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Abstract

There has been increased interest in discovering combinations of single-nucleotide polymorphisms (SNPs) that are strongly
associated with a phenotype even if each SNP has little individual effect. Efficient approaches have been proposed for
searching two-locus combinations from genome-wide datasets. However, for high-order combinations, existing methods
either adopt a brute-force search which only handles a small number of SNPs (up to few hundreds), or use heuristic search
that may miss informative combinations. In addition, existing approaches lack statistical power because of the use of
statistics with high degrees-of-freedom and the huge number of hypotheses tested during combinatorial search. Due to
these challenges, functional interactions in high-order combinations have not been systematically explored. We leverage
discriminative-pattern-mining algorithms from the data-mining community to search for high-order combinations in case-
control datasets. The substantially improved efficiency and scalability demonstrated on synthetic and real datasets with
several thousands of SNPs allows the study of several important mathematical and statistical properties of SNP
combinations with order as high as eleven. We further explore functional interactions in high-order combinations and reveal
a general connection between the increase in discriminative power of a combination over its subsets and the functional
coherence among the genes comprising the combination, supported by multiple datasets. Finally, we study several
significant high-order combinations discovered from a lung-cancer dataset and a kidney-transplant-rejection dataset in
detail to provide novel insights on the complex diseases. Interestingly, many of these associations involve combinations of
common variations that occur in small fractions of population. Thus, our approach is an alternative methodology for
exploring the genetics of rare diseases for which the current focus is on individually rare variations.
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Introduction

Genotype-phenotype association studies, from both targeted

and genome-wide data, have contributed to our ability to identify

genetic variants that are associated with disease. Although an

increasing number of studies have found single-nucleotide

polymorphisms (SNPs) that have statistically significant association

with diseases, most of them either have small effects on disease risk

[1–3] or often explain only a small part of the population [4–7].

Thus, there has been increased interest in discovering combina-

tions of SNPs that are strongly associated with a phenotype even if

each SNP has little or even no individual effect [8–12]. Our goal is

to discover and study such combinations of SNPs to complement

existing approaches for univariate analysis or pathway/network

enrichment-based approaches that are built upon univariate

statistics [13–16]. In particular, as pursued by [17–23], we focus

on discovering SNP combinations, especially high-order ones

beyond size 2, that are strongly associated with a phenotype and

yield information on interpretable statistical and functional

interactions.

There are two challenges in finding SNP combinations that are

highly associated with a phenotype from a large number of SNPs.

The first arises from the combinatorial nature of the problem, i.e.

there are exponentially increasing number of combinations as the

order goes higher. This is even more problematic if a large number

of permutation tests are used to correct for multiple hypothesis

tests [13,24,25]. Given a GWAS dataset with hundreds of

thousands of SNPs, even the examination of pair-wise combina-

tions of SNPs is computationally challenging [23], and requires

efficient enumeration algorithms [23,26–28] or specialized hard-

wares [29,30]. Finding higher order SNP combinations [17,31] is

far more computationally expensive and is out of reach for GWAS

datasets. Hence, existing methods mostly explore higher order

SNP combinations with datasets that only have tens or few

PLoS ONE | www.plosone.org 1 April 2012 | Volume 7 | Issue 4 | e33531



hundreds of SNPs. These methods adopt either brute-force or

heuristic-based greedy search. Brute-force approaches such as

multifactor dimensionality reduction (MDR [17]), or the combi-

natorial partitioning method (CPM [19]) can guarantee the

completeness of the search, which is important in detecting SNP

combinations with weak marginal effects [22]. However, these

brute-force approaches can handle only a relatively small number

of SNPs (tens or hundreds) [17,18,32]. The scalability of recent

approaches [33] has been improved to allow searching for size 3

combinations from about 600 SNPs within two hours. However, it

is still not capable of efficiently handling focus studies that have

thousands of SNPs [34,35], especially for higher order combina-

tions. Greedy search strategies [36–44], although more computa-

tionally efficient than brute-force approaches, risk missing

significant SNP combinations [11,12,23], and rarely discover

high-order combinations beyond size 3 [17], and only from

datasets containing tens or hundreds of SNPs covering a even

smaller number of genes.

The second challenge is that existing approaches for high-order

SNP combination searches lack statistical power. Specifically, due

to the use of statistics with high degree of freedom [31,45] and the

huge number of hypothesis tested with often limited sample sizes,

many high-order combinations of SNPs can be strongly associated

with a disease phenotype by random chance, resulting in a high

false discovery rate [25]. Some existing approaches [10,38,46] use

biological pathways or molecular interaction networks as con-

straints to reduce the number of hypotheses to test and make the

interpretation easier. Essentially, a set of SNPs are considered for

an association test only if the SNPs are located around the genes

that are on a common pathway or interact with each other. A

common limitation of such constraint-based approaches is that,

they may miss novel SNP combinations that are not on known

pathways or interaction subnetworks due to the incompleteness of

biological knowledge. Thus, it calls for a quantitative evaluation on

trade off between the reduction of search space and the risk of

missing informative SNP combinations, and also calls for

alternative constraints that are not limited by existing biological

knowledge.

In this paper, we aim to address both the above challenges.

To improve computational efficiency, we leverage the discrim-

inative pattern mining framework (DPM, originally proposed

[47,48] in the data mining community for mining market basket

data) to efficiently search for high-order SNP combinations from

SNP datasets in focused studies with thousands of SNPs. The

computational efficiency and scalability of DPM is enhanced by

the systematic pruning of the combinatorial search space with anti-

monotonic objective functions. A unique advantage of anti-

monotonicity-based search over brute-force search is that it can

avoid exploring the whole search space (all combinations of SNP

genotypes) by pruning a large number of candidates that cannot

lead to a sufficiently strong association with a phenotype [48,49].

We demonstrate that DPM has substantially improved efficiency

and scalability on a synthetic and three real datasets with several

thousands of SNPs. We observe that most high-order combina-

tions are trivial extensions of their subsets which are not interesting

but consume most of the total computation time, however, there

are indeed high-order combinations that have discriminative

power significantly beyond singleton SNP or low-order SNP

combinations.

To improve the statistical power, we study the effect of two

strategies that reduce the number of high-order combinations

being tested. The first, which does not depend on the use of prior

biological knowledge, is to require an increase in discriminative

power for a combination over its subsets. We demonstrate that

this constraint can reduce the number of hypothesis tests

dramatically and thus enable the discovery of significant

combinations that would have been missed otherwise. The

second strategy, which depends on the known biological

knowledge, is to use gene-set (e.g. pathway) constraints within

the DPM framework. While this approach has been used in

existing work to improve computational efficiency, we quantita-

tively evaluate its effect on enhancing statistical power in

conjunction with the DPM framework.

