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SUMMARY
For many medically relevant viruses, there is now considerable evidence that both viral and cellular kinases play
important roles in viral infection. Ultimately, these kinases, and the cellular signaling pathways that they exploit,
may serve as therapeutic targets for treating patients. Currently, small molecule inhibitors of kinases are under
investigation as therapy for herpes viral infections. Additionally, a number of cellular or host-directed tyrosine
kinase inhibitors that have been previously FDA approved for cancer treatment are under study in animal models
and clinical trials, as they have shown promise for the treatment of various viral infections as well. This review will
highlight the wide range of viral proteins phosphorylated by viral and cellular kinases, and the potential for
variability of kinase recognition sites within viral substrates to impact phosphorylation and kinase prediction.
Research studying kinase-targeting prophylactic and therapeutic treatments for a number of viral infections will also
be discussed. Copyright © 2011 John Wiley & Sons, Ltd.
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INTRODUCTION

The phosphorylation of viral and cellular proteins can
havemajor impacts on viral infection, replication, and
cytotoxicity in a host cell. The phosphorylation of
proteins is a reversible post-translational modifica-
tion. The addition of a negatively charged phosphate
group by kinases (and potential removal of the
phosphate group by phosphatases) can regulate a
viral protein’s stability, activity, and interactions
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with other cellular and viral proteins [1]. Up to
30% of all human proteins may be modified by ki-
nase action [2,3] and clearly a number of viral pro-
teins in human infections are also phosphorylated,
but this has not yet been cataloged or studied
systematically.

Phosphorylation events are ways in which infec-
tious agents can exploit cellular signaling pathways
for their own replication and propagation benefits
[4]. Upon a viral infection, a number of cellular
signaling pathways (including the MAPK and
Jak/STAT pathways) utilize cellular phosphoryla-
tion events stimulated by viral proteins [5,6]. For
example,WNVinfection of microglial cells is associ-
ated with an increase in p38 MAPK, ERK, and JNK
phosphorylation [7]. This phosphorylation and
activation of the p38 MAPK and ERK pathways
may induce chemokine and cytokine production
inWNV-infected microglial cells [7]. EBV LMP1 acti-
vates the PI3K/Akt pathway, as LMP1 expression
induces the phosphorylation of Akt; this signaling
pathway is involved in the actin cytoskeleton reorga-
nization of EBV-infected cells [8]. There are many
ways that viral infections can induce and/or inhibit
cellular signaling pathways, but it is clear that one
commonmechanism is through the phosphorylation
of cellular and viral proteins.
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This reviewwill focus onmedically relevant animal
viruses. Phosphorylation of plant viral proteins is
covered in various recent articles and reviews [9,10].
Here, we summarize various topics relating to phos-
phorylation during the course of medically relevant
viral infections. The variation in kinase recognition
motifs in viral proteins, the phosphorylation of non-
protein small molecules in viral therapies, and the
study of kinase inhibitors for use as treatments for
poxviruses and herpesviruses will be highlighted.
Viral proteins are phosphorylated by a
variety of cellular and viral kinases

Table 1 lists kinases that have been demonstrated to
phosphorylate viral proteins in a number of medi-
cally relevant viruses. The table includes viruses
encoding proteins that were phosphorylated in an
isolated experimental system by a single, identified
kinase. Although evidence such as phosphoryla-
tion/kinase prediction data and kinase inhibitor
data is also very useful, this table includes only viral
protein substrates that were experimentally phos-
phorylated by purified and/or isolated kinases. For
those viruses listed as having proteins phosphory-
lated by an “unknown kinase” in Table 1, the viral
proteins were shown to be phosphorylated, but
biochemical data have not yet identified the kinase
responsible. The table is representative of kinases
that have been found to phosphorylate viral proteins
and demonstrates the extensive role that phosphory-
lation plays in medically relevant viral infection, if
not 100% inclusive of the published literature. Viral
phosphorylation events in Table 1were found through
PubMed literature searches by using the search
terms “(specific virus)+kinase” and/or “(specific
virus)+phosphorylation.”
Once specific phosphorylation sites of viral

