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Abstract

Background: Magnetic resonance imaging (MRI) is an important tool for cardiac
research, and it is frequently used for resting cardiac assessments. However, research
into non-pharmacological stress cardiac evaluation is limited.

Methods: We aimed to design a portable and relatively inexpensive MRI cycle
ergometer capable of continuously measuring pedalling workload while patients
exercise to maintain target heart rates.

Results: We constructed and tested an MRI-compatible cycle ergometer for a 1.5 T
MRI scanner. Resting and sub-maximal exercise images (at 110 beats per minute)
were successfully obtained in 8 healthy adults.

Conclusions: The MRI-compatible cycle ergometer constructed by our research
group enabled cardiac assessments at fixed heart rates, while continuously recording
power output by directly measuring pedal force and crank rotation.
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Background
Magnetic Resonance Imaging (MRI) and echocardiography are the most common non-

invasive methods for assessing left ventricular function and structure. Previous studies

have highlighted the advantages of MRI over echocardiography [1,2]. MRI scanning

allows for three-dimensional estimation that is not affected by preload conditions, geo-

metric assumptions, or the skill of the operator [3]. The use of MRI technology pro-

vides clear definitions of endocardial and epicardial borders, allowing an accurate and

reproducible evaluation of left ventricular mass and volume throughout the cardiac

cycle. For these reasons MRI scanning is considered the “gold standard” for cardiac

function and structure evaluation.

Magnetic resonance imaging has become an important tool for cardiac research, and

resting cardiac assessments are now routinely performed. Dobutamine stress tests dur-

ing MRI scanning are commonly used to evaluate the cardiac function at a target heart

rate [4]. However, this is an invasive procedure with risk of severe side effects and

therefore not always suitable for a research environment, especially if the research

involves children and adolescents [4]. Research into MRI-based exercise cardiac
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evaluation is limited [5-9], even though it can unmask abnormalities that are not seen

at rest. Commercially available ergometers use ‘fixed workloads’, where the pedalling

resistance is maintained regardless of pedalling frequency. This method provides the

most accurate assessment of myocardial responses to a given external stress, but is not

effective in controlling the heart rate at which images can be obtained [10]. In addi-

tion, exercising within the narrow diameter MRI bore is an issue. Leg movement can

be restricted, making it difficult to position the chest far enough into the MRI scanner,

consequently hindering image quality. Although several MRI-compatible exercise

instruments have been built and tested, none provide continuous workload measure-

ment, allowing accurate regulation of exercise heart rate [5,9,11-13]. Few studies have

aimed to assess the cardiac response to exercise using MRI technology, and the major-

ity have used commercially available MRI-compatible cycle ergometers at fixed work-

loads to evaluate left ventricular function and structure [5,7-9,14]. Studies on diastolic

function would also benefit from stable heart rates and controlled cardiac cycle dura-

tion. Thus, cardiac MRI assessments during exercise at fixed heart rate would be a use-

ful modality.

Thus, we aimed to design a portable and affordable MRI cycle ergometer that con-

tinuously measures power, through the direct measurement of force and pedal rotation

while patients exercise to maintain target heart rates. The continuously adjustable

workload measurement should be capable of maintaining target heart rate, with mini-

mum variability. For this purpose, we aimed to design an ergometer that would: a)

provide variable resistance to control workload; b) allow patients to be positioned close

to the MRI isocenter. We report here a custom-built MRI-compatible cycle ergometer

that meets the above requirements, as well as an associated exercise protocol, both

designed by our research group for left ventricular evaluation.

Methods
MRI cycle ergometer

The MRI cycle ergometer was designed to function without interfering with the

scanned images. Apart from the above described requirements, it was necessary for the

ergometer to: 1) accurately measure power output (up to 200 W); 2) be compact; 3)

have minimal initial static and kinetic friction; 4) be easy to set up and install; 5) func-

tion over the normal range of men and women’s heights; 6) have a comfortable and

secure feet placements; 7) ensure minimal electronic interference on MRI image qual-

ity; 8) continuously record forces and displacements; and 9) offer resistance control.

Ergometer

The cycle ergometer was specifically made to fit into a 1.5 T MRI scanner with a 600

mm bore (Magneto Avanto; Siemens, Erlangen, Germany), and consists of an alumi-

nium pedal system with two force transducers, a pulley and an aluminium flywheel, a

hydraulic disk brake, a rotary position encoder, and an electronic enclosure (Figure 1).

