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Abstract
BACKGROUND—Recent studies on GTPases have suggested that reduced Duo and Cdc42
transcript expression is involved in dendritic spine loss in schizophrenia. In murine models, Duo
and Cdc42 phosphorylate PAK1, which modifies the activity of regulatory myosin light chain
(MLC) and cofilin by altering their phosphorylation. Therefore, we hypothesized that in
schizophrenia abnormal Duo and Cdc42 expression result in changes in MLC and/or cofilin
phosphorylation, which may alter actin cytoskeleton dynamics underlying dendritic spine
maintenance.

METHODS—We performed Western blot protein expression analysis in postmortem brains from
patients diagnosed with schizophrenia and a comparison group. We focused our studies in the
anterior cingulate cortex (ACC) (n=33 comparison group; n=36 schizophrenia) and dorsolateral
prefrontal cortex (DLPFC) (n=29 comparison group; n=35 schizophrenia).

RESULTS—In both ACC and DLPFC, we found a reduction of Duo expression and PAK1
phosphorylation in schizophrenia. Cdc42 protein expression was decreased in ACC, but not in
DLPFC. In ACC, we observed decreased PAK1 phosphorylation and increased MLC (pMLC)
phosphorylation, while in DLPFC pMLC remained unchanged.

DISCUSSION—These data suggest a novel mechanism that may underlie dendritic spine loss in
schizophrenia. The increase in pMLC seen in ACC may be associated with dendritic spine
shrinkage. The lack of an effect on pMLC in DLPFC suggests that in schizophrenia PAK1
downstream pathways are differentially affected in these cortical areas.
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Introduction
Schizophrenia is a chronic psychiatric illness that affects approximately 1% of the world’s
population. A consistent finding in postmortem brain in patients with schizophrenia is a
reduction in dendritic spine density (1–4), although the cause of dendritic spine loss remains
unknown. One hypothesis proposes abnormalities of glutamatergic pathway connectivity in
schizophrenia. Decreased presynaptic glutamatergic input may contribute to NMDA
receptor hypofunction and cytoskeletal reorganization, which could in turn result in reduced
number of dendritic spines. Supporting this model, several proteins that stabilize the actin
cytoskeleton, including Reelin, Fragile X mental retardation protein (FMRP) and disrupted
in schizophrenia-1 (DISC-1) have been shown to be abnormally expressed in the brain in
schizophrenia (5–7). Because actin filament remodeling is critical for dendritic spine
formation, maintenance and plasticity (8), understanding the molecular pathways that can
regulate actin cytoskeleton dynamics may permit the elucidation of the mechanism of
dendritic spine loss in schizophrenia.

Small GTP binding proteins of the Rho family, such as Rac-1 and Cdc42, are known to
regulate actin dynamics and newly formed actin filament stability (9). Recently, it has been
reported that calcium influx through the NMDA receptor activates Duo (murine Kalirin-7), a
Rho guanine nucleotide exchange factor (GEF) that directly regulates Rac-1 activity, acting
as a linking factor between synaptic proteins and the cytoskeleton (10). A pathway
downstream of Duo involves activation of PAK1, a regulator of actin cytoskeleton
dynamics, and provides a possible mechanistic link to synaptic activity and circuit plasticity,
both of which are abnormal in schizophrenia (7, 9, 11). Supporting the suggestion that Duo
may underlie some abnormalities seen in schizophrenia, Kalirin-7 (Kal-7) knockout mice
have dendritic spine loss and behavioral abnormalities felt to be similar to those seen in this
illness (12, 13), and postmortem brain studies have found decreased mRNA expression of
Duo and Cdc42 in DLPFC in schizophrenia (14). Interestingly, both Duo and Cdc42 activate
PAK1 (15), leading to cytoskeletal rearrangement through two downstream pathways.
PAK1 stabilizes actin filament dynamics through its interaction with LIMK1 and
downstream inhibition of cofilin, an actin depolymerization agent (9). PAK1 also inhibits
myosin light chain kinase (MLCK), an enzyme that specifically phosphorylates MLC (16).
MLC phosphorylation has been shown to be critical for long term structural actin
cytoskeleton stability, which underlies molecular processes leading to long term memory
consolidation (17) (Fig. 1).

