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Abstract
This paper presents a novel algorithm for the 3D tomographic inversion problem that arises in
single-particle electron cryo-microscopy (Cryo-EM). It is based on two key components: 1) a
variational formulation that promotes sparsity in the wavelet domain and 2) the Toeplitz structure
of the combined projection/back-projection operator. The first idea has proven to be very effective
for the recovery of piecewise-smooth signals, which is confirmed by our numerical experiments.
The second idea allows for a computationally efficient implementation of the reconstruction
procedure, using only one circulant convolution per iteration.
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1. INTRODUCTION
Together with X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy,
electron cryo-microscopy (Cryo-EM) is one of the key techniques for determining the
structure of biological macromolecules. Cryo-EM can achieve resolutions in the nanometer
range and can be used for imaging a variety of subcellular components [1]. While X-ray
crystallography can provide sub-atomic resolutions, Cryo-EM has the advantage of a
simpler specimen preparation, as it does not require crystallization. It is also more suitable
for imaging large molecules than NMR.

One of the main challenges of Cryo-EM lies in the high radiation sensitivity of biological
samples. Even when using a low-dose mode, imaging a sample ultimately leads to its
destruction. The maximum tolerance is on the order of 5 to 10 electrons per square
Ångström, leading to signal-to-noise ratios (SNR) that are sometimes well below unity [2].

3D cryo-EM imaging techniques can be divided into two main categories: 1) electron
tomography, where the specimen is physically tilted along a single axis and imaged several
times, and 2) “single-particle” reconstruction, where the sample contains multiple copies of
the same molecule under different orientations, which are imaged only once. The first
category has the advantage that the projection angles are known, thus allowing for standard
tomographic inversion procedures. For the second category, the orientations of the
molecules are usually unknown. While this requires a broader computational framework for
the reconstruction, it potentially allows for improved SNRs (through data averaging) and
higher resolutions (thanks to the lower radiation and absence of a “missing-frequency
wedge”).
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The main steps of a full single-particle reconstruction procedure can be summarized as
follows.

1. Preprocessing: the individual molecules are detected and extracted from the
acquired data.

2. Class averaging: images with high correlation are averaged together to improve
their SNR.

3. Orientation estimation: this is done either via finding common lines in the
frequency domain (based on the projection-slice theorem stated below) or via
reprojection (based on a correlation measurement with templates generated from a
previous reconstruction). This step may also include a shift estimation.

4. Reconstruction: a 3D image is generated by a tomographic inversion algorithm.

5. Iterative refinement: the whole procedure is repeated from step 3, using the
outcome of the most recent reconstruction to improve the results.

The diversity of pattern-recognition and image-processing problems that need to be solved
at each of these steps constitutes very fertile grounds for algorithm development. Here we
will focus on the reconstruction step.

The reconstruction algorithms that are most commonly found in the literature—see [3] for a
recent review—are either based on a direct inversion in the frequency-domain (filtered back-
projection, gridding) or on a quadratic variational formulation. In particular, least squares
and regularized least squares formulations are still very much in use, typically leading to
linear reconstruction procedures such as the Landweber algorithm or the Kaczmarz (ART)
method.

The present work has two main aspects. First, we use a non-quadratic regularization that
favors estimates with a sparse wavelet expansion. Wavelet-domain sparsity has proven to be
successful paradigm for a wide range of other inverse problems—see e.g. [4] for a recent
application to optical microscopy. It leads to a non-linear variant of the Landweber
algorithm that incorporates a wavelet-domain thresholding operation at every iteration.

Second, we take advantange of the Toeplitz structure of the iteration operator, which allows
for a computationally effective implementation of the algorithm. Furthermore, we
precompute recurring quantities using non-uniform FFTs [5]. The Toeplitz property appears
in [5] and has been used e.g. for 2D magnetic-resonance imaging [6, 7, 8], but to our
knowledge it is not commonly exploited in the context of 3D Cryo-EM.