The ergometer was designed to be positioned at the end of the MRI bed, firmly

screwed on the bedside with a polyvinylchloride trunnion and base plate (Figure 1). A

crank length of 60 mm (Figure 2) was used to allow for subjects of different heights

(typically 1.55 m to 1.85 m), torso, and leg length to be positioned comfortably, with

the heart within 110 mm of the MRI isocenter in order to obtained optimal images.

This was established in accordance to manufacturer’s application specialist
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recommendations that optimal position should be as close to the isocenter as possible,

and that beyond 150 mm off resonance artefact are obtained. The foot pedal was

designed to accommodate a range of foot sizes, and included foot-straps to secure the

feet in retraction. The complete ergometer weighed 27 kg, and it was 390 mm long,

550 mm wide, and 385 mm high. Mean patient power output was modulated by the

MRI operator using a manually adjustable break control located in the MRI control

room. Note that care was taken to avoid the use of ferromagnetic materials. A 3D PDF

model of the ergometer is provided as supplementary material.

Position measurement

A three channel optical encoder (HEDS-5540, Avago Technologies) was used to mea-

sure the angular position (Ac) and angular velocity (ω) of the crank. The position enco-

der returned a two-channel quadrature output to indicate angular motion and

direction, and an additional once-per-revolution index pulse. Encoder signals interfaced

with a digital position counter on a data acquisition device. The position encoder was

enclosed by a customised aluminium casing to reduce electromagnetic and radio-fre-

quency interference (EMI/RFI).

Force measurement

In order to calculate power, the force applied by the subject to each foot pedal was

measured. An MRI-compatible force transducer (Futek model LRF350, arranged in

full-bridge configuration) was integrated into each pedal to measure the extension and

retraction forces (Ff) applied by each foot. Bridge signals were fed-through to the elec-

tronic enclosure, where an instrumentation amplifier (INA128, Texas Instruments,

gain = 518) amplified and filtered the signals prior to digitisation. A Sallen-Key hard-

ware filter in low pass configuration (cut-frequency of ~100 Hz, gain of 1.53) was also

implemented in the circuit. The force transducers were calibrated using a mechanical

testing system (Instron 5800 series) with a 10 kN load cell. Three calibration trials

were conducted on each force transducer. The force transducers exhibited a high

Figure 1 MRI cycle ergometer setting. Volunteer prep at MRI room with cycle ergometer (a) electronic
box, (b) and optical fibre line, (c) before the MRI bed is moved to isocentre.
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degree of linearity (R2 = 0.999) over the specified force measurement range, with sensi-

tivity of 14 μV/N.

Data acquisition

All electrical signals were transmitted through shielded cables to an electronic enclo-

sure (Figure 1b), which consisted of a die-cast aluminium-alloy box (250 mm long, 250

mm wide, 100 mm high, and 3 mm wall thickness) that provided EMI/RFI shielding

properties. The enclosure contained a rechargeable lead-acid battery (10 Ah, 6 V)

Figure 2 Layout of ergometer, MRI, and patient. Relative placement of the ergometer, MRI and patient.
The position of the ergometer can be adjusted to accommodate patients of various heights and leg-torso
lengths.
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printed circuit boards, data acquisition device and USB fibre-optic interface. As the

electrical signals entered the electronic enclosure, they were passed through signal con-

ditioning circuitry that attenuated radio frequency interference and low-gradient mag-

netic pulse noise. Analog signals were then digitised and collected using a USB-6122

(National Instruments, Austin, USA) data acquisition device. A fibre-optic interface

was used to convert the digital Universal Serial Bus signals to optical signals, which

were transmitted via optical fibre (Figure 1c) to an interface and computer located in

the MRI operator room.

Software design

The pedal crank was rotated to the horizontal position and the patient’s feet securely

attached to the pedals. An initialisation software routine was triggered, zeroing out the

weight of the foot acting on each transducer, and creating a reference-point position of

the crank for use in subsequent analysis.

Estimates of patient instantaneous power output were computed from the acquired

force and position signals as follows. Each force transducer measures a force Ft = Ff
sinAp, where Ff is the horizontal force applied by the foot to the pedal, and Ap is the

angle between the footplate and the horizontal (Figure 3). The component of Ff that is

normal to the crank creates a torque τ on the crank given by t = -Ff LsinAc, where L is

the length of the crank. This torque is related to the measured force (Ft) by

t = −FtL
sin Ac

sin Ap
.