In this study, given previous findings of dendritic spine abnormalities in schizophrenia, we
sought to explore molecular changes that might underlie this observation. Accordingly, we
focused on potential disruption of the PAK1 pathway in schizophrenia. We assayed by
Western blot analysis proteins associated with this pathway in the DLPFC and ACC from
subjects with schizophrenia and a comparison group. We found that the Duo/PAK1 pathway
is disrupted in the ACC and DLPFC in schizophrenia, suggesting that abnormal regulation
of this pathway may have a direct effect on cytoskeletal proteins which could underlie
dendritic spine loss in this illness.

Methods and materials
Subjects, tissue acquisition and preparation

Samples from the ACC and DLPFC were obtained from the Mount Sinai Medical Center
brain collection, as previously described (18) (Table 1). The same subjects were used in both
DLPFC and ACC studies, except 5 additional subjects were available for study in the ACC
experiments.
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Briefly, patients diagnosed with schizophrenia using DSM-III-R criteria (19) were recruited
prospectively. Each patient had a documented history of psychotic symptoms before the age
of 40, and at least 10 years of hospitalization with a diagnosis of schizophrenia made by two
clinicians. The subjects were evaluated using multiple instruments and clinical assessments
including NINCDS-AIREN criteria for vascular dementia; NINCDS, DSMIV and CERAD
for dementia; consensus criteria for a clinical diagnosis of probable or possible diffuse Lewy
body disease; UPDRS for Parkinson’s disease; clinical assessment for frontotemporal
dementia; medical history for psychiatric illnesses; history of drug or alcohol abuse; and
tests of cognition including the MMSE and CDR. In addition, each brain was examined
neuropathologically by systematized macro- and microscopic evaluation using CERAD
guidelines. The subjects studied did not show sufficient neuropathological evidence to meet
criteria for neurodegenerative disorders including Alzheimer’s disease (20). Comparison
subjects were also evaluated for and free from psychiatric illnesses, history of substance
abuse and neurodegenerative disorders. Exclusion criteria included substance abuse, suicide,
or coma for more than six hours before death. Next of kin consent to perform an autopsy on
the body and brain for diagnostics and research purposes was obtained for each subject.

At time of autopsy, grey matter from DLPFC (area 9) and ACC (area 32) of the left
hemisphere was dissected. The tissue was pulverized using small amounts of liquid nitrogen
and stored at −80°C. Samples were then reconstituted and homogenized in 5mM Tris-HCl,
pH 7.4, 0.32M sucrose and a protease inhibitor tablet (Complete Mini, Roche Diagnostics,
Manheim Germany) using a Power Gen 125 homogenizer (Thermo Fisher Scientific,
Rockford, Illinois, USA). The homogenate was assayed for protein concentration using a
BCA protein assay kit (Thermo Fisher Scientific, Rockford, Illinois, USA) and stored at
−80°C until use. In some experiments, not every subject was available for study.

Rodent antipsychotic drug treatment
Male Sprague-Dawley rats (250g) were treated with haloperidol decanoate for 9 months.
Rats were housed in pairs and injected intramuscularly every three weeks, for a total of 12
injections, with vehicle (sesame oil) or 28.5mg/kg of haloperidol decanoate in sesame oil.
This dose was chosen based on previous reports in the literature (21–24). Rats were
sacrificed by decapitation and the brains were immediately removed, dissected on wet ice,
and the left anterior cortex was collected and stored at −80°C until it was prepared for
Western blot analysis as described above. Ten haloperidol treated and ten control rats were
used for each experiment. These experiments were carried out according to UAB guidelines
and all procedures complied with IACUC regulations.

Western blot analysis
Western blot analyses were performed as previously described (18, 25). Briefly, samples
were diluted in ultrapure water and a reducing buffer to a concentration of 20μg of protein
per 10 μl and denatured at 70°C for 10 minutes. For each subject, 20μg total protein per lane
was loaded in duplicate into a 4–12% gradient polyacrylamide bis-tris gel (Invitrogen,
Carlsbad, California). Subjects were randomly distributed among blots. The antibody
concentration and the amount of protein loaded were optimized for each protein to ensure
that detection was within the linear range of the assay and that the primary antibody was
present in excess. The coefficient of variation for each assay ranged from 6.5 to 26% (Table
S1 in the Supplement).