proteins are identified, mutational analyses are
necessary to determine any potential phenotypic
effects of a specific phosphorylation. For example,
the HIV-1 protein p6, which contains the late domain
involved in virus budding, was determined to be a
phosphoprotein phosphorylated bymultiple kinases
[11]. Further analysis identified a specific phospho-
site (Thr23) that was phosphorylated in vitro and
in vivo by the MAPK, ERK-2 [12]. When Thr23 was
mutated to an alanine (thus blocking phosphoryla-
tion of the site) within the virus, the mutant showed
reduced infectivity as well as defective viral particle
Copyright © 2011 John Wiley & Sons, Ltd.
maturation and budding [12]. Further work is neces-
sary to determine more precisely how exactly the
Thr23 phosphorylation is leading to the observed
effects on the virus, but this example highlights the
ability of phosphorylation at a specific site on a viral
protein to impact a viral life cycle. As a caveat, when
performing mutational analyses, it is important to
ensure that the non-phosphorylatable mutant
protein is stably expressed to similar levels as the
wild-type protein tomore clearly associate phenotypic
effects to the absence of a specific phosphorylation.

In a number of cases, multiple kinases are able to
phosphorylate the same viral protein (for example,
multiple cyclin-dependent kinases phosphorylate
human adenovirus E1A [13] and the HIV-1 Rev
protein is able to be phosphorylated by CKII,
MAPK, and CDK1 in vitro [14]). A number of
kinases, including CKI and CKII, phosphorylate
the HCV NS5A protein and contribute to NS5A’s
hyperphosphorylated form [15,16], although in this
specific case, CKI and CKII phosphorylate different
sites within NS5A. Although both of these
phosphorylations may be involved in transitioning
the viral protein from genome replication to parti-
cle assembly, the sites are distinct [16]. Although
the aforementioned in vitro data are helpful in the
preliminary identification of kinases, in vivo experi-
ments must also be performed to determine if
multiple kinases are in fact phosphorylating a viral
protein in an infected cell. By utilizing multiple
kinases to phosphorylate a viral protein, a virus
could have the ability to expand its host and cellu-
lar tropism and infect different species and cell
types with varying kinase profiles. Additionally, ki-
nase redundancy provides multiple opportunities
for a viral protein to be phosphorylated, ensuring
the chance for the phosphorylated protein to
induce pathogenic effects on the cell. Examples of
kinase redundancy exist for a number of viruses,
including poxviruses [17–19] and Ebola virus [20].
Vaccinia virus is phosphorylated by members of
both the Src and Abl kinase families [21], and these
kinases are involved in viral particle release [17].
Inhibiting either the Src or Abl family does not
block viral release, but inhibiting both kinase fami-
lies strongly inhibits the release of viral particles in
cell culture [17,19]. This example of kinase redun-
dancy illustrates how the presence of one kinase
or family of kinases may be sufficient to induce
a virus’ pathogenic effect, even in the absence of
the other kinases utilized by the virus. Kinase
Rev. Med. Virol. 2012; 22: 166–181.
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redundancy must also be considered when design-
ing and using kinase inhibitors, because inhibitors
are not necessarily entirely specific for one kinase
or kinase family. For example, Sprycel acts on both
Src and Abl cellular kinase families and has a more
profound effect in cell culture than an inhibitor that
only affects Abl. In the mouse though, this less
specific inhibition may not be helpful, as will be
discussed later [17].
A number of viral proteins have been found to

have phosphorylated forms, but the kinases responsi-
ble are yet to be identified. However, the importance
of phosphorylation in the viral life cycle can be
investigated even without the identity of kinase(s).
The Rubella virus capsid protein, for instance, is
phosphorylated at various sites by an unknown
kinase(s), and these phosphorylations are necessary
for optimal viral replication [22,23].