When a patient is lying in the MRI machine with their feet attached to the foot-

plates, we observe that Ap is approximately 30° throughout each rotation of the crank;

we therefore assume this value for subsequent calculations. By summing the torques

from each crank (yielding the net torque τn) we compute the power (P) imparted by

the patient to the ergometer as = tnω.

A software interface (Figure 4) for the ergometer was designed in the LabVIEW 8.5

programming environment. Software was created to provide the MRI operator with

regular updates of crank angle, angular velocity, force, battery voltage, and patient

power generation. Power estimates were low-pass filtered, before being displayed on-

screen, in order to provide a smooth update to the MRI operator. Patient heart rate

was sensed using the MRI machine’s heart rate monitor (Invivo Magnitude 3150, Flor-

ida, USA), and transmitted wirelessly in RS232 format to the computer in the MRI

control room. The software interface allowed patient details to be entered and

recorded in a log file together with all data acquired throughout the experiment. Pedal

force and crank position signals were acquired and recorded to disk at a rate of 1 kHz.

Heart rate was recorded at a rate of 1 Hz.

Participants’ recruitment and baseline data

Eight healthy sedentary volunteers (4 males and 4 females, aged 20 year to 30 year)

were recruited to test the MRI ergometer and exercise protocol. This protocol was

approved by the Northern X Regional Ethics Committee, Auckland, New Zealand

(NTX/07/12/125). All participants provided written consent and completed a health

screen questionnaire prior to assessments. Body composition and fitness level were

assessed one week prior to the cardiac MRI scanning. Total body scans were per-

formed by Dual-Energy X-ray Absorptiometry (DEXA; GE Lunar Prodigy, Madison,
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USA). Standard manufacturers’ software was used to determine fat mass, fat free mass

and body fat percentage. Anthropometric data obtained from all participants included

weight, height and body mass index (BMI).

Maximal oxygen consumption (VO2max test) was measured by the patient pedalling

to exhaustion on an electronically-braked cycle ergometer (Schiller, Switzerland). The

exercise protocol consisted of a 3 minute to 5 minute warm-up at a low workload (20

W to 40 W) followed by successive one-minute stages starting at 55 W, incrementing

15 W per stage. Breath-by-breath data were collected and analyzed using a ParvoMe-

dics TrueOne 2400 Metabolic Measurement System (Parvomedics, Sandy, USA) cali-

brated with room air and standardized gas. The rate of oxygen consumption (VO2)

and carbon dioxide production (VCO2) were recorded every 30 s. The average of the

two highest consecutive VO2 values was defined as VO2max. The test was considered a

true maximum if either a plateau or an increase of less than 250 ml in VO2 occurred

in spite of an increase in workload or a respiratory exchange ratio (RER) greater than

1.1 was achieved. Blood pressure was recorded both at the beginning and termination

of the test.

Figure 3 Single ergometer pedal and crank.
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Cardiac MRI protocol

Resting and exercise cardiac scans were performed on a 1.5 T Magnetom Avanto (Sie-

mens, Erlangen, Germany) scanner using a 12 channel body matrix coil in combination

with the spine matrix coil. Images were acquired with retrospective ECG-gating (Invivo

Magnitude 3150 System, Orlando, USA). The MRI-compatible cycle ergometer was

positioned at the end of the scan table, and fibre optic cable fed through the waveguide

to outside computer. Once a participant was positioned on the MRI table, electrodes

were attached to the anterior chest wall and a blood pressure cuff was placed on the

left arm (Invivo Magnitude, Florida, USA). Headphones and an emergency buzzer

(right hand) were also provided. The participant’s feet were then strapped into pedals

and their body position adjusted on table. A velcro strap was also positioned across

the participant’s hip to prevent upwards movement on the bed due to leg motion dur-

ing cycling, In addition, a strap, attached to the left base of the ergometer, was given

to each participant to hold (left hand) to ensure trunk stability during exercise. The

participant then performed a short bout of unloaded exercise to gain familiarity with

supine cycling and the breath hold manoeuvre. Once the ergometer initialisation was

performed, the MRI table was advanced so that the subject’s heart was located within

110 mm of isocenter, while ensuring that the participant’s knees did not contact the

bore during pedalling. The 1.5 T scanner used has a bore size of 600 mm. A bolster

was then placed under the knees for comfort while resting images were obtained. If

patient position was not at zero, the table position was reset before scanning.

