurately replicated. In particular, two
of the APS autoAbs, CL1 and IS4, appeared far more autoreactive in the ELISA compared
to the microarray. However, overall binding trends indicated concordance of reactivity
patterns, with the autoantigen microarray being more sensitive than ELISA in detecting
differences in binding to a particular antigen.

Several ELISA experiments designed to gauge poly-reactivity and autoreactivity of bNt anti-
HIV-1 MAbs have been performed using very high concentrations of Ab and no detergent
[16–19,22,54–56]. Here, we tested several ELISA protocols to understand the effect of
different assay conditions on the reactivity profiles of MAbs 2F5, 4E10 and CL15. We
found that the modest polyreactivity of MAb 4E10 was markedly reduced or ablated by
replacing BSA with FCS, and especially dried milk, in the Ab diluent; yet, this did not
significantly affect binding to its cognate gp41 epitope (Fig. 2). This suggests that there may
exist an Ab subspecies, perhaps in partially denatured form, whose activity is saturated in
the presence of complex proteins and/or lipids existing in dried milk and serum. In contrast,
dilution of MAb CL15 in FCS or dried milk only slightly reduced its polyreactivity. As their
polyreactivity vanishes in assays that more closely approximate physiological conditions, we
surmise that the polyreactivity of MAbs 2F5 and 4E10 is not biologically significant in vivo;
this is supported by their lack of pathogenicity after passive infusion [21,33].
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Discussion
Our data indicate that reactivity of MAbs 2F5 and 4E10 with cardiolipin is biologically
insignificant compared with reactivity with their HIV-1 epitopes or with the cardiolipin
reactivity of the pathogenic APS MAb, CL15. Moreover, the global reactivity patterns of
MAbs 2F5, 4E10 and 2G12 with an extensive panel of clinically relevant autoantigens
reveal that these Abs are not polyreactive autoAbs in the same sense as pathogenic APS or
SLE autoAbs. These results support and extend those of Scherer et al. [37], who showed that
MAbs 2F5 and 4E10 have very limited polyreactivity on a panel of antigens. The microarray
data from these two experiments, assaying hundreds of autoantigens and unrelated proteins,
have allowed us to draw strong conclusions regarding the polyreactivity and autoreactivity
of bNt anti-HIV-1 MAbs. However, antigen microarray techniques have limitations in that a
control antigen (gp120) was recognized by only one of its ‘cognate’ MAbs (2G12, but not
b12) when printed on nitrocellulose slides; thus, b12, but not 2G12, was excluded from this
analysis.

It is likely that the weak polyreactivity of bNt anti-HIV-1 Abs, in particular MAb 4E10, with
self-antigens and nonself-antigens [14,15,21] is not evidence of a poly-reactive or
autoreactive origin, but rather reflects normal, low level self-reactivity of Abs from the
memory B-cell and plasma-cell repertoires [54]. Such reactivity could increase with chronic
infection as a result of prolonged somatic mutation, and a lack of post-germinal center
checkpoints for deleting weakly self-reactive or poly-reactive clones. Recently, Mouquet et
al. [55] showed that somatic mutations and polyreactivity are high in anti-gp140 Abs cloned
from the memory B cells of HIV-positive individuals, as compared with their non-gp140-
binding Abs and with Abs from healthy controls. Although the in-vivo relevance of this
polyreactivity –as measured by in-vitro assays in which Abs were diluted in PBS lacking
blocking proteins or detergent [56] – is unclear, the increased polyreactivity of the anti-
gp140 Abs is striking. Moreover, in only a few cases did reversion of somatic mutations to
germline reduce polyreactivity, leading the authors to conclude that polyreactive precursors
of these clones must have been present in the naive B-cell repertoire. However, as somatic
mutations in CDR3, particularly in CDR-H3, are not easily identified, their contributions to
polyreactivity may have been overlooked (N.B., this issue has been circumvented using TdT
knockout mice, with the result that all Ab autoreactivity was abolished upon reversion to
germline [57]). Similarly, the dysregulation of B-cell development observed when using
highly mutated VH genes (such as MAb 2F5’s [22]) for knock-in experiments can be
attributed to disruption of the pre-B-cell receptor, and thus is not necessarily good proof of
tolerance induction [58].

We propose that the polyreactivity and self-reactivity observed among anti-HIV-1 MAbs
and sera are generated during chronic viral infection, which drives both repeated rounds of
somatic mutation and persistent antigen selection. In this scenario, extensive mutation,
including insertions that lengthen CDR-H3, would broaden the reactivity profiles of clones
that continue to retain affinity for antigen, and therefore to be recruited into the Ab response.
Consistent with this hypothesis, breadth of serum neutralization is significantly correlated
with viral load [59,60], reflecting antigen persistence, and where anti-MPER Nt Abs have
been observed, with cardiolipin polyreactivity [29]. Although the possibility that low-level
polyreactivity may be a general feature of highly mutated Abs against viral pathogens in
persistent or repeated infection [61] awaits further investigation, it is certainly conceivable,
given the shared genetic features of these Abs [5] and the role of somatic hypermutation in
generating polyreactive and self-reactive specificities [54,57].