CKII and cyclin-dependent kinases
phosphorylate viral protein from diverse
viral families

A number of cellular kinases appear repeatedly in
Table 1, phosphorylating proteins from many differ-
ent viruses. For example, CKII has been shown to
phosphorylate proteins from nearly 50% of the
viruses listed. CDKs are also utilized by a number
of viruses. The use of CDKs by viruses is under-
standable, as kinases regulating the state of cellular
growth and replicationwould seem to be an obvious
target for viral manipulation. Table 1, however, is not
based on tissue data. Variable expression of kinases
in different tissues could affect which kinase(s) phos-
phorylate proteins from different viruses, depending
on which tissue(s) are infected by a particular virus.
There have been no systematic evaluations of which
cellular kinases are most central to different viral life
cycles. The preponderance of CKII, for example,
could be due to the ease of demonstrating phosphor-
ylation of viral proteins by CKII as opposed to CKII
being more important in viral life cycles than other
cellular kinases.

Virally encoded kinases are able to
phosphorylate viral and cellular substrates
and be autophosphorylated

In addition to cellular kinases phosphorylating viral
proteins, some viruses encode their own kinases
Copyright © 2011 John Wiley & Sons, Ltd.
(as first described by Bishop and Varmus) [24,25].
Virally encoded kinases may phosphorylate cellular
substrates [26–28], which may impact these cellular
proteins’ function and activity [29]. Viral kinases
may also phosphorylate other viral proteins and/or
be autophosphorylated [30], potentially affecting
viral replication or production within the cell. The
EBV-encoded protein kinase BGLF4 is able to phos-
phorylate a number of viral proteins, including
Epstein Barr nuclear antigen (EBNA-2) [31–34].
EBNA-2, a transcriptional regulator, is hyperpho-
sphorylated duringmitosis by cdk1 during the virus’
latent phase [35]. The viral kinase BGLF4 also
phosphorylates EBNA-2, in a manner similar to the
cellular kinase cdk1, during the lytic phase [34]. This
hyperphosphorylation of EBNA-2 inhibits EBNA-2’s
normal ability to transactivate the EBV LMP1
promoter; the regulation of the LMP1 promoter via
BGLF4’s EBNA-2 phosphorylation may induce the
continuation of EBV’s lytic replication cycle [34].
Although not all phosphorylations may have clear-
cut effects on viral life cycles, it is of use to investigate
the role of specific phosphorylations to more fully
understand the role of that viral protein in an
infected cell.

Viral kinases may also be autophosphorylated.
Autophosphorylation of cellular kinases can occur
intermolecularly [36] or intramolecularly [37].
Autophosphorylation can positively [38,39] or
negatively [40] regulate a cellular kinase’s catalytic
activity, potentially by altering the enzyme’s confor-
mation [41]. Phosphorylation of a cellular kinase can
also influence its interaction with other proteins —
for example, tyrosine phosphorylation of specific
residues within Src-family kinases is required for
Src’s interaction with proteins’ SH2 domains
[42–44]. In Table 1, rotavirus NSP5 [45], HCMV
UL97 [46], EBV BGLF4 [47], and HSV-1 UL13 [48]
have all displayed an ability to autophosphorylate,
although the full effects of these autophosphoryla-
tions on protein activity remain under investigation.
As reviewed in Michel and Mertens [49], HCMV
UL97 is autophosphorylated, but there are conflicting
data regarding the role of this autophosphorylation in
UL97’s ability to phosphorylate and interact with
other proteins. It is not definitively known whether
autophosphorylation of viral kinases will induce the
same effect(s), such as regulating catalytic activity
and recruiting proteins for interaction, as autophos-
phorylation of cellular kinases. Evidence comparing
the autophosphorylation of a specific site between
Rev. Med. Virol. 2012; 22: 166–181.
DOI: 10.1002/rmv