The improved computational efficiency and statistical power

further enables the discovery of significant high-order SNP

combinations from the three real datasets and then allows the

exploration of functional interactions in high-order SNP

combinations. Specifically, we study the functional interactions

among the genes covered in high-order SNP combinations with

an integrated human functional gene network. We find a positive

connection between the increase of discriminative power of a

SNP combination over its subsets and the functional coherence

among the genes covered in the combination. Such an

observation is beyond the disease-specific functional interactions

studied by existing work that are based on datasets covering a

small number of genes [17] and is supported by the multiple real

datasets used in the paper. In addition to this disease-

independent biological insight, we also interpret several high-

order combinations discovered from the lung cancer [MIM:

211980] dataset and the dataset for studying rejection after

kidney transplant, which provide novel insights beyond univar-

iate or low-order SNP-combination analysis. More generally, we

find that many significant associations are combinations of

common variations that occur in small fractions of population.

This suggests an alternative direction for the exploration of the

genetics of rare diseases, where the current focus is mainly on

analyzing individually rare variations.

Results

Three Real Case-control SNP Datasets and a Synthetic
Dataset

We use three SNP datasets designed for studying different

types of disease phenotypes: (i) short (less than one year) vs. long

(greater than three years) survival of multiple myeloma [MIM:

254500] patients [34] (denoted as Survival), (ii) acute rejection

[MIM: N/A] (within in six months) vs. non-rejection (within

eight years) after kidney transplant [22] (denoted as Kidney), (iii)

lung cancer [MIM: 211980] vs. non-lung cancer (both heavy

smokers) [35] (denoted as Lungcancer). The three datasets were all

collected with a chip [34] targeting 3444 SNPs in 983 genes,

representing cellular functions and pathways that may influence

disease severity at diagnosis, toxicity, progression or other

treatment outcomes. Previous analyses on these three datasets

did not reveal statistically significant single SNPs after correcting

for multiple hypothesis testing, and this study aims to explore if

there are significant (after correcting for multiple hypothesis

testing) associations between combinations of SNPs and disease

phenotypes, especially high-order combinations (with size greater

than 2) that have stronger association beyond single SNPs or

low-order combinations.

Preprocessing and quality control steps are described in the

method section. Table S1 summarizes the number of SNPs after

quality control and the numbers of cases and controls for each of

the datasets. More information on these datasets can be found in

the original papers. All the datasets are available from the Eastern

Cooperative Oncology Group (ECOG) through requests to the

operations office (http://www.ecog.org/, accessed 2012 Feb 20).

High-Order SNP Combinations and Complex Diseases
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In addition to the three real datasets, We also use a synthetic

dataset with 70 cases and 70 controls, 2172 SNPs without

differentiation between the cases and controls, and four synthetic

high-order SNP combinations of size 3, 4, 5 and 6 respectively,

that are associated with case-control groupings. (See the methods

section for simulation details).

Note that, the above four datasets have much larger number

of SNPs (ranging from 2172 to 3428) than the datasets used in

previous studies on high-order SNP interactions (tens or

hundreds of SNPs). With these four datasets, we will show that

the proposed framework is substantially more efficient and

scalable than existing approaches. Although the proposed

approach could not directly handle datasets with more than

10,000 SNPs due to the intrinsic computational complexity of

high-order SNP combination search, it is worth noting that tag

SNP selection [50] techniques can be used to first obtain a set of

less redundant SNPs before the use of the proposed approach. In

this way, genome-wide studies with hundreds of thousands of

SNPs could also be analyzed.

The Binary Encoding of a SNP and a Combination of SNPs
We use a binary coding scheme of SNP genotypes, where we

create three binary columns for each SNP (Figure S1). For a single

SNP (X) with three genotypes (homozygous minor (mm),

heterozygous (Mm) and homozygous major (MM).), we create

three binary variables as X~mm, X~mM and X~MM, each

of which is represented as a binary variable indicating if a person’s

genotype for SNP X is mm, mM or MM respectively. Figure S1

illustrates the transformation from categorical encoding to binary

encoding. Note that, this is a lossless transformation because it can

be mapped back to the original SNP genotypes without ambiguity.

As will be shown later, the use of this binary coding is to enable

the efficient traversal of the combinatorial search space in the

discriminative pattern mining (DPM) framework used in the

paper. Although the number of columns increases to three times of

the original number of SNPs, we show the DPM framework has

substantially better efficiency and scalability than existing

approaches that directly search from the categorical SNP

variables. It is worth noting that, binary encoding was also

leveraged in [33], where the authors commented that, while

binary coding may have somewhat weaker power, it does allows

the use of efficient enumeration algorithms and the discovery of

biologically interesting SNP combinations.

Based on the binary coding for each SNP genotype, a

combination of SNPs is essentially a combination of SNP

genotypes. For example, for three SNPs X, Y and Z, a combination

might be X~mm,Y~mM,Z~MMf g: Such a combination is

also called a pattern in this paper, where we use the terms

‘‘pattern’’, ‘‘combination’’ and ‘‘SNP combination’’ interchange-

ably. Following the traditional setup in discriminative pattern

analysis, a pattern is said to be present in a subject only if the

subject’s genotypes match all the SNP genotypes in the pattern,

and absent otherwise. Thus, a combination of SNP genotypes

(multiple SNPs, each contributing one of its genotype) is also

encoded as a binary variable (present or absent). Again, we use this

setup to allow DPM to efficiently perform the search of

combinatorial pattern space. The frequency of a pattern (the

percentage of subjects in which a pattern is present, also called

support) has a mathematical property named anti-monotonicity,

which can be leveraged by DPM to prune most of the

combinatorial search space and only investigate those patterns

that are more likely to have strong association with a disease

phenotype [47,48] (see methods section).

With this binary encoding of a SNP combination, a x2 test of the

association between any combination and a binary phenotype has

a fixed degree of freedom of 1 [33] and is independent of the size

of the combination. Here, the goal is to test the association

between the present and absent of the SNP combination, under

the binary encoding, and a binary phenotype. Note that, other

statistical measures can also be used for similar purpose. This also

implies that the proposed framework can handle datasets with

imbalanced number of cases and controls. The degree of freedom

being 1 is an important advantange for high-order SNP

combination analysis because most real datasets have a limited

number of samples that are insufficient for estimating the

association between a combination of larger size and a disease

phenotype if the statistical measure in use has a degree of freedom

increasing with the size of a combination. The fixed degree of

freedom also allow the direct comparison of the statistics (e.g. x2

statistic or others) of SNP combinations of different sizes, which is

important for quantifying the gain of discriminative power of a

SNP combination with respect to its subsets. For example, the size-

3 combination X~mm,Y~mM,Z~MMf g has three size-2

subsets: Y~mM,Z~MMf g, X~mm,Z~MMf g and

X~mm,Y~mMf g:

Illustrative Examples of High-order Discriminative SNP
Combinations

After describing the above binary encoding of a SNP

combination, we first illustrate two examples of high-order SNP

combination shown in Figures 1 (PA and PB, generated with the

method developed in [51]) before presenting the efficient search

algorithm. PA is a pattern containing four SNPs (separated by

vertical green lines) over 70 cases and 70 controls, which are

separated by a horizontal yellow line (cases top, controls bottom).