After electrophoresis, samples were transferred to PVDF membranes using Bio-Rad semi-
dry transblotters (Hercules, California). Membranes were blocked with Li-Cor blocking
buffer (Lincoln, Nebraska) for total proteins or 5% bovine serum albumin (BSA) in
phosphate buffer solution (PBS) for phospho-proteins for one hour at room temperature.
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Blots were then probed with primary antisera diluted in Li-Cor or 1% BSA buffer (Table S1
in the Supplement) overnight at 4°C, except for loading controls that were incubated for one
hour at room temperature (26). Membranes were washed twice for fifteen minutes in PBS
and probed for one hour at room temperature with goat anti-mouse, goat anti-rabbit or rabbit
anti-goat IR-Dye 670 or 800cw labeled secondary antibody diluted in Li-Cor or 1% BSA
buffer. After two 15minute washes in PBS, membranes were imaged using a Li-Cor
Odyssey scanner. Loading control proteins (VCP, 110kDa and β-tubulin, 55kDa) were
chosen for each assay based on the molecular weight of the target protein to avoid potential
interference based on similar sizes. No significant differences in either VCP or β-tubulin
expression between diagnosis groups were found in DLPFC or ACC (Figure S1 in the
Supplement). Full blot images for all proteins studied are shown in Figure S2 in the
Supplement.

Data analysis
Boxes were manually placed around each band of interest to obtain integrated intensity
values using Odyssey 3.0 analytical software (Li-Cor, Lincoln, Nebraska). Intra-lane
background was subtracted. For each band of interest, the value was normalized to the in-
lane value of β-tubulin or VCP. For each subject, duplicate normalized data were averaged
and the resulting values were used for statistical analysis.

Data were analyzed using Statistica software (Statsoft, Tulsa, Oklahoma). Correlation
analyses were performed to determine associations between the dependent variables and
tissue pH, age and postmortem interval (PMI). One-way analysis of covariance (ANCOVA)
was used to analyze the data when significant correlations with potential covariates were
found, otherwise one-way analysis of variance (ANOVA) was used. For the rat experiment,
one-way ANOVA was used. For all tests α=0.05.

Results
Proteins of the Duo/Rac-1/PAK-1 pathway are abnormally expressed in frontal cortex in
schizophrenia

An earlier study reported decreased transcript levels of Duo and Cdc42 in DLPFC in
schizophrenia (14). Because this report relied on transcript expression, we first determined if
the protein expression levels of Duo and Cdc42 are also abnormal in schizophrenia. Western
blot analysis of Duo and Cdc42 expression revealed decreased Duo in both ACC and
DLPFC in schizophrenia (Fig. 2A, B. ACC: F(1,47)=10.9, p=0.002; DLPFC: F(1,45)= 10,
p=0.003) while Cdc42 expression was decreased only in ACC in these subjects (Fig. 2C, D.
ACC: F(1,45)=8.2, p=0.006; DLPFC: F(1,41)=2.6, p=NS).

Because Cdc42 and Duo activate PAK1 directly and indirectly, respectively, we next sought
to determine if decreased expression of these proteins is in turn associated with diminished
activation of PAK1. Activation of PAK1 is a two-step process including
autophosphorylation of a regulatory domain at serine 144, followed by phosphorylation of
the catalytic domain at threonine 423 (27). Western blot analysis showed that total PAK1
expression was unchanged in ACC but was increased in DLPFC in schizophrenia (Fig. 2E,
F. ACC: F(1,66)=1.8, p=NS; DLPFC: F(1,59)=9.6, p=0.003), while autophosphorylation of
PAK at serine 141 was unchanged in both areas (pPAKS141, Fig. 2G, H). On the other hand,
autophosphorylation at the catalytic site threonine 423 was significantly reduced in both
areas in schizophrenia (pPAKT423, Fig. 2I, J. ACC: F(1,66)=17.4, p=0.0001; DLPFC:
F(1,53)=14.1, p=0.0004), consistent with decreased PAK1 activity in these brain regions in
this illness.
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Myosin light chain phosphorylation is increased in ACC but not DLPFC in schizophrenia
In rodents, PAK phosphorylation leads to inhibition of MLCK, an enzyme known to
phosphorylate MLC at serine 19 (pMLCS19) (28, 29). Therefore, we hypothesized that the
decrease in PAK1 activity seen in schizophrenia would result in increased MLCK activity
with a concomitant increase in MLC phosphorylation. Our expression analyses showed that
MLC phosphorylation was increased in ACC in schizophrenia (Fig. 3A F(1,67)=10,
p=0.002), although there was no change in MLC phosphorylation in DLPFC (Fig. 3B
F(1,61)=1.07, p=NS). Total MLC expression was unchanged in both areas (Fig. 3C, D). To
see if pMLCS19 levels directly correlated with pPAKT423 expression, we evaluated within-
subject correlations of these measures (Figure S3 in the Supplement). We did not find a
linear correlation between pMLCS19 and pPAKT423 expression levels in either diagnostic
group.