Left ventricular function at rest

Cardiac MRI images were obtained with iPAT (integrated parallel imaging technique).

Six short-axis Trufisp cine 6 mm evenly spaced images from base to apex were

obtained. The distance calculation between slices was given by: (Lv - 36 mm)/5 + 6

mm, where Lv is the left ventricle length. Three long-axis Trufisp images were then

obtained at cine 0°, 60° and 120°. Images were acquired during breath hold manoeuvres

(10 s to 15 s) with phase resolution at 100% (256 × 256). Temporal resolution was set

Figure 4 Ergometer software interface.
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to be 30 ms. Segments were 11 - 13 and the calculate number of phases was set to a

minimum of 25. Participants performed breath-hold at end-expiration during each

image acquisition, in order to eliminate respiratory motion artefacts. Blood pressure

was measured after all 9 images were obtained, at the end of the resting protocol.

Left ventricular function at sub-maximal exercise

After the resting measurements were completed, the bolster was removed and partici-

pants instructed to start pedalling. Target heart rate for this pilot study was 110 beats/

min. Ergometer resistance and participant’s cycling speed were adjusted accordingly to

allow the target heart rate to be obtained and sustained. Left ventricular exercise

images were obtained once one minute of steady state heart rate was reached. Breath-

ing instructions were given whilst participants were pedaling, so that they would stop

breathing and stop pedaling simultaneously, allowing image acquisition (5 s to 7 s).

Cycling was resumed immediately afterwards. Similarly to those obtained at rest, six

short-axes and three long-axis images were acquired. It was established that phase

resolution could be reduced to 50% to shorten breath hold (aimed for 128 × 256),

which did not degrade the quality of the images obtained (Figures 5 and 6). Sequences

had 6-10 segments (max) and calculate number of phases between 20-25. Verbal feed-

back was constantly given to participants during exercise phase.

Figure 5 Left ventricular images at rest. Participant was positioned 50 mm from MRI isocenter. This
image illustrates the clear definition between endocardial and pericardial borders of the left ventricle at
rest on 6 short axis and 3 long axis MRI images.
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Cardiac MRI images analysis was performed with the CIM software (Cardiac Image

Modeller, Auckland, New Zealand) using the six short-axis and three long-axis LV

images. Cardiac parameters obtained included left ventricular mass, end-diastolic

volume, end-systolic volume, stroke volume, cardiac output, ejection fraction (both at

rest and during sub-maximal exercise). Endocardial contours of each slice were manu-

ally identified at end-diastole and end-systole for each time point through the cardiac

cycle. Cardiac output was determined by multiplying stroke volume by heart rate.

Statistical Analysis

Data obtained at rest and during exercise were compared using t-tests. The statistical

package SPSS version 15.1 (LEAD Technologies Inc, USA) was used. Statistical signifi-

cance was set as p < 0.05. Data are presented as mean ± standard deviation (SD).

Results
Table 1 displays the baseline characteristics on the eight volunteers. During MRI scan-

ning all participants were positioned within 110 mm from the MRI isocenter: two at 0

mm, two within a 50 mm distance, two within 80 mm, one at 100 mm and one at 110

Figure 6 Left ventricular images during exercise. Participant was positioned 50 mm from MRI isocenter.
This image illustrates the clear definition between endocardial and pericardial borders of the left ventricle
at exercising heart rate on 6 short axis and 3 long axis MRI images.
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mm. The variations in isocenter positioning were due to differences in participant’s

height and torso to leg length ratio.

Cardiac results at rest and during exercise are shown on Table 2. Participant’s ejec-

tion fraction, cardiac output and systolic blood pressure increased from rest to exer-

cise, but end-diastolic volume, stroke volume and diastolic blood pressure did not. In

contrast, end-systolic volume decreased in response to exercise. The quality of MRI

images obtained at rest and during exercise was not different (Figures 5 and 6). Images

were unaffected by magnet installation and operation, and suffer no discernible signal

interference from the electronic enclosure or transducers.