The black color indicates presence (19s) and the white indicates

absence (09s) of one of the three genotypes of a SNP. The x2

statistic, odds and the {log10 fisher exact test p-value of the

synthetic combination (as a binary encoded single variable as

described above) are (28:7,21:0,7:84): The subfigure in the right

column contains 4 pairs of bars. For each pair, the left bar

(unfilled) and the right bar (filled) indicate the minimal and the

maximal x2 statistics for the size-i (i[ 1,4½ �) subsets of the

combination. For the right most pair, both bars are equal since

they both denote the x2 statistic of the SNP combination itself. As

shown, the x2 statistic of PA is higher than all of its subsets, which

makes PA interesting because it provides predictive power beyond

that of its subsets. Thus, it is important to discover this high-order

pattern as a highly confident predictive rule with an odds ratio of

21, rather than discover its subsets.

Similar to PA, pattern PB in Figure 1 also has high

discriminative power in terms of x2 statistic, odds ratios and the

{log10. However, in contrast to PA, pattern PB is actually less

discriminative than one of its size-2 subset (the first two SNP

columns), as reflected by the drop in the x2 statistic in the right

subfigure. Later in this section, we will differentiate these two types

of SNP combinations and show that SNP combinations like PA

provide more information for the functional interactions among

the genes in a SNP combination, while the high discriminative

power of patterns like PB are trivial consequences of their highly

differentiating subsets. Figure S2 shows four high-order SNP

combinations of size-3 to size-6 (generated with [51]) that we

embedded in the synthetic dataset described earlier, all having

higher discriminative power than their subsets. Indeed, such

interesting high-order SNP combinations also exist in real datasets

for studying complex diseases such as cancer, as will be shown in

the result section.

High-Order SNP Combinations and Complex Diseases
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Discovering High-order SNP Combinations that have
Strong Association with a Phenotype

With the two discriminative SNP combinations shown in Figure 1

and the additional examples in Figure S2, we now describe how to

leverage the discriminative pattern mining (DPM) framework to

efficiently search for high-order SNP combinations that have strong

association with a disease phenotype. The DPM mining framework

was originally proposed in the data mining community to efficiently

enumerate combinations of variables and identify those that are

highly predictive [52,53]. DPM builds upon a general search

strategy called Apriori [47], which leverages the anti-monotonicity

of a special type of objective functions for efficient enumeration of

high-order variable combinations (see methods for details).

Conceptually, with an objective function that is anti-monotonic, a

SNP combination satisfies a threshold on the objective function only

if all its subsets satisfies the threshold. In another word, if a

combination does not pass a threshold on the objective function, all

of its supersets can be pruned in the search space and it is

guaranteed that no larger combination that satisfies the threshold

would be missed. This is the key difference between Apriori-based

combinatorial search and brute-force combinatorial search.

In this study, we leverage a recently developed anti-monotonic

objective function SupMaxPair [48] and use it in the Apriori

framework to efficiently search for SNP combinations that are

discriminative between cases and controls. SupMaxPair captures

the association between a SNP combination and a binary disease

phenotype (see the methods section), i.e. the higher SupMaxPairo,
the stronger the SNP combination is associated with the phenotype.

The Apriori framework using SupMaxPair as the objective

function is called SMP [48] and has the advantage of handling

dense and high dimensional data, which addresses the key challenge

in discovering high-order combinations from SNP datasets, i.e. a

fixed high density of 33% as a result of the binary encoding of each

SNP (Each SNP is represented with three binary columns and the

genotype of a sample for each SNP is represented by a 1 in one of

the three columns (assuming there is no missing value). Thus, one

third of the matrix values are 19s (a density of 33%).) and a large

number of SNPs (high dimensionality). This advantage owes to the

Figure 1. Visualization of the two synthetic SNP-genotype combinations and their high-order association with the two classes. The
two subfigures in the left column are the visualization of the genotypes of 4 SNPs separated by vertical green lines, over the 70 cases and 70 controls
separated by a horizontal yellow line. The black color indicates present and the white indicates absent, in the binary format described in the method
section. The x2 statistic, odds ratios and the {log10 fisher exact test p value of the two combinations are (28:7,21:0,7:84) and (25:8,18:6,7:1),
respectively. Each subfigure in the right column contains 4 pairs of bars. For each pair, the unfilled bar and the filled bar indicate the minimal and the
maximal x2 statistics for the size-i (i[ 1,4½ �) subsets of the combination. The right most pair, both bars are equal since they both denote the x2 statistic
of the SNP combination itself. Another four examples of high-order discriminative SNP combinations of size-36 are shown in Figure S2 with similar
description as this figure.
doi:10.1371/journal.pone.0033531.g001
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effective use of phenotype information in the searching process [48]

and is the essence of SMP’s better efficeincy and scalablity over

other DPM algorithms.

It is worth noting that Ma et al. [33] is the first that leverages an

Apriori-based algorithm [54] (FPC) for the efficient enumeration

of SNP combinations. However, FPC does not make use of

phenotype information to optimize the search process and thus is

much less efficient and less scalable than SMP, as has been shown

in [48] on differential gene expression analysis and will also be

demonstrated on SNP datasets in the result section of this study.

SMP is part of the framework we implement for this study and is

available on the paper website (http://vk.cs.umn.edu/HSC/,

accessed 2012 Feb 20).

The DPM Framework has Substantially Better Efficiency
and Scalability

We compare the DPM framework with two representative

existing tools for high-order SNP combination discovery: MDR

[17] (http://www.epistasis.org/software.html) and the framework

presented in [33] (denoted as FPC in this paper). For MDR, we

used the Java version (http://sourceforge.net/projects/mdr/) and

used the standard coding, in which each SNP is represented by a

categorical value with three possible values (genotypes). For DPM

and FPC, we use the binary coding. FPC requires an input for the

parameter minsup (the minimum frequency of a pattern in the set

of cases and controls combined). For comparison purpose, we set a

five-hour maximal runtime allowance (Though arbitrary, some

threshold needs to be selected for comparison purpose) for all the

three techniques. Experiments presented here were run on a Linux

machine with 10 Intel(R) Xeon(R) CPUs (2.00GHz) and 100GB

memory.

In the synthetic dataset (described in the method section), there

are 2172 SNPs. The three frameworks need to search through

size-2, size-3, size-4, size-5 and size-6 combinations in order to

discover the four embedded patterns of size-3 to 6. After five

hours, MDR was still enumerating size-3 SNP combinations, and

thus failed to identify the embedded size-4, size-5 and size-6

patterns. FPC could reach size-6 within five hours, but only with a

minsup threshold of 0.9 (With a minsup threshold of 0.8, FPC

could not finish even in 24 hours.), which is so high that none of

the four synthetic patterns were discovered (the frequency of the

four embedded patterns are all below 0.25.). In contrast, the run

time of SMP on the synthetic dataset is around 4 minutes with a

SupMaxPair threshold of 0:15: The threshold of 0.15 was chosen

such that all the four embedded synthetic SNP combinations can

be discovered. At lower threshold, additional discriminative SNP

combinations can be discovered (if they exist), but it will take more

computational time. In practice, one should use a threshold as low

as possible while the computational time is still acceptable (usually

decided after some tests). In addition, given a fixed SupMaxPair
threshold and a fixed number of SNPs, the patterns discovered

from a dataset with larger sample size are expected to be more

statistically significant in term of false discovery rate. Therefore,

given a certain statistical significance cutoff, a lower SupMaxPair
threshold should be used for datasets with larger sample sizes while

the computational time is still acceptable.