LIMK1/cofilin pathway is not abnormal in schizophrenia
Another downstream target of PAK1 is LIMK1. In contrast to its action on MLCK, PAK1
phosphorylation of LIMK1 at threonine 508 (pLIMK1T508) results in its activation (30).
Active LIMK1 then phosphorylates and inactivates cofilin, a protein that stabilizes actin
filaments and regulates dendritic spine development (31). Given that PAK1 activity is
decreased in schizophrenia, we tested the hypothesis that LIMK1/cofilin downstream
pathway would be affected as well. We found no change in expression of total (Fig. 4A, B)
or phosphorylated LIMK1 (Fig. 4C, D) in schizophrenia. Expression of total cofilin (Fig.
4E, F) and its phosphorylated form (Fig. 4G, H) were also unchanged in both cortical areas,
suggesting that in these brain areas, abnormal expression of PAK1 is not associated with
alterations of the LIMK1/cofilin pathway.

Although postmortem interval (PMI) varied among subjects, we did not find an association
between PMI and the expression of any of the phospho-proteins we assayed (Figure S4 in
the Supplement). Additionally, no correlations were found between age at time of death
(AOD) and the expression levels of any of the proteins studied (Figures S5 and S6 in the
Supplement).

Protein expression in brain tissue of rats treated with antipsychotic medication
Because most of the schizophrenia subjects used in this study were receiving antipsychotic
treatment at the time of death, we tested the possibility that chronic treatment with
antipsychotic medications may explain the differences in protein expression we observed in
schizophrenia. We measured protein expression in frontal cortex from rats chronically
treated with haloperidol compared to a vehicle treated control group. Consistent with
previous studies on mRNA expression in brains of monkeys treated with antipsychotics (14),
we found no differences in protein expression of any of the proteins we studied in the human
experiments (Fig. 5). In addition, we compared protein expression levels in schizophrenia
patients on or off antipsychotic medications for more than 6 weeks at the time of death.
These post-hoc analyses showed no significant changes associated with medication status
for the proteins studied in either cortical area (Figures S7 and S8 in the Supplement). Taken
together, these data suggest that chronic antipsychotic drug treatment likely does not account
for the protein expression changes we found in schizophrenia.

Discussion
Dendritic spine loss has been reported in schizophrenia (2–4, 32, 33) yet the underlying
mechanism of this observation has not been determined. Murine studies have demonstrated
that a loss of afferent input can result in reduced number of dendritic spines (34–37). In
addition, reduced excitatory presynaptic input (1, 4, 38, 39) and diminished neuronal soma
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volume (1, 40–42) have been reported in schizophrenia. On the other hand, developmental
findings have suggested that decreased axonal input is a consequence of dendritic spine loss
(43), which in schizophrenia may be caused by synaptic overpruning, a hypothesis that has
been previously proposed (44–47). Our studies support a hypothesis that intrinsic molecular
pathways critical for dendritic spine structural and molecular maintenance are abnormal in
schizophrenia.

The actin cytoskeleton and its regulating proteins are essential for synapse formation,
maturation, stability and plasticity (9, 11, 17, 48–52). Previous findings have suggested
cytoskeletal dysfunction underlying dendritic spine loss (7, 14, 53, 54), supported by
previous proteomic studies (55), we suggest a downstream molecular pathways that might
lead to actin rearrangement in schizophrenia. Here, we report abnormalities in a GTPase
downstream pathway resulting in increased MLC phosphorylation, demonstrating
modifications in proteins that directly interact with the actin cytoskeleton in schizophrenia.