Figure 1. The PKG kinase recognition sites vary in flaviviral sub-
strates. The canonical PKG recognition site was identified in
cellular substrates [62]. However, PKG phosphorylation sites
(highlighted) that exist in non-canonical PKG recognition sites
have been experimentally identified in mosquito-borne flavi-
viruses [60,61]. Although there is some sequence conservation
between viruses at each site, the sequences surrounding each indi-
vidual site (449/452/450 versus 38) differ from each other, as well as
from the canonical PKG recognition motif. An “X” within the
sequence denotes any amino acid
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homologous cellular and viral (Rous sarcoma virus)
Src kinases suggests that the effects of a specific
autophosphorylation could differ between even
related cellular and viral kinases [39,50]. Further
studies are necessary to determine how autophos-
phorylations of viral kinases affect these proteins’
activity, structure, and function.

Viral proteins may be phosphorylated at
“non-canonical” kinase recognition motifs

Many kinases have characterized recognition motifs
— substrate sequences that are phosphorylatedmost
efficiently by a particular kinase. A number of motif-
recognition programs, such as NetPhosK [51] and
Scansite [52], have been developed to predict phos-
phorylation sites and kinases involved on the basis
of substrate sequences. Although very useful, these
search engines cannot account for some factors such
as a cellular localization signal distant from a kinase
substrate site that might sequester an otherwise
perfectly good substrate away from a kinase. Some,
but not all, of the research cataloged in Table 1 was
aided by bioinformatic queries to try to identify
specific phosphorylation sites within viral proteins,
but for all of the references listed in Table 1, there
are experimental data supporting that phosphoryla-
tion of viral proteins occurred as well. Because a
great deal of research has been performed in identi-
fying cellular substrates of kinases [53–56], it is
worth noting any variation in the amino acid
sequence of kinase recognition sites between cellular
and viral substrates that still allows for phosphoryla-
tion of the viral substrate.
A number of viral substrates are phosphorylated at

sites that match known kinase recognitionmotifs. For
example, the hepatitis C virus phosphoprotein NS5A
is phosphorylated in vitro by CKI at its Ser2204 site,
and in a peptide corresponding to this region of
NS5A, Ser2204 is phosphorylated most efficiently
when Ser2201 has previously been phosphorylated
[15]. The CKI phosphorylation of Ser2204 fits with
a canonical CKI recognition site that expects a
phosphorylated residue in the �3 position [57].
Variations in the CKI recognition site have been

noted in the literature and may depend on tertiary
structure as well as primary amino acid sequence
[58]. However, viral amino acid sequences that differ
from canonical kinase recognition sites may impact
the ability of current programs to predict phosphory-
lation and specific kinase recognition sites. Eichwald
Copyright © 2011 John Wiley & Sons, Ltd.
et al. [59] determined that CKI is capable of phosphor-
ylating rotavirus NSP5 at its Ser67 residue. Ser67
lacks a phosphorylated residue at the �3 position
and a string of three to four acidic residues, so the
Ser67 phosphorylation site deviates from the ideal
CKI recognition site [57]. As such, neither NetPhosK
nor Scansite programs recognize Ser67 as a potential
phosphorylation site, let alone a site able to be
phosphorylated by CKI. Likewise, the vaccinia virus
A36R protein is able to be phosphorylated at Tyr112
by both Src and Abl tyrosine kinases [21]. However,
the Tyr112 site does not sit within a canonical Abl
kinase recognition site, as it lacks a proline or phenyl-
alanine at the +3 position. Both NetPhosK and
Scansite predicted that only Srcwould phosphorylate
A36R Tyr112. In another example of kinase recogni-
tion site variation among related viruses, protein
kinase G (PKG) phosphorylates DENV NS5 protein
[60], YFV NS5, and WNV NS5 [61] at two sites that
both differ substantially from the canonical PKG
substrate sequence, R-K-R-K-S/T [62]. The flaviviral
PKG sites additionally differ from each other, with
no clear motif to be identified from these viral
substrates (Figure 1). Curiously, while DENV
Thr449 and YFV Ser450 sites are both phosphory-
lated by PKG within the same C-X-T/S-C motif
[60], NetPhosK analysis does not predict any Thr449
phosphorylation in DENVNS5 but correctly predicts
a PKG phosphorylation of Ser450 in YFV NS5. It is
possible that kinases may bind substrates in sites
distant from the recognition motif where phosphory-
lation occurs. These distant binding sites may be
Rev. Med. Virol. 2012; 22: 166–181.
DOI: 10.1002/rmv