The discovered SNP combinations are of size 2 to 10, including

all the four embedded patterns. The substantially better efficiency

of SMP is also observed on the three real datasets, which have

2755–3428 SNPs (Table S1). The substantially better efficiency

and scalability of SMP over FPC and MDR is due to the effective

use of phenotype information in SMP for pruning combination

candidates that are less likely to form a larger discriminative

pattern as discussed in the method section (refer to [48] for further

details). Indeed, the efficiency of the proposed framework (search

as high as size-10 combinations from thousands of SNPs within

one hour) is superior to not just MDR and FPC, but also to several

other existing approaches which can discover up to size-3 SNP

combinations from datasets with hundreds of SNPs

[18,32,33,40,55]. Furthermore, we designed an experiment to test

the scalability of SMP with respect to the sample size. We vary the

sample size (cases and controls combined) from 140 to 5600 in

seven steps (140, 280, 420, 560, 1400, 2800 and 5600) as shown in

Figure (see method section for the details of data simulation). The

first four steps representing one, two, three and four times of the

samples in the first synthetic dataset (used in the comparison with

MDR and FPC), respectively. The last three steps correspond to a

much larger samples sizes in several thousands that represent the

number of samples in most GWAS studies. The running time

shown on the y-axis of Figure S3 shows that the computational

time of SMP increases approximately in a linear manner with

respect to the sample size (recall that the x-axis is not linearly

spaced). This agrees with the theoretical time complexity of

Apriori-based searching algorithms [47] and indicates that SMP is

able to handle datasets with much larger number of samples than

the three real datasets used in this paper.

Note that, the synthetic datasets used above (to demonstrate the

better efficiency and scalability of DPM over MDR and FPC) are

representatives of the three real datasets used in the paper. For

datasets with smaller number of SNPs (e.g. tens or hundreds of SNPs),

MDR and FPC (as well as other similar approaches) have been

compared with other approaches [21,33] and demonstrated to be

scalable (mostly up to size 3 combinations). In this study, we have the

specific focus on datasets with thousands of SNPs such as the three

real datasets or datasets of tag SNPs selected from genome-wide

studies, and we are particularly interested in high-order interaction

(its mathematical and statistical properties as well as functional

insights). Therefore, we will only use DPM in the rest of the analyses.

Identifying High-order SNP Combinations with Stronger
Association than their Subsets

Among the set of discovered SNP combinations discovered by

DPM, some have better discriminative power than their

corresponding subsets (like PA in Figure 1) while some have

similar or lower discriminative power (like PB in Figure 1). A

simple way to quantify the increase of discriminative power of a

SNP combination over its subsets is to take a difference between

the discriminative power of a SNP combination itself and the best

discriminative power among all of its subsets. With the x2 statistic

as the measure for discriminative power, this difference (denoted

as x2
jump) for a pattern a can be formally written as below. Note

that, the x2 statistics of patterns of different sizes all have the

degree of freedom of 1 based on the binary encoding of a SNP

combination presented earlier in this section. Also note that,

among the thresholds we used for SupMaxPair in the paper, the

lowest is 0.15. This implies that the minimum frequency of any

discovered SNP combination is 15% of the number of cases or

controls (refer to the definition of SupMaxPair in the method

section). Thus, the estimation of x2 statistic for any SNP

combination would be based on a frequency of at least 15% of

the number of cases or controls, even for high-order combinations.

x2
jump(a)~x2(a){maxa’5a(x2(a’)): ð1Þ

With the above definition, the x2
jump of the two patterns shown in

Figure 1 are 14.4 and 26.1 and the four patterns in Figure S2 all

High-Order SNP Combinations and Complex Diseases
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have positive x2
jump values (47.7, 14.4, 6.2 and 4.0 respectively).

Indeed, x2
jump is not a new concept and similar measures based on

other statistics for discriminative power (instead of x2 statistic) have

been studied in data mining literature [56]. More generally,

existing measures of epistasis and genetic interaction [39,45] which

capture the difference between the joint statistic between a SNP

combination and the linear (or independent) addition of the its

subsets, could be used for the same purpose as well. However, they

are not suitable for high-order combinations analysis due to their

increasing degrees of freedom and computational expense as

combination size increases, which thus requires an increasing

number of samples for accurate estimation. In contrast, x2
jump or

similar measures based on other statistics have the advantage of a

fixed degree of freedom (1) and thus are more practical for

measuring the association between high-order combinations and a

phenotype. Furthermore, the requirement of epistasis measures is

more restrictive than measures like x2
jump because the former only

captures non-additive effect while the latter targets the general

combined effect including both linear and non-linear combina-

tions. Indeed, as will be shown in the result section, both linear and

non-linear high-order combinations exist in real datasets, and both

can be highly discriminative with respect to a disease phenotype

and thus are of great interest.

Intuitively, it would be ideal if an algorithm like SMP can

directly differentiate combinations with positive and negative

values and then prune the ones with negative values as early as

possible in the searching process. However, this is a non-trivial task

because the x2
jump does not have the antimonotonicity property

(crucial for the efficient enumeration of high-order combinations

using the Apriori strategy [47]) and thus some combinations with

large positive x2 jump would be missed if they have subsets with

negative x2
jump: Therefore, in this study, we use SMP to first

discover a set of discriminative combinations and then apply a

x2
jump based filtering as a separate step.

Many High-order Patterns are Trivial Extensions of their
Smaller Subsets

We ran DPM on the three real datasets (with SupMaxPair~0:2,
the lowest threshold that DPM can finish within 0.5 hour) and

produced a set of SNP combinations from each dataset. With the

three sets of discovered patterns, we first study a key mathematical

property of high-order patterns, that is, if these combinations provide

additional insights beyond their subsets. Specifically, for each

combination, we calculate its x2{statistic and x2
jump, and summarize

the results in Figure 2, with the three subfigures corresponding to the

three datasets. Each subfigure shows the x2 statistic of each pattern

and the maximal x2 statistic among all of its subsets, for all the

discovered patterns. The x2
jump thresholds of +5 and –5 are indicated

by a red line and a black line respectively, in each subfigure. Clearly,

many large size patterns have negative x2 jump, which indicates that

many high-order patterns are trivial extensions of their smaller

subsets (such as pattern PB in Figure 1). They are not interesting or at

least not informative for either enhancing the predictive power of a

pattern or exploring functional interactions among the patterns in a

SNP. Note that, +5 and –5 are used as two threshold of x2
jump in

Figure 2 just for visualization purpose, while different thresholds are

studied in the separate experiments.

Some High-order Patterns are Highly Discriminative
Beyond Univariate and Low-order SNP-combinations

We also note that there are indeed several high-order

combinations that provide higher discriminative power than any

of their corresponding subsets. Specifically, in the datasets, Kidney

and Lungcancer, there are tens of size-4 and size-5 patterns above

the line of y~xz5: These patterns may indicate high-order

functional gene interactions whose joint genetic variations result in

a stronger association with the disease phenotypes than singletons

and lower-order combinations. Again, +5 and –5 are used as two

threshold of x2
jump in Figure 2 just for visualization purpose, while

different thresholds are studied in separate experiments. The

observation that only a small fraction of high-order patterns have

large x2
jump values motivates the design of targeted search

algorithms that specifically look for patterns with large x2
jump in

addition to high x2: However, this is a non-trivial task as discussed

in the method section.

