Skip to main content
. Author manuscript; available in PMC: 2013 Feb 21.
Published in final edited form as: Chem Commun (Camb). 2012 Jan 17;48(16):2204–2206. doi: 10.1039/c2cc17406e

Table 2.

Synthesis of cyclohexenone derivatives via Rh-catalyzed 1,3-acyloxy migration, [4 + 2] cycloaddition, and hydrolysisa

Entry Substrate Product Yield
graphic file with name nihms369201t2.jpg
1 R = H, 4c 7c 95%
2 R = Me, 4d 7d 95%
3 R = Ph, 4e 7e 92%
4 R = 4-BrC6H4, 4f 7f 87%
5 graphic file with name nihms369201t3.jpg 90%
6 graphic file with name nihms369201t4.jpg 86%
7 graphic file with name nihms369201t5.jpg 95%
8 graphic file with name nihms369201t6.jpg 91%
9 graphic file with name nihms369201t7.jpg 86%
graphic file with name nihms369201t8.jpg
10b,d R = t-Bu, 4l graphic file with name nihms369201t9.jpg (Z/E > 20 : 1)cZ-7l 61% 7l′: 30%
11b R = i-Pr, 4m 7m (Z/E = 3.7 : 1)cZ-7m 58%
12b R = CH2OTBS, 4n 7n (Z/E = 3 : 1)cZ-7n 52%
a

Condition A: (1) [Rh(CO)2Cl]2 (5 mol%), DCE, 80 °C, 5–20 min; (2) K2CO3, MeOH.

b

Condition B: (1) [Rh(CO)2Cl]2 (5 mol%), [(CF3)2CHO]3P (20 mol%), DCE, 80 °C, 15–20 min; (2) K2CO3, MeOH.

c

The ratio was determined by 1H NMR of the crude product.

d

The substrate was heated at 80 °C for 45 min under condition B.