172 J. A. Keating and R. Striker
important for phosphorylation of a substrate by a
specific kinase.
Whereas Scansite’s recognition of potential kinase

recognitionmotifs is based on experiments identifying
optimal sequences surrounding phosphorylation sites
within a peptide substrate library [63], NetPhosK is a
neural network-based program. Thus, NetPhosK’s
criteria for identifying a phosphorylation site and the
kinase responsible for the phosphorylation are not
easily defined by the programmers or users. Despite
the variations from known recognition sequences
and/or phosphorylation prediction analyses, bio-
chemical and cell culture data suggest that all of the
sites discussed earlier can be phosphorylated by the
kinases in question. Thus, although programs such as
these provide a good starting point for studying
phosphorylation of a viral protein, one must use
caution when predicting phosphorylation patterns
and the kinases involved in phosphorylating viral
substrates as there can be substantial differences
between actual and predicted phosphorylations/
kinases. Detection of specific phosphorylations has be-
come easier in recent years because of advancements
in phosphopeptide enrichment chromatography that
is compatible with mass spectrometry [64]. Overall,
various other experimental methods, including
phosphospecific antibodies and mass spectrometry,
are necessary for more rigorous identification of
in vivo viral (and cellular) site-specific protein
phosphorylations [65,66].
Nucleoside analogues are phosphorylated by
viral kinases

Nucleosides are a class of non-protein small
molecules that includes both drugs and nucleotide
precursors for DNA and RNA. Nucleosides fre-
quently contain phosphorylatable hydroxyl groups.
Typically, phosphorylation is required for nucleic
acid synthesis or blockage of synthesis through the
activation of a nucleoside analogue drug. Many
herpesviruses, including HSV strains and varicella
zoster virus, contain thymidine kinases that are
capable of phosphorylating nucleoside analogues
[67,68]. HCMV, does not encode its own viral thymi-
dine kinase but has a viral kinase (UL97) that is ca-
pable of phosphorylating nucleoside analogues [69].
A number of nucleoside analogues have been

developed to exploit these viral kinases for thera-
peutic purposes. Ganciclovir and acyclovir are
Copyright © 2011 John Wiley & Sons, Ltd.
guanosine analogues currently used in the treat-
ment of herpesviruses [70,71]. These nucleoside
analogues are first phosphorylated by viral kinases
[67,69] and subsequently phosphorylated by cellu-
lar kinases [72] to form nucleoside triphosphates.
The nucleoside triphosphates are incorporated by
viral DNA polymerases into the nascent DNA
strands, leading to chain termination in the case
of acyclovir [73] and internucleotide incorporation
in the case of ganciclovir [74]. Overall, the nucleoside
analogues inhibit viral DNA replication and thus
decrease herpesviral replication [71,75]. Cidofovir,
another nucleoside analogue that inhibits herpesviral
replication, is only phosphorylated by cellular
kinases before being incorporated into viral DNA
and terminating the DNA chain [76,77]. Different
nucleoside analogue drugs have varying efficacies
in inhibiting specific herpesviruses. For example,
ganciclovir is more effective than acyclovir in inhibit-
ing HCMVreplication, because of the increased accu-
mulation of ganciclovir triphosphate (as compared
with acyclovir triphosphate) in HCMV-infected cells
[70,78].