Many patterns with high x2
jump (e.g. above the line of y~xz5)

in the three datasets have x2{statistics greater than 20, which

corresponds to a low p-value of 10{7: However, because a huge

number of hypotheses were tested in the SMP search, we need to

correct for multiple hypothesis testing. We use a permutation-test

based approach (see methods section) to estimate unbiased and

reliable false discovery rates (FDRs) for the patterns discovered

and shown in Figure 2 (methods section).

Figure 3 shows the x2 statistics and FDRs for the patterns with

x2
jump above 5 (different parameters for x2

jump are studied in

separate experiments), with a layout similar to Figure 2. The

circles with similar color are clustered together, which results from

the size-specific permutation tests which estimate the FDR of a

size-k pattern from the null distribution built with only the random

patterns of size k (see method). We observe that there are several

significant patterns with FDR (w.r.t. x2) below 0.25 discovered

from the datasets Kidney (up to size-4) and Lungcancer (up to size-

5). Note that in Figure 3, we only consider the patterns with high

x2
jump (above the line of y~xz5). We will present a separate

experiment that illustrates the benefit to statistical power of using

x2
jump based filtering where we try different thresholds of x2

jump:
To better understand the effect of sample size on the FDRs of

the patterns discovered from the real datasets. We designed an

experiment with the same synthetic datasets used in the scalability

test (Figure S3). Specifically, we examine the effect of sample size

on the FDRs of the four embedded synthetic SNP combinations of

sizes 3, 4, 5 and 6, respectively. Table S2 summarizes the FDRs of

each pattern in each synthetic datasets with different sample sizes.

The key observation is that, although the FDRs of embedded

patterns are expected to be more significant when the sample size

increases, all the four synthetic patterns have perfect FDR

(,0.002, i.e. no better patterns were found in any of the 500

permutations), when the sample size is above 200. This indicates

that the sample sizes in the two real datasets (Lungcancer and

Kidney) are expected to be good enough for high-order SNP

combination search. However, when the sample size is below 200,

two of the four embedded real patterns (the size-4 one and size-5

one) can not be discovered with significant FDRs. This is also

consistent with our observation on the other real datasets

(Survival), on which no significant SNP combinations were

discovered. Therefore, this new experiments helped the under-

standing of the effect of sample sizes on FDR and also support the

statistical reliability of the patterns discovered from the two real

datasets.

Two Procedures that Generally Enhance Statistical Power
of High-order SNP Combination Discovery

Here, we present the results studying two procedures for

reducing the number of hypothesis tests in DPM, and their effect

on enhancing the statistical power of high-order SNP combination

discovery. The two procedures are: (P1) enforcing a proper
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threshold of x2
jump and (P2) using gene-set (e.g. pathway)

constraints. They both have been used in existing literature for

improving the computational efficiency of a combinatorial search

framework [38,45]. However, their effect on improving statistical

power has not been systematically studied. The scalability of DPM

for discovering high-order SNP combinations provides an

opportunity to explore this. The statistical power is indirectly

measured by the number of combinations and unique SNPs

discovered with respect to a specific false discovery rate of 0.25.

(Although somewhat arbitrary, a cutoff is needed. We choose a

relatively high FDR threshold as in [24] because, for high-order

SNP combination discovery which is still at its early stage, the

research focus is more about hypothesis generation instead of

hypothesis verification).

Use of x2
jump based filtering generally improves

statistical power. In Figure 3, the FDRs are estimated only

with those patterns having sufficiently highx2
jump: Here, we study

whether using a x2
jump based pattern filtering improves the

statistical power of the framework. Figure 4 (each circle

represent a SNP combination) compares the FDRs without x2
jump

based filtering (x-axis) and the FDRs with x2
jump filtering (y-axis) for

the Lungcancer (left subfigure) and Kidney (right subfigure)

datasets. We tried three different thresholds for x2
jump (0, 3 and 5)

and found that the results are similar, which suggest the essential

effect of the filtering is to eliminate those patterns with low

negative x2
jump values. The figures shown here are based a

threshold of 5 for x2
jump. We use these two datasets for this

comparison because there are more high-order combinations with

high x2
jump discovered from them (up to size-4 and size-5) and

because none of the pattern discovered from the other dataset

(Survival) have FDR (w.r.t. x2) below 0.25. In both subfigures,

there are several circles sitting below the line y~x, indicating that

these patterns have lower (more significant) FDR (w.r.t. x2) when a

x2
jump filtering was applied compared to the case where x2

jump was

not used. Specifically, there are seven combinations in the right

subfigure (the red ones indicated by the arrow) which have an

insignificant FDR (0.5) when no x2
jump-based filtering was applied,

but low FDRs (around 0.2) when a x2
jump~5 filtering was used.

This comparison demonstrates that x2
jump can enhance the

statistical power of discriminative SNP-combination discovery and

potentially discover SNP combinations that would have been

missed. This can be explained as follows: for a real pattern P of

size-k and a high x2
jump, the use of x2

jump filters out random patterns

in the permutation tests that have high discriminative power but

are trivial extensions of its subsets, which would otherwise penalize

the statistical significance of P: Essentially, the use of x2
jump based

filtering provides a better estimation of the statistical significance of

a pattern with high x2
jump by estimating a more reasonable null

distribution.

As discussed earlier, x2
jump is just one of many possible measures

that quantitatively describes the increment of discriminative power

of a pattern with respect to its subsets. Specifically, the

Figure 2. Comparing the x2 statistic of each pattern with the maximal x2 statistic among all of its subsets. The three subfigures
correspond to the three datasets. Each subfigure shows the x2 statistic of each pattern and the maximal x2 statistic among all of its subsets for all the
discovered patterns. The color of a circle indicates the size of the pattern. The red line and the black line in each subfigure show y~xz5 and
y~x{5 respectively.
doi:10.1371/journal.pone.0033531.g002

Figure 3. The x2 statistics and FDRs for the patterns with x2 jump above 5. The layout follows that of Figure 2. In each subfigure, each circle
is a pattern with the color indicating pattern size. Y-axis is the x2 statistic of a pattern of size-k, and X-axis shows its permutation test-based FDR,
which is size-specific as described in the method section.
doi:10.1371/journal.pone.0033531.g003
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x2{statistic can be replaced by other measures of discriminative

power, or the difference can also be replaced by measures for

statistical epistasis [39,45]. The observations from the above

comparison, where x2
jump is used as a representative, supports the

use of these measures to improve the statistical power of

discriminative SNP combination discovery.

Applying gene-set constraints generally improves

statistical power. As discussed in the introduction, gene-set

constraints can reduce the number of hypothesis tests and thus

have the potential to enhance the statistical power of high-order

SNP combination search. However, the reduction of search space

based on prior knowledge also risks missing novel combinations

that are not supported by known gene sets. This calls for a

quantitative estimation of the tradeoff. Leveraging the efficiency

and scalability of the proposed framework, we design the following

experiments to explore how gene-set constraints improve the

statistical power of high-order SNP combination search (see

methods section about how to incorporate gene-set constraints in

DPM), where the power is measured indirectly by the number of

combinations and unique SNPs discovered with respect to a false

discovery rate based on permutation tests as described in the

method section. We use the 1892 gene sets from the Molecular

Signature Database (MSigDB, C2) [24] as the source of biological

constraints.