Discussion
We have successfully designed, constructed, and tested an MRI-compatible cycle erg-

ometer for cardiac assessments, which takes into account between-subject variations,

to accurately quantify workload power. The ergometer was designed to fit into a 1.5 T

MRI scanner (Magneto Avanto; Siemens), and is adjustable for a relatively wide range

of heights.

Table 1 Baseline characteristics of participants

Mean ± SD Range

N = (Female/Male) 8 (4/4)

Age (years) 25.3 ± 4 21-30

Weight (kg) 67.1 ± 10.2 49.8 - 83.7

Height (m) 1.74 ± 0.07 1.64-1.82

BMI 22.3 ± 3.5 18.5-30

% body fat 24 ± 14 6-42.8

Fat free mass (kg) 51.6 ± 10.4 32.5-67.3

Resting heart rate (bpm) 67 ± 7 57-77

SBP - sitting (mmHg) 104 ± 8 94-117

DBP - sitting (mmHg) 65 ± 4 58-70

Max Heart Rate (bpm) 184 ± 8 173-197

VO2max (mlO2/kgFFM/min) 42.9 ± 4.4 37.9-50.0

Respiratory exchange ratio 1.34 ± 0.09 1.1-1.4

Results are presented as mean ± standard deviation and range. SBP: systolic blood pressure; DBP: diastolic blood
pressure

Table 2 Cardiac function at rest and during sub-maximal exercise

REST EXERCISE

Heart rate (bpm) 67 ± 15 110 ± 3 *

Left ventricular mass (g) 128 ± 28 128 ± 28

Ejection fraction (%) 65.7 ± 3.8 74.3 ± 4.7 *

End diastolic volume (ml) 147.6 ± 30.6 142.4 ± 25.1

End systolic volume (ml) 50.9 ± 13.4 36.2 ± 10.2 *

Stroke volume (ml) 96.7 ± 19.1 105.7 ± 18.7

Cardiac Output (l/min) 6.5 ± 1.9 11.6 ± 2.1 *

SBP (mmHg) 108 ± 14 128 ± 22 *

DBP (mmHg) 66 ± 11 62 ± 6

Workload (W) - 96 ± 27

Data are mean ± SD. SBP: systolic blood pressure; DBP: diastolic blood pressure. *P < 0.05 for rest vs. exercise.
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This ergometer has the potential to assist physiological studies looking at cardiac

responses to dynamic exercise in a variety of populations. Moreover, the dose of exer-

cise (workload) generated can be more precisely adjusted, which allows for the assess-

ment of patients with varying degrees of fitness [10]. Our ergometer is also useful in

studies targeting fixed heart rates during MRI assessments, particularly valuable when

assessing cardiac function. For instance studies have shown that to predict the develop-

ment of diabetic nephropathy exercise tests with fixed heart rate were preferable than

fixed workload in type 1 diabetic individuals due to the differences in physiological

responses such as blood pressure which were associated with the development of

micro- and macroalbuminuria [15].

A number of cardiac impairments are only evident when the heart is exposed to

stress. Heart rate or rate pressure product (heart rate × systolic blood pressure) have

the strongest association with myocardial work of all non-invasive measures [16].

Thus, steady-state quantification of heart rate is important during cardiac function stu-

dies. An advantage of the fixed resistance bike used in this study is that, when pre-

sented with a target heart rate, the patient can increase or decrease pedalling cadence

or frequency to adjust their heart rate. In contrast, the investigators must change work-

load or resistance for the patient when using a fixed workload ergometer.

Heart rate control is also critical in the assessment of diastolic filling properties. Peak

early mitral valve inflow velocity, an indicator of diastolic function, is inversely propor-

tional to heart rate [17]. This is largely due to the preferential reduction in diastolic

duration during tachycardia [18]. Therefore, accurate comparisons of diastolic function

in different groups require equal heart rates (i.e. diastolic durations). Previous investi-

gations using fixed workload ergometers have described standard deviations of up to

17 beats per minute around the targeted heart rates [10]. In contrast, the standard

deviation around our target heart rates was 1 beat (see Table 3).