Regardless of their origins, our results support a fundamental distinction between bNt anti-
HIV-1 MAbs and pathogenic autoAbs that arise in autoimmune states like APS or SLE. The
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majority of the bNt anti-HIV-1 MAbs isolated to date have atypically long CDR-H3s and
extensive somatic mutations, but so do anti-HIV-1 Abs and antiviral Abs produced during
chronic infection in general [5]. Elucidating the conditions under which bNt Abs arise will
require a better understanding of the Abs comprising the naive and memory B-cell
repertoires and mechanisms for selecting Ab-secreting plasma cells during chronic HIV-1
infection.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Comparison of autoreactivity and polyreactivity of MAbs 2F5, 4E10 and CL15 and
dependence on Ab concentration
MAbs 2F5, 4E10 and CL15 were titrated at the concentrations indicated in a direct ELISA
against wells containing immobilized peptides bearing the 2F5 or 4E10 epitopes (400 ng
each), recombinant gp41 (50 ng), cardiolipin (CL; 2 μg) or a nonspecific antigen, BSA,
dried milk (DM) or ovalbumin (OVA) (2%). Data are representative of three independent
experiments. MAb 2F5 does not bind CL or any nonspecific antigen significantly, whereas
MAb 4E10 binds CL and OVA with apparent affinities that are at least two orders of
magnitude smaller than that for gp41. MAb CL15 binds many antigens with high apparent
affinity.
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Fig. 2. Effects of complexity of Ab diluent on reactivity profiles of MAbs 2F5, 4E10 and CL15
MAbs 2F5, 4E10 or CL15 (10 nmol/l or 66.7 μg/ml IgG) were diluted in 5% BSA, 50%
fetal calf serum (FCS) or 5% dried milk (DM) and assayed on wells containing immobilized
overlapping HIV-1 MN peptides (400 ng), 4E10 peptide (400 ng), H3N6 peptide (400 ng),
recombinant gp41 (50 ng), cardiolipin (CL; 2 μg) or BSA, DM or ovalbumin (OVA) (2%).
Each MAb was also tested at a 0.5 nmol/l concentration against positive-control antigens to
verify that binding remained unaffected by choice of diluent. Low-level polyreactivity of
MAb 2F5 was abrogated in FCS or DM, and that of MAb 4E10 was reduced in FCS and
abrogated in DM; in contrast, MAb CL15 retained a promiscuous binding pattern even in
DM.
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Fig. 3. Autoantigen microarray analysis of reactivity profiles of bNt anti-HIV-1 MAbs, APS
MAbs and SLE serum
The HIV-1 bNt MAbs 2F5, 4E10 and 2G12, APS MAbs IS2, IS4, CL1 and CL15 (at
indicated concentrations) and an SLE serum were used to probe slides. (a) Validation of the
microarray platform using a panel of HIV-1 antigens and array control antigens. Positive
control Abs include antihuman IgG (as all MAbs tested are isotype IgG) and human IgG
(bound by the secondary Ab), whereas antihuman IgM and antimouse IgG/IgM are negative
controls. The bNt anti-HIV-1 MAbs 2F5, 4E10 and 2G12 bind their cognate epitopes in the
microarray but not to closely related HIV-1 antigens. Sequences of peptides and constructs
are shown, with the core 2F5 and 4E10 epitopes in bold and bold italics, respectively; Ala
substitutions in these epitopes are underlined. Cardiolipin is included as a control antigen
because of conflicting reports of binding by MAbs 2F5 and 4E10; here only MAb 4E10
bound cardiolipin, and only at high concentration (35 μg/ml). (b) Full heat-map
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representation of binding patterns of all MAbs and sera to all array antigens, including the
control antigens in part (a) for comparison. All data are representative of three independent
experiments. Color versions of both figures are included as Supplemental Fig. S7a and b and
raw log2-transformed MFI values are presented in Supplemental Fig. S8,
http://links.lww.com/QAD/A142.
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Fig. 4. Validation of the autoantigen microarray for detecting differences between HIV-1 bNt
Abs and APS autoAbs
Side-by-side comparison of ELISA and microarray results for antigens that were bound
significantly differently by anti-HIV-1 MAbs vs. APS MAbs. (a) MAbs 2F5, 4E10, 2G12,
IS4, CL1 and CL15 (100 nmol/l) were diluted in 5% (v/v) fetal calf serum (FCS) and
assayed against 1–2 μg of the indicated autoantigens immobilized in microplate wells. (b)
Relative microarray binding of MAbs 2F5, 4E10, 2G12, IS4, CL1 and CL15 to selected
autoantigens. For each antigen, the median fluorescence intensity (minus background) from
the highest binding Ab in the microarray was set to 1.0, and all other Abs normalized to
generate a scale based on the best-binding MAb.
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