Table 1 summarizes the comparison we designed on the three

real datasets. We compared the without-constraint setup (A) with

two variations of with-constraint setups, one with a SupMaxPair
threshold that is the same with setup A (0.2, the lowest threshold

that DPM can finish within 0.5 hour without gene-set

constraints) and the other with a threshold (0.1, the lowest

threshold that DPM can finish within 0.5 hour with gene-set

constraints) that is lower to demonstrate that the gain of

computational efficiency with gene-set constraints allows the

search for combinations with lower frequency. The latter two

setups are denoted as B and C respectively. To study how the

size of gene sets affects the statistical power of the proposed

framework, we use a parameter (MaxGeneSetSize) to select the

gene sets to use in each experiment. Specifically, for each dataset,

we conducted the experiments in B and C with

MaxGeneSetSize~20,40,60,80 and 100 respectively. Note that,

we only vary MaxGeneSetSize below 100 because we observed

that when gene sets have more than 100 genes, there are few if

any statistically significant (with FDR (w.r.t. x2) below 0.25) SNP

combinations (with respect to permutation-based FDRs). Several

key observations can be made from Table 1.

A key observation is that, gene-set constraints are generally

effective for improving the statistical power of high-order SNP

combination discovery. For Survival, none of the discovered

combinations have FDR (w.r.t. x2) below 0.25 in the without-

constraint setup. In contrast, with the gene-set constraints, there

are tens of significant (with FDR (w.r.t. x2) below 0.25) SNP

combinations discovered (all of size-2). On the other two datasets,

although the without-constraint setup discovers more significant

combinations than the with-constraint setups, additional SNPs can

be discovered in the with-constraint setups, as indicated by the

second numbers in the brackets.

However, gene-set constraints sometimes can miss interesting

SNP combinations. For the dataset Kidney, without-constraint

setup discovers 98 statistically significant SNP combinations

(with FDR (w.r.t. x2) below 0.25) of sizes 3 and 4 (permutation-

test based FDR less than 0.25 after correcting for multiple

hypothesis tests), while the two with-constraint setups only

discover 2 and 6 combinations with FDR (w.r.t. x2) below 0.25

(all of size 2), respectively. The possible explanation is that the

gene sets in MSigDB C2 may not describe the functional

pathways related to the phenotype in the Kidney dataset

(rejection vs. no-rejection for the patients with kidney trans-

plant). This observation indicates that the effectiveness of gene-

set constraints depends on the gene sets used and varies from

phenotype to phenotype.

A final observation is that, setup C (with-constraint using lower

SupMaxPair) allows the search of lower-frequency SNP

combinations. Specifically, on Kidney and Survival, more

significant SNP combinations with FDR (w.r.t. x2) below 0.25

are discovered when the lower SupMaxPair (0.2) is used. This

demonstrates the existence of low-frequency yet statistically

significant SNP combinations and thus the benefits of searching

low-support SNP-combinations, which is enabled by using gene-

set constraints.

Exploring Functional Interactions in High-order
Combinations

Existing work that studies functional interactions in SNP

combinations mostly focuses pairs of loci [18,57–60]. The few

studies that explored functional interactions in high-order

combinations are mostly based on SNP datasets that cover a

Figure 4. Comparison between the FDRs without x2{jump based filtering and the FDRs with x2{jump filtering for the Lungcancer

and Kidney datasets respectively. In both subfigures, each circle represent a SNP combination. There are several circles sitting below the line
y~x, indicating that they have lower (more significant) FDR when a x2{jump filtering is applied compared to the case where no x2{jump is used.
doi:10.1371/journal.pone.0033531.g004
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small number of genes [17]. In addition, these studies only focus

on one or a few top ranked combinations discovered from a single

dataset and thus only reveal disease-specific functional interactions

[17,41]. In this study, before interpreting the top high-order SNP

combinations, we first explore functional interactions in SNP

combinations from a more general perspective. The aim is to

exploit some common insights on functional interactions in

discriminative SNP combinations consistent across multiple

datasets which may provide some guidance for future studies.

Positive connection between x2
jump and within-pattern

functional coherence. Specifically, we study how the increase

of discriminative power of a SNP combination over its subsets is

related to the functional coherence of the genes covered by the

combination. For this purpose, we divide all the discriminative

patterns discovered by SMP into three groups, i.e. those having

x2
jump values in z5, z?½ Þ, {5, z5ð Þ and {?, {5ð � (denoted

as GP1, GP2 and GP3 respectively) and study the relative

functional coherence of the patterns in the three groups. To

measure the functional coherence of a SNP combination, we first

obtain the set of genes covered by the combination by assigning a

SNP to its closest gene, and then determine the functional

similarity between each unique pair of genes covered by the

combination using a human functional network integrated from a

comprehensive set of resources [61]. Essentially, such an

estimation decomposes the functional coherence of a set of genes

covered by a SNP combination into the functional similarities of

the set of unique gene pairs. We prefer this approach to a GO

enrichment analysis [62] because: 1) the former can provide more

detailed functional insights on gene-gene interactions within high

order combinations, and 2) the latter is usually applicable to gene

sets that are of sizes larger than the high-order SNP combinations

discovered in this study (size-3, 4 or 5, Figure 3). With the

decomposition-based approach for each SNP combination, we can

get three distributions of gene-gene functional similarities for the

three groups of SNP combinations GP1, GP2 and GP3

respectively, where each distribution contains the functional

similarities of the union (unique) of the within-pattern gene pairs

from all the patterns in one of the three groups. In addition to the

three distributions, we also generate a null distribution (R1) by

repeating the following procedure 100 times: we randomly sample

gene pairs from the set of genes covered in the corresponding

dataset as many as the number of gene pairs in GP1, while fixing

the number of times each unique gene occurs with respect to GP1.

Because we binarize the human functional network [61] at 0.5

(The corresponding network has a density of 5%) to make the size

of the network efficient to manage). It is worth noting that the

following results are consistent across different cutoff values for the

functional network (0.5, 0.6, 0.7 and 0.8).

Figure 5 summarizes the comparison among the four distribu-

tions in term of the fraction of functional similarities above 0.5 and

the p-values of the ranksum tests for (GP1 vs. GP3) and (GP1 vs.

R1). The comparisons are done on the Kidney and Lungcancer

dataset but not on Survival because there are significant SNP

combinations (with FDR (w.r.t. x2) below 0.25) discovered on the

former two but not the latter as shown in Figure 3. A key

observation is that GP1 has higher within-pattern functional

similarity than both R1 and GP3: This is reflected by the

consistently higher fraction of within-pattern gene pairs with

functional similarity scores above 0.5 in GP1 than in R1 and GP3:
The relative order among GP1, GP3 and R1 is significant

(ranksum test p values as shown in the figure) and consistent on the

datasets Kidney and Lungcancer as well as the combined.