As with many drugs used in treatments for viral
infections, use of nucleoside analogues in patients
can lead to the development of resistance. Mutations
in viral thymidine kinases and/or kinases with
nucleoside analogue substrates (such as HCMV’s
UL97) can reduce or eliminate the kinase’s ability to
phosphorylate nucleoside analogues and lead to
viral resistance to the drugs [70,71,79]. On the other
hand, because cidofovir is not phosphorylated by
viral kinases, mutations in these kinases do not affect
cidofovir’s efficacy. Additionally, mutations in DNA
polymerases can alter the nucleoside analogue’s
inhibition of DNA synthesis, inducing resistance to
the nucleoside analogue treatment [80–82]. Whereas
acyclovir and its prodrugs are very well tolerated,
the considerable toxicities of ganciclovir (particularly
bone marrow suppression) and cidofovir (nephro-
toxicity) make strategies such as UL97 inhibition
(maribavir and others) and lipidated cidofovir
subjects of ongoing research. Overall, however,
nucleoside analogues that require viral and cellular
kinases have become a mainstay in the treatment of
herpesviral infections.

Although nucleoside analogues have been tradi-
tional antivirals, it turns out that a specific
benzimidazole riboside, maribavir [83], inhibits
the HCMV viral kinase UL97 rather than the viral
polymerase, and maribavir-resistant mutants map
Rev. Med. Virol. 2012; 22: 166–181.
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to UL97 [84,85]. Phase II studies showed treatment
efficacy in HIV, HCMV-coinfected patients, as well
as a role in prophylaxis in stem cell transplant
patients [86], but a phase III study was unable to
show superiority of a maribavir prophylaxis strategy
over a pre-emptive therapy with valganciclovir or
ganciclovir [87]. Retrospectively, problems with
study design may explain this disappointing result
[88,89], but regardless, inhibition of UL97 kinase
remains an avenue of investigation for antiviral
therapy [90].
Tyrosine kinase inhibitors as chemotherapies
for poxvirus infection

Poxviral proteins are phosphorylated by a number
of cellular tyrosine kinases (Table 1). Src-family
and Abl-family tyrosine kinases phosphorylate the
vaccinia viral membrane protein A36R [21,91].
The phosphorylation of A36R in cell-associated
enveloped virions induces actin tail formation
[91,92], allowing viral motility toward the cell sur-
face. Abl-family tyrosine kinases are involved in
the detachment of cell-associated enveloped virions
from actin tails, leading to the formation of extra-
cellular enveloped virus [17]. Extracellular envel-
oped viruses are hypothesized to be involved in
viral dissemination throughout an infected organ-
ism [93]. These effects of cellular tyrosine kinases
on viral motility and release are conserved in
variola and monkeypox viruses as well [17,19,93].
Because of the importance of tyrosine kinases in

poxvirus replication, ongoing studies are examining
the ability of tyrosine kinase inhibitors to serve as
treatments for poxviruses. Since the tyrosine kinase
inhibitor Gleevec (STI-571, imatinib mesylate) first
transformed treatment of chronic myeloid leukemia
over a decade ago [94,95], a number of tyrosine
kinase inhibitors are in use as therapies for cancers
[96–99]. In cells infected with poxviruses (vaccinia
[17,21], variola, and monkeypox [19]), Gleevec
inhibits the Abl family of tyrosine kinases [100] and
reduces poxviral extracellular enveloped virus
release. Prophylactic treatment of vaccinia-infected
mice reduced viral loads in ovaries at 4 days post-
infection and increased survival among lethally
challenged mice [17]. Therapeutic treatment with
Gleevec at 24 and 48h post-infection likewise
increased survival among vaccinia-infected mice
(although efficacy decreased as the time between
Copyright © 2011 John Wiley & Sons, Ltd.
infection and treatment increased) [19]. Additionally,
treatment with Gleevec reduced viral dissemination
to distal tissues in mice infected intranasally with
vaccinia [19]. Sprycel, an inhibitor of both Src-family
andAbl-family kinases, strongly inhibited extracellular
enveloped virus formation and release in cell culture.
However, unlike Gleevec, Sprycel (dasatinib) had
minimal effect onmouse survival and in vivo viral load,
possibly because of effects on the spleen and/or bone
marrow caused by the drug’s Src inhibition [19].