2. STRUCTURE OF THE IMAGING MODEL
2.1. Fourier-transform conventions

We will use the following definition for the Fourier transform of a D-dimensional function
f(x) = f(x1, …, xD):

Given an even integer N > 0, we define SN = {−N/2, …, N/2 − 1}. In this paper we will

consider D-dimensional discrete signals indexed in . To distinguish them from functions,
we will use square brackets, such as in f[n] = f[n1, …, nD]. With these conventions, the
Discrete Fourier Transform (DFT) is defined as
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2.2. The projection-slice theorem
In the context of electron microscopy, a molecule is characterized by its Coulomb potential,
a function of the three spatial coordinates f(x) = f(x1, x2, x3). A simple model for Cryo-EM
imaging is a projection along the axial direction of the microscope, say x3:

In practice we observe a large number of projections of the same molecule under different
(random) orientations. Each orientation is associated with a certain rotation matrix R and its
corresponding rotation operator ℛf(x) = f(Rx). With the above definition of the Fourier
transform, we have:

Property 1 (Projection-slice theorem).

In the sequel we will index the rotation operators and matrices corresponding to the different
orientations of the molecule by p ∈ {1, …, P}.

2.3. Discretization
Let us assume that f(x) is supported in the open ball B(r) = {x ∈ ℝ3 | ‖x‖ < r}, and that we
measure the samples

From these measurements, our goal will be to reconstruct the samples

When N is sufficiently large, the continuous Fourier transforms in the projection-slice
theorem can be approximated using Riemann sums. This leads to the following model
(which is in terms of the DFTs of the measurements).

Property 2 (Discretized imaging model).

For , define ωp,k = 2πRp[k1 k2 0]T/N. Then ĝ = Af + b̂, where the operator A
is defined as
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and b̂p[k] represents measurement and discretization errors.

In the remainder of this paper, the symbol f will refer to the discrete signal f[n].

3. WAVELET-REGULARIZED RECONSTRUCTION
Standard variational approaches to single-particle reconstruction are based on the
minimization of a cost functional of the form

where f) is a quadratic regularization term. A typical choice is the squared ℓ2 norm of a
discretized Laplacian applied to f, which favors smooth solutions as λ increases.

In this paper we will set f) = ‖W f‖ℓ1, where W represents a wavelet decomposition
operator (for simplicity, we will assume that the wavelet basis is orthonormal). The key idea
is that, compared to a standard ℓ2 norm, the ℓ1 norm behaves as follows: small coefficients
are more penalized and large coefficients are less penalized. Thus we favor solutions whose
energy is concentrated in a small number of large wavelet coefficients.

3.1. The thresholded Landweber algorithm
Using results from the theory of non-smooth convex optimization [9], it can be shown that f
is a minimizer if and only if it is a fixed point of the non-linear operator

Here τ is a step-size parameter, A* is the adjoint of A and Tλτ/2 denotes the a soft-
thresholding operation (see e.g. [4]). This leads to a non-linear iterative reconstruction
procedure defined by f(k+1) = U{f(k)}. Note that without thresholding (λ = 0), one recovers
the standard Landweber iteration.

An important observation is that the computation of h = A*ĝ can be done once and for all in
the beginning and thus the iteration essentially boils down to the application of the
symmetrized operator A*A. The adjoint of A can be expressed as

(1)

For the operator A*A, we will use the following result:

Property 3 (Toeplitz structure of the symmetrized operator).

where, for ,
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(2)

This property allows for a fast implementation of the symmetrized operator: once the
convolution kernel c[n] has been precomputed, it is sufficient to extend f[n] to the domain

 by zero-padding, to perform a circular convolution with c[n], and to restrict the result

back to . The circulant convolution can be computed efficiently in the frequency domain
using the FFT algorithm.

3.2. Back-projection and kernel computation
It remains to explain how to compute the back-projection h[n] and the kernel c[n]
efficiently. Formula (1), as well as its particular case (2), is not a standard DFT because the

frequencies ωp,k do not necessarily lie on the grid . We thus use the (type-1) non-
uniform FFT algorithm [5], which is based on the following steps:

1. interpolate the frequency coefficients on a (usually finer-resolution) uniform grid
(Cost: N2P));

2. apply a uniform FFT algorithm (Cost: N3 log N));

3. compensate for the effect of the interpolation procedure by a coefficient-wise
division (Cost: N)).