(Datasets Kidney and Lungcancer cover the same set of genes

and thus have the same null distribution of gene-pair functional

similarity. Therefore, we combine the each of the four sets of gene

pairs (GP1, GP2, GP3 and R1) from the two datasets to increase

the sample size and allow a more reliable estimation of p value.)

This observation provides a novel positive connection between the

Table 1. Parameters used and number of significant patterns discovered for each of the three datasets, for evaluating the effects
of gene-set constraints on enhancing statistical power after correcting multiple hypothesis tests.

Data Name Exp NO.
Gene Set
Constrains Patt Size MaxGeneSetSize

20 40 60 80 100

Kidney A N 2 2(3)

3 64(61)

4 34(50)

B Y 2 2(3,3) 0 0 0 0

C Y 2 0 0 0 6 (10,5) 0

Survival A N 0

B Y 2 2(3,3) 2(3,3) 2(3,3) 5(8,8) 3(5,5)

C Y 2 5(7,7) 11(14,14) 7(10,10) 7(10,10) 11(17,17)

Lungcancer A N 2 14(12)

5 7(12)

B Y 2 12(10,7) 0 0 0 0

3 0 0 0 6(10,10) 8(16,13)

C Y 2 0 4(6,6) 4(6,6) 5(8,8) 0

Parameters used and number of significant patterns discovered with respect to the FDR cutoff 0:25 for each of the three approaches (A: without constraint,
SupMaxPair ~0:2; B: with constraints, SupMaxPair ~0:2 and C: with constraints, SupMaxPair ~0:1) on each of the four real datasets. The number outside the
brackets are the number of significant patterns discovered, and the first number inside a bracket shows the number of unique SNPs covered by the patterns (note that
there are overlaps between patterns); the second number inside the s bracket (for approaches B and C only) indicates the number of SNPs that are discovered by
approaches B or C but not by approach A in the corresponding dataset, thus indicating the benefit of using gene-set constraints.
doi:10.1371/journal.pone.0033531.t001

High-Order SNP Combinations and Complex Diseases

PLoS ONE | www.plosone.org 9 April 2012 | Volume 7 | Issue 4 | e33531



increase of discriminative power of a SNP combination over its

subsets and the functional coherence among the genes covered by

the combination. Essentially, this set of observations suggest that

x2
jump not only improves the statistical power of the discriminative

SNP-combinations search framework (as shown in earlier), it is

also indicative on the biological relevance of the genes covered by

discriminative SNP combinations. The fact that GP3 has the

lowest fraction of functional scores above 0.5 further supports that

a x2
jump-based filtering is helpful and important for further

exploration of functional insights from discriminative SNP

combinations. The results are consistent across different cutoff

values for the functional network (0.5, 0.6, 0.7 and 0.8).

It is worth noting that, GP1 and GP2 have about the same

fraction of functional scores above 0.5 on both Kidney and

Lungcancer and the ranksum tests between them are insignificant

(ranksum test) on both datasets. This suggests that the genes

covered by a SNP combination with x2
jump around zero also tend to

be functionally related. This may be explained by existing study on

positive yeast genetic interactions [63] where multiple genetic

perturbations targeted on a single pathway are often found to have

similar effect as the genetic perturbation of just one gene in the

pathway. In contrast, the SNP combinations with x2
jump highly

above zero (GP1) may correspond to the genes that are involved

with multiple pathways that have compensation with each other,

or correspond to the genes on a single pathway but with dosage

effect [63]. To our knowledge, this set of analysis is the first

exploring the connection between discriminative power of SNP

combinations and functional interactions from a general perspec-

tive across multiple datasets.

Specific interpretation of two patterns discovered from

Datasets Lungcancer and Kidney. Beyond the above general

biological insights, we also find that several high-order patterns

with high x2
jump that are biologically interesting with respective to

the complex diseases, e.g. size-5 patterns in the Lungcancer

dataset and size-4 patterns in the kidney dataset. Figure 6

illustrates two examples with descriptions similar to Figure 1: a

size-5 pattern discovered from Lungcancer with an odds ratio of

11.15, an p-value of 10{8 and a false discovery rate of 0.20, and a

size-4 pattern discovered from Kidney with an odds ratio of 6.31,

an p-value of 10{9:14 and a false discovery rate of 0.21. It is

interesting that the two patterns are both more discriminative than

their subsets. Furthermore, we also found that the synergy, a

measure of statistical epistasis capturing non-additive interactions

[45], of the Lungcancer pattern is positive, indicating a probable

interaction beyond additive effect.

The five SNPs in the Lungcancer pattern are mapped to the five

genes that are closest (chromosome location) to them respectively,

SIM1 [MIM: 63128], PARP1 [MIM: 173870], WT1 [MIM:

607102], ABCC1 [MIM: 158343] and ABCC4 [MIM: 605250].

Four out of the five genes (the latter four) are previously known to

be associated with cancer, with the latter three being associated

with lung cancer specifically [64–66]. SIM1 has been shown to

interact with ARNT [MIM: 126110], which binds to Aryl

Hydrocarbon Receptor (AHR [MIM: 600253]), and the AHR
pathway has been recently shown to be activated upon binding of

various exogenous chemicals from cigarette smoke and might link

to lung cancer risk [67]. PARP1 is a poly(ADP-ribose)

polymerases-1, involved with DNA repair and has been associated

with both better survival in non-small cell lung cancer, as well as

with increased risk of lung cancer [68]. PARP1 is becoming an

important target for cancer therapy, as inhibitors of PARP have

low toxicity [69]. There was also a group that showed that

transcriptional activation of PARP1 leads to in-silica malignant

transformation of human bronchial epithelial cells [70]. WT1
(Wilms tumor 1) has been shown to be a critical regulator of

senescence and proliferation downstream of oncogenic KRAS
signaling [71], and KRAS [MIM: 190070] is one of the most

frequently mutated human oncogenes. ABCC1 and ABCC4 are

ATP-binding cassette genes, sub-family C, involved with multi-

drug resistance [72] so their association with lung cancer here

might have something to do with therapy. Discovering these five

SNPs together as a highly predictive combination with an odds

ratio of 11:15, and a large x2
jump of 7.9 may provide novel insights

on their combined effects (beyond their separate effects) on their

association with lung cancer. The top molecular interaction

network (using Ingenuity Pathway Analysis (http://www.

ingenuity.com, accessed 2012 Feb 20)) for this Lungcancer pattern

is also shown. This molecular subnetwork is associated with cell

death and cell cycle function with the top enriched disease being

cancer, and therefore supports the functional interaction among

the set of genes and their joint association with the risk of lung

cancer. The other pattern in Figure 6 (size-4) is discovered on the

Kidney dataset (XRCC4 [MIM: 194363], SLC7A7 [MIM:

603593], XRCC1 [MIM: 194360] and ITGB3 [MIM: 173470]).

The four gene corresponding to the four SNPs are also enriched

with a molecular interaction network with annotations closely

Figure 5. Functional similarity of within-combination gene pairs in three groups of discriminative SNP combinations and the null
distributions (best view in color). This is to reveal the connection between x2{jump and within-combination functional coherence. The six
comparisons, a{f , and the associated ranksum test p-values are also shown.
doi:10.1371/journal.pone.0033531.g005
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related to transplant after kidney transplant: organismal injury and

abnormalities, cellular movement, cellular-mediated immune

response and cellular development.