Poxviruses encode epidermal growth factor
(EGF)-like growth factors, which interact with the
EGF receptor (EGFR, ErbB-1) [101]. The virally
encoded EGF-like growth factors activate ErbB-1’s
tyrosine kinase activity to induce downstream
signaling cascades that promote viral replication
[102]. An FDA-approved small molecule inhibitor
of ErbB-1 tyrosine kinase activity, IRESSA (gefitinib),
decreased viral-induced ErbB-1 and ERK1/2 phos-
phorylation and activation [102]. IRESSA’s effect on
ErbB-1 activation and its downstream effects on
ERK1/2 were correlated with a decrease in in vitro
vaccinia viral infection [103] and viral spread,
indicated by a dose-dependent decrease in vaccinia
plaque number and size [102]. IRESSA is FDA-
approved, but its efficacy in inhibiting poxviral repli-
cation has yet to be demonstrated in a mammalian
system.

Other inhibitors of ErbB-1’s kinase activity, while
not yet FDA approved, have been studied in mice.
Such inhibitors include the 4-anilinoquinazoline
family, which includes the small molecule inhibitor
Canertinib (CI-1033) [104]. Canertinib reduced
variola and vaccinia extracellular enveloped virus
formation and/or release in cell culture [104]. In
vivo, prophylactic treatment with canertinib showed
modest effects in increasing vaccinia-infected mouse
survival, reducing viral titers in the lung, and
augmenting the immune response (increasing levels
of IL-1b, IL-1Ra, and IFN-g) [104]. Combining
canertinib chemotherapy with immunotherapy
(anti-L1R (Vaccinia protein) antibody treatment)
enhanced these effects, especially in post-infection
treatments [104].

Adsorption of a rabbit poxvirus (myxoma virus)
induces tyrosine phosphorylation of the cellular
CCR5 receptor and the tyrosine kinases Jak1 and
Jak2 [105]. Reducing the tyrosine phosphorylation of
Jak2 was also associated with a decrease in myxoma
viral replication [105], suggesting a role in poxviral
replication for these tyrosine kinases as well. Peptide
Rev. Med. Virol. 2012; 22: 166–181.
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mimetics of the suppressor of cytokine signaling
1 (SOCS-1) inhibit the tyrosine kinases Jak2 and
ErbB-1 [106]. These peptides significantly decreased
phosphorylation of Jak2 (and downstream STATs)
and ErbB-1 and decreased vaccinia virus replication
in cell culture [106]. In vivo, the mimetic peptides
(SOCS-1-KIR and Tkip) improved survival among
vaccinia lethally infected mice when administered
both prophylactically and therapeutically [106]. Distal
tissues had no detectable levels of virus at 6days after
an intranasal infection in Tkip-treated mice [106].
Some of these tyrosine kinase inhibitors have now