In practice the interpolation step often has the dominant computational cost. It requires
choosing a window function whose spatial expression w(x) and Fourier transform ŵ(ω) are
known analytically (typically a Gaussian). To compute (1) we can then define

whose inverse Fourier transform is

In particular, for x = n ∈ SD, we can write that

where ã(ω) = ∑k∈ℤD ã(ω − 2πk).

Replacing the last integral by a Riemann sum leads to
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where M is a (small) multiple of N that can be freely chosen. The above sum is an inverse
DFT of the coefficients ã[m] = ã(2πm/M), which are obtained through a non-uniform
interpolation procedure (with periodic boundary conditions).

4. NUMERICAL EXPERIMENTS
We now present the results of two numerical experiments on synthetic data of size N3 = 643.
To simulate measurements, the forward imaging model was implemented using a type-2
non-uniform FFT algorithm (see [5]). We used P = 500 projections and Gaussian white
noise of variance σ2 was added to each of them. To have a relative measure of the noise
level, we define the signal-to-noise ratio (SNR) as (Variance of the projections)/σ2.

In the first experiment, we used a 3D modified Shepp-Logan phantom as the original data f.
We compared the performance of the thresholded Landweber (TL) algorithm with a simple
least-squares (LS) formulation obtained for λ = 0, as well as a regularized least-squares
(RLS) formulation with a Laplacian regularization. The latter was implemented using the
steepest-descent algorithm described by Penczek in [3]. The initial estimate f(0) was set to
zero for all algorithms. We assigned a fixed budget of 50 iterations to each algorithm and
kept the estimate f(k) for which the SNR improvement 20 log10 (‖f(0) − f‖/‖f(k) − f‖) was the
highest. For the RLS and TL algorithms, λ was adjusted so as to maximize this quantity. For
TL, we used Haar wavelets with three decomposition levels, combined with the random-
shift technique described in [4]. Table 1 lists the results for three different input SNRs. It is
seen that the TL algorithm consistently yields better estimates.

In the second experiment, we used the 3D image of a ribosome as the original data, and the
input SNR was set to 1/8. This time we used Symlet4 wavelets for regularization. Visually
the result of the TL algorithm contains less background noise than the one obtained with
RLS. This is illustrated in Fig. 1, which shows cross-sections through the different data
volumes. The SNR improvements confirm this impression (RLS: 13.17 dB; TL: 14.26 dB).
In Fig. 2, a plot of the Fourier shell correlation (FSC) for this experiment suggests that the
TL algorithm achieves a slightly better resolution (see e.g. [2] for a discussion of the FSC).

5. CONCLUSION
We have presented an efficient implementation of the thresholded Landweber algorithm
using the specific structure of the single-particle reconstruction problem in Cryo-EM. It
requires only two initial non-uniform FFTs for computing the back-projection and the
Toeplitz kernel associated with the symmetrized operator appearing in the iteration. The
actual iterations are performed with standard FFTs.

The first results obtained here confirm the potential of wavelet regularization for 3D Cryo-
EM imaging. The algorithmic refinements that we have used carry over to the case where
the Contrast Transfer Function (CTF) of the system must be taken into account.

In the future we plan to perform more extensive comparisons with standard single-particle-
reconstruction software packages. Ultimately the goal is to incorporate the algorithm into a
full iterative-refinement loop. In this framework it is certainly worth investigating further
acceleration methods such as preconditioning or the multilevel scheme described in [4].
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Fig. 1.
Results of Experiment 2.
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Fig. 2.
Fourier-shell correlation for Experiment 2.
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Table 1

SNR improvements for Experiment 1.

Input SNR LS RLS TL

1/1 8.19 dB 8.42 dB 9.54 dB

1/8 4.74 dB 5.36 dB 7.27 dB

1/64 2.82 dB 3.66 dB 4.66 dB
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