Selective disruption of myosin II in the hippocampus has been reported to cause deficient
long term memory consolidation (17) and dendritic spine abnormalities (48, 51), both of
which have been noted in schizophrenia (56). MLC phosphorylation is critical for myosin II
activation, a key step for synaptic transmission and maintenance of synaptic structure (48,
51, 57). Our findings suggest a mechanism where decreased phosphorylation of PAK1
increases MLC phosphorylation, which in turn may increase the rate of actin
depolymerization, and lead to dendritic spine collapse in schizophrenia. In support of this
model, studies in rodents have found diminished dendritic spine dynamics and density as a
result of decreased Rac-1 activity (58, 59), and increased neurite retraction after activating
MLC either by decreasing its dephosphorylation or by overexpressing a dominant active
form (60). Therefore, abnormalities in signaling leading to MLC phosphorylation may
account for some of the synaptic changes seen in this illness. Although our results suggest a
possible mechanism underlying synaptic dysfunction in schizophrenia, it is important to note
that these changes were found in total cortical homogenates, and not at the cellular level.
Further studies are necessary to define mechanisms at the cellular level.

The LIMK1/cofilin pathway is also downstream of PAK, and is involved in actin filament
stability. Disruption of LIMK1/cofilin causes abnormal dendritic spine morphology and
decreased basal neurotransmitter release (61) but is not critical for long term potentiation,
memory formation, retrieval or consolidation (9, 11). Given that we found abnormal PAK
phosphorylation in both ACC and DLPFC in schizophrenia, we investigated the possibility
of disruption of this pathway as well. The lack of abnormality of LIMK1/cofilin we found in
schizophrenia is also found in Fragile X syndrome, suggesting that these illnesses may be
associated with disruption of long term actin cytoskeleton stability as opposed to immediate
actin filament regulation (11).

Interestingly, there is a lack of MLC phosphorylation changes in DLPFC despite Duo/PAK1
pathway abnormalities. A possible explanation of this discrepancy is suggested by the
increase in total PAK1 that we found only in DLPFC. Similar data have been reported in
Fragile X syndrome, where it was proposed that since PAK follows third order kinetics, the
increase in substrate (PAK1) and decrease in drivers (Duo) would result in decreased
phosphorylation at the catalytic site of PAK (11). This model, however, does not explain the
increase in PAK1 we found in DLPFC in schizophrenia, which may be due to abnormal
trafficking on microtubule associated proteins (62) or myosin motors. Alternatively, the lack
of increased MLC phosphorylation might be the result of a compensatory increase in myosin
light chain phosphatase (MLCP) activity. MLCP inactivates MLC by driving its
dephosphorylation (63). Activation of MLCP is inhibited by the RhoA/ROCK pathway (64,
65). Increased MLCK activity may drive a compensatory downregulation of the RhoA/
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ROCK pathway in the DLPFC to increase MLCP activity and maintain MLC
phosphorylation (Fig. 6). In support of this, previous studies in the prefrontal cortex in
schizophrenia have found decreased expression of RhoA mRNA (14), which could lead to
upregulation of MLCP function. Alternatively, loss of dendritic spines in DLPFC in
schizophrenia may be a result of differential changes in PAK1 downstream pathways, such
as actin branching mechanisms involving the Arp2/3 complex (66), or actin polymerization
regulators such as cortactin (67).

To address the possibility that chronic antipsychotic treatment that the subjects with
schizophrenia had received could alter the expression or phosphorylation of the proteins we
studied, we tested the effect of long term administration of haloperidol in rats, and found
that none of the proteins that we studied were changed by this treatment. These data,
together with a lack of difference in protein expression levels in schizophrenia patients on or
off antipsychoatic medication for more than 6 weeks at the time of death, suggest that
treatment with antipsychotics is not likely to account for the differences we found in this
study.