Table 3 Comparison of our results with two previous studies in healthy individuals
using commercial cycle ergometer

This study Roest et al. (2001)[5] Roest et al. (2004)[6]

n 8 8 14

Age (years) 25.3 ± 4 17.5 ± 2.3 24.8 ± 5.2

Weight (kg) 67 ± 10 67 ± 12 74 ± 11

Height (m) 1.74 ± 0.07 1.74 ± 0.10 1.78 ± 0.06

VO2max (mlO2/Kg/min) 34.8 ± 5.4 39 ± 5 42 ± 5

Rest heart rate (beats/min) 67 ± 15 71 ± 10 67 ± 8

Exercise

Heart rate (beats/min) 110 ± 1 121 ± 14 122 ± 8

EDV (ml) 142.4 ± 25.1 138 ± 27 148 ± 26

ESV (ml) 36.2 ± 10.2 36 ± 12 36 ± 14

SV (ml) 105.7 ± 18.7 102 ± 19 112 ± 15

CO (L/min) 11.6 ± 2.1 12.3 ± 2.3

EF (%) 74.3 ± 4.7 74 ± 6 77 ± 6

LVM (g) 128 ± 28 - 133 ± 21

Workload (W) 96 ± 27 130 ± 21 132 ± 16

Data are mean ± SD. EF: ejection fraction; LVM: left ventricular mass; EDV: end-diastolic volume; ESV: end-systolic
volume; SV: stroke volume; CO: cardiac output.
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A disadvantage of the fixed resistance machine used in this study is that it is more

difficult to establish a steady state workload. Indeed fixed workload machines are ide-

ally engineered for this purpose (workload is unaffected by cadence). The fixed resis-

tance machine used in this study is poorly suited for reproducing a relative workload

(e.g.% maximal watts) because of the dependence on pedalling cadence. However, this

can be readily achieved by using a metronome to provide a pedalling cadence at which

any resistance can be used to develop a desired workload with minimal difficulty.

This MRI cycle ergometer demonstrated the value in obtaining MRI images during

exercise at a fixed heart rate. In particular it enables identification of stroke volume

which varied between 70-120 ml at rest increasing up to 200 ml during exercise,

depending on ventricular morphology and fitness level [19-22]. As exercise intensity

increases, stroke volume in physically unconditioned individuals increases gradually to

a plateau at approximately 120 bpm [20], or 40% of V̇O2 max[22]. Conversely, stroke

volume continues to increase progressively until maximum heart rate in elite athletes

[20,22,23]. The physiological responses obtained using our MRI-compatible cycle erg-

ometer and protocols were comparable to previous studies in which an increase in

heart rate and stroke volume increases cardiac output during exercise [7,8,14] (Table

3). Roest et al. used a commercial MRI cycle ergometer in healthy individuals (MRI

cardiac ergometer, Lode BV, Groningen, The Netherlands) [7,8]. The first study exam-

ined left and right ventricular function in a group of healthy volunteers (mean age of

17.5 years) [7] (Table 3). The exercise images were obtained at 60% of maximal work-

load using 10 short-axis images for the left ventricular analysis. The second study

involved individuals of similar age to our study participants, and the left ventricular

volumes were obtained from 10 consecutive short axis scans, which were acquired dur-

ing exercise at a workload corresponding to 60% of maximal oxygen consumption [8].

Even though the exercise workloads (approximately 130 W vs. 96 W) and heart rates

(approximately 120 beats/min vs. 110 beats/min) were higher in their studies, the

hemodynamic responses were similar. This is because Roest et al. participants were

exercising at fixed workloads relative to their maximal capacity, while ours were exer-

cising at a fixed heart rate of 110 beats/min. Moreover, our participants were compara-

tively less fit, requiring a lower workload to trigger an increase in heart rate.

Typically with MRI compatible cycle bikes the workload is either set at a constant

level for all individuals or manually adjusted for each individual to increase and main-

tain heart rate at a predetermined criterion level such as 65% of maximum heart rate.

According to Laperriere and colleagues 1989 a potential problem arises when manual

adjustments of workload are used to produce and maintain specified heart rate. The

workload value needed to maintain a predetermined heart rate percentage of maxi-

mum heart rate for a group of individuals, will be different for individuals with differ-

ent pre-existing fitness levels [10]. Also, fatigue, even after a few minutes, could trigger

a change in workload. Therefore, workload requires adjustments as heart rate is

increased to the desired level, and may require continuous fine adjustments to main-

tain heart rate at target level [10].

In summary, the MRI-compatible cycle ergometer constructed by our research group

allows for accurate and reproducible exercise cardiac assessments at tightly regulated

heart rates, while continuously recording workload.
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