been FDA approved for use in cancer for several
years, and therefore, considerable knowledge has
been accumulated on their side effect profile and risk
benefit ration for specific cancers. For example, since
Gleevec was FDA approved in 2001, some form of
tyrosine kinase inhibition remains mainstay of treat-
ment for chronic myeloid leukemia [107]. The cancer
indications for IRESSA have been controversial, but
it was first FDA approved in 2003 for salvage use
in non-small cell lung cancer, and the decision to
use it or other tyrosine kinase inhibitors of the
epidermal growth factor receptor as opposed to
other chemotherapy with distinct modes of action
has more to do with efficacy and cost than toxicity
(IRESSA’s generally mild toxic effects, such as acne
and dermatologic conditions, respond to treatment
interruptions) [108]. The efficacy of tyrosine kinase
inhibitors against poxviruses in animal models is
promising but has yet to be used in patients to our
knowledge. Treatments, including cidofovir [109],
for poxviruses are currently limited and may have
toxic effects; thus, the potential development of
tyrosine kinase inhibitors as safe and effective
prophylactic and therapeutic treatments for pox-
viruses is a point of interest in current research.
Kinase inhibitors approved for transplant
immunosuppression may also effectively
treat viral infections

One use of kinase inhibitor(s) that has already become
a reality is in the treatment of virally infected patients,
including the treatment of Kaposi’s sarcoma (KS)
post-transplant by sirolimus/everolimus (rapamycin)
[110]. Sirolimus and everolimus are serine/threonine
kinase inhibitors of the cellular mTOR kinase. KS-
associated herpesvirus (also known as human herpes-
virus 8) can cause neoplastic hypervascular lesions in
Copyright © 2011 John Wiley & Sons, Ltd.
both immunocompromised and, rarely, immunocom-
petent patients infected by the virus. This is particu-
larly common in patients with HIV (20000� the rate
of the general population) or after a solid organ or
bone marrow transplant patient (500� the rate of the
general population). Although no single approach to
treating KS has become universally accepted, before
2004 it was common practice in transplant patients
who developed KS to limit the use of immunosup-
pressants, leading to the resolution of some, but not
all, KS-related disease. A complete stop in immuno-
suppression, though, left patients vulnerable to graft
rejection. In 2004/5, two groups [110,111] reported a
series of patient as well as accompanying animal
and tissue data suggesting that switching a solid
organ transplant patient’s post-transplant immuno-
suppressive cocktail from a cyclosporine-based
regimen to one that included sirolimus (rapamycin)
resulted in a complete resolution of their biopsy-
proven KS lesion. Subsequent reports (reviewed by
Stallone et al. [112]) suggest that other mTOR inhibi-
tors (everolimus) have the same effect and that mTOR
inhibition plays an important role in the resolution of
KS, although the degree to which the mechanism is
less immunosuppression versus blockage of phos-
phorylation event(s) remains a subject of research.
Mechanistic data included in these reports though
do show that endothelial cells from KS tumors have
upregulated vascular endothelial growth factor
(VEGF) receptor FLK-1/KDR and that mTOR inhibi-
tors block the interaction of VEGF with FLK-1/KDR
and limit the cellular response to VEGF.

An ever-widening array of kinase inhibitors is
becoming approved for cancer and other therapy.
Patients with virally associated cancers such as
HCV-related and HBV-related hepatocellular cancer,
as well as HPV-related cervical and head and neck
cancer, may receive these kinase inhibitor-based
therapies on the basis of their cancer diagnosis
[113,114]. Some of these kinase inhibitors have cost
and toxicity issues that must be taken into account
if research into their utility as antivirals is to
be undertaken. Nevertheless, as the efficacy of
sirolimus and everolimus has demonstrated, kinase
inhibitors could have a role to play in combating
viral infections.

CONCLUSION
A wide variety of both cellular and viral kinases
impact viral replication. These kinases phosphory-
late viral protein substrates and small non-protein
Rev. Med. Virol. 2012; 22: 166–181.
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molecules and promote the initiation and continua-
tion of cellular signaling pathways. Many medically
relevant viruses have evolved to exploit the activity
of these kinases to promote viral replication. Thus,
these cellular and viral kinases may serve as targets
for prophylactic and therapeutic treatments of viral
infections. Kinase-inhibitory compounds have previ-
ously been successful in treating various cancers,
and research is ongoing to determine these drugs’
efficacies in treating viral infections.
Copyright © 2011 John Wiley & Sons, Ltd.
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