In summary, we found reduced levels of expression of key components of a cytoskeletal
regulation pathway in frontal cortical areas in schizophrenia. Disruption of the Duo/Rac-1/
PAK1 and Cdc42/PAK1 pathways in ACC, presumably leading to an increase in MLC
phosphorylation, suggests a mechanism to explain cytoskeletal dysfunction in schizophrenia,
and may reflect an underlying mechanism to explain dendritic spine loss in this illness.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Duo/Cdc42 pathways. NMDA receptor activity drives calcium influx into the dendritic
spine, which in turn activates CAMKII which can phosphorylate Duo. Activated Duo drives
Rac-1 mediated phosphorylation of PAK1. Cdc42 activity also results in PAK1
phosphorylation in a Rac-1 independent pathway. Activated PAK1 has opposite effects on
different downstream pathways: it inhibits MLCK in turn decreasing phosphorylation of
MLC, but also activates LIMK which inhibits cofilin, an actin depolymerizing agent.
CAMKII: Calcium/calmodulin dependent kinase II, Rac-1: Ras-related C3 botulinum toxin
substrate 1, Cdc42: cell division cycle 42. PAK1: p-21 activated kinase 1, MLCK: myosin
light chain kinase, MLC: regulatory myosin light chain. LIMK1: LIM domain kinase.
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Figure 2.
Decreased Duo expression is associated with decreased phosphorylation of PAK1 in frontal
cortex in schizophrenia. Scatter plots of protein expression levels in ACC and DLPFC of
comparison subjects (C) and patients with schizophrenia (S). Duo (A, B) expression is
decreased in both areas in schizophrenia, while Cdc42 (C, D) expression is reduced in ACC.
PAK1 is elevated in DLPFC but not in ACC (E, F). PAK1 phosphorylated on serine 141
(pPAKS141) was not changed (G, H), but in both ACC and DLPFC decreased expression of
PAK1 phosphorylated at threonine 423 (pPAKT423) was seen (I, J). *=p<0.05, **=p<0.01,
one-way ANOVA. Data are expressed as a ratio of the optical density value for the protein
of interest to the optical density of the β-tubulin or VCP band from the same subject.
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Figure 3.
Decreased PAK1 phosphorylation is associated with increased MLC phosphorylation.
Protein expression levels of the active phosphorylated form of MLC (pMLCS19) (A, B) and
total MLC (C, D) were quantified in ACC and DLPFC. Data are expressed as a ratio of the
optical density value for the protein of interest to the optical density of VCP from the same
patient. **=p<0.01, one-way ANOVA. C=comparison subjects, S=schizophrenia subjects.
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Figure 4.
LIMK1/cofilin pathway is unaffected in schizophrenia. Total (A, B) and phosphorylated
(pLIMK1T508) LIMK1 protein levels in ACC and DLPFC of patients diagnosed with
schizophrenia are unchanged relative to comparison subjects (C, D). Similarly, no
differences are found in expression of the downstream effector cofilin (E, F) and its
phosphorylated form (pCofilinS3) (G, H). C=comparison subjects, S=schizophrenia. Data
are expressed as the ratio of the optical density value for the protein of interest to the optical
density for β-tubulin or VCP from the same subject.
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Figure 5.
Chronic treatment of rats with haloperidol does not affect protein expression in frontal
cortex. Western blot analysis of Kalirin-7 (Kal-7, A), Cdc42 (B), PAK1 (C), pPAKT423 (D)
and pMLCS19 (E) revealed no differences in the protein expression levels between vehicle
(C) and haloperidol (H) treated rats. Data are expressed as a ratio of the optical density value
for the protein of interest to the optical density of the band for VCP from the same animal.
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Figure 6.
Schematic representation of MLC phosphorylation regulation by PAK1 and the Rho/ROCK
pathways. Duo/Rac-1/PAK1 and Cdc42/PAK1 pathways both lead to MLCK inhibition and
a decrease in MLC phosphorylation. RhoA/ROCK pathway activation results in MLCP
inhibition, thus increasing MLC phosphorylation. RhoA: Ras homolog A, ROCK: Rho-
associated protein kinase 1, MLCP: myosin light chain phosphatase.
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Table 1

Subjects.

DLPFC ACC

Comparison Schizophrenia Comparison Schizophrenia

n 29 35 33 36

F/M 17/12 11/24 19/14 11/25

Age 78.1 ± 2.7 74.4 ± 2.0 77.8 ± 2.4 74.2 ± 1.9

pH 6.43 ± 0.05 6.37 ± 0.05 6.43 ± 0.04 6.38 ± 0.05

PMI (h) 8.2 ± 1.3 12.6 ± 1.1 8.3 ± 1.2 13.4 ± 1.3

On/Off Rx 0/29 24/11 0/33 25/11

ACC: Anterior cingulate cortex, DLPFC: Dorsolateral prefrontal cortex. F: female, M: male, PMI (h): Postmortem interval in hours. Off
medication indicates patients that had not received antipsychotic medications for 6 weeks or more at the time of death.

Biol Psychiatry. Author manuscript; available in PMC 2013 May 15.