It is worth noting that such statistically significant and

biologically relevant discriminative SNP combinations are mostly

high-order combinations of common variants (those SNPs with

high allele frequencies). While the current focus in the exploration

of the genetics of rare diseases is mostly on individually rare

variants, these high-order SNP combinations indicate that

common variants could also be the cause of rare diseases because

combinations of common variants can be a rare composite variant.

Discussion

We presented a computational framework for searching high-

order SNP combinations with strong disease association from case-

control datasets with thousands of SNPs. The framework is

substantially more efficient and scalable than existing techniques

that usually handle tens of or hundreds of SNPs and mostly up to

size-3 combinations. We further showed that, while most high-

order combinations are trivial extensions of their subsets, there are

indeed high-order combinations in real datasets and they have

stronger associations with some disease phenotypes beyond single

SNPs and low-order SNP combinations. We also evaluated the

effect of two strategies for enhancing the statistical power of high-

order SNP combination search: filtering out SNP combinations

with lower or similar discriminative power than their subsets and

constraining the search space with known biological gene sets.

Further leveraging the improved statistical power of this

framework, we explored the functional interactions within the

SNP combinations discovered from three real case-control datasets

and revealed a positive connection between the increase of

discriminative power of a SNP combination over its subsets and

the functional coherence among the genes covered by the

combination. Last but not least, we investigated two representative

high-order SNP combinations (one of size-5 and the other of size-

4) discovered from a lung cancer case-control dataset and a kidney

transplant-rejection case-control dataset respectively, and showed

that the genes covered by the two patterns are enriched with

molecular interaction networks that are highly relevant to the risk

of lung cancer and risk of rejection after kidney transplant,

respectively. These results demonstrate the ability of our approach

to find statistically significant and biologically relevant high-order,

patterns, but we likely find only a subset of all possible SNP

patterns of interest. In particular, some interesting patterns could

be eliminated during the discriminative pattern mining step or in

the x2
jump filtering step. Other existing approaches may discover

some of these missed patterns, but likely miss many of the high-

order patterns we find. Thus, what we provide is a well-founded

and efficient (even though not complete) approach to pattern

discovery in SNP datasets.

Given that there has been a lack of tools for higher-order

combination analysis due to computational and statistical

challenges, the proposed framework is expected to help discover

Figure 6. Visualization of two SNP-genotype combinations discovered from the Lungcancer and Kidney datasets respectively. The
interpretation is similar to the subfigures in Figure 5. The rsnumbers of the five SNPs in the Lungcancer pattern and the four SNPs in the Kidney
pattern (all with MM genotype) are shown. The SNPs in the two patterns are mapped to the following two sets of genes, (SIM1, PARP1, WT1,
ABCC1, ABCC4) and (XRCC4, SLC7A7, XRCC1 and ITGB3). The x2 statistics of the pattern and its subsets are shown in the right subfigures.
Their permutation test-based FDRs and odds ratios are also shown. The top enriched molecular interaction network (by Ingenuity Pathway Analysis)
is also shown for each pattern, where the shaded nodes are those genes mapped from the SNPs in each pattern.
doi:10.1371/journal.pone.0033531.g006
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novel genotype-phenotype associations missed by existing ap-

proaches that mostly take the route of univariate analysis,

pathway/network enrichment analyses that are based on univar-

iate statistics, or epistasis analysis of low-order SNP combinations.

In addition to the proposed framework itself, some general

observations made in this study could also help the development of

other computational techniques that search for high-order SNP

combination and exploit functional insights, namely: 1) two

strategies for enhancing statistical power to cope with multiple

hypothesis testing in the combinatorial search could be leveraged

by other approaches, 2) the observed positive connection between

the increase of discriminative power of a combination beyond its

subsets and the within-pattern functional coherence, both of which

may guide more comprehensive exploration of functional insights

of high-order interaction, and 3) the observation that many

significant associations are rare combinations of common

variations, which suggests an alternative direction to explore the

genetics of rare diseases for which current focus is on individually

rare variations.

The three real datasets used in this paper represent a type of

studies that have a different perspective from the typical disease-

control designs used in most genome-wide association studies

(GWAS). Specifically, the case-control designs used in the three

studies are the short vs. long survival of multiple myeloma patients

(all received the same treatment), acute rejection after kidney

transplant (all received the same treatment) and patients with lung

cancer and normal subjects (all heavy smokers). Studies with such

or similar designs enforce strict additional criteria in sample

selection and thus normally have much fewer samples compared

to most GWAS studies. Given the limited sample sizes, the three

studies adopted a SNP chip that targets a set of SNPs selected on

the basis of biological candidacy in order to have better statistical

power. Therefore, we expect the proposed framework to help

other studies that also use targeted SNP chips to search for high-

order SNP combinations that provide insights beyond univariate

or lower-order analysis.

The proposed framework is able to efficiently search high-order

combinations for focused studies with thousands of SNPs, but not

directly suitable for focus studies with even more SNPs (e.g. tens of

thousands) or genome-wide data. However, note that, this

limitation is not specific to the proposed approach but to high-

order interaction discovery in general, because there it is

computationally infeasible to search for high-order interactions

directly from genome-wide SNP datasets. After all, the state of the

art methods for discovering high-order interactions could only

handle less than a thousand SNPs as reviewed in the paper.

Nevertheless, a practical solution to handle genome-wide datasets

is to apply the current framework on a subset of SNPs selected by

some prioritization strategy [7], e.g. adopt tag SNP selection [50]

techniques to first obtain a set of less redundant SNPs, or only

search for high-order interactions involving those that have

sufficient marginal effects as done in [38,39], or only search for

high-order interactions among the SNPs within a certain category

based on prior biological knowledge, e.g. a pathway or a genomic

region, etc.

There are several possibilities for future work. First, we used a

binary encoding for SNP-genotype combinations which differen-

tiates the present of all the SNP genotypes in a pattern in a subject

from the mismatch of any one genotype, but not further

distinguish different numbers of mismatches. A more generalized

encoding [73] that reflect the numbers of mismatches can be

incorporated into the DPM framework and further explored.

Second, the current study only assigns a SNP to the closest gene

when exploring the functional similarity within a SNP combina-

tion, and thus may ignore the effect of a SNP on affected genes

located far from the SNP (e.g. long distance cis-regulation or trans-

regulation). In future work, one could integrate SNP data with

gene expression data (when available) to map eQTLs before

studying functional interactions within a SNP combination [74].

Third, because the current framework cannot automatically

handle datasets with a large imbalance of race or gender between

cases and controls, we only analyzed datasets with balanced or

slightly imbalanced populations by requiring a large minimum

differentiation threshold and only considered autosomal SNPs in

order to avoid trivial discoveries. To make the current framework

more widely applicable, we could select a subset of cases and

controls to enforce a balance of population structure based on

genome-wide autosomal clustering [26] or we could explore some

generalization approaches that have been used to allow MDR to

automatically handle confounding factors and continuous traits

[18]. Last but not least, although this study focused on the

discovery of high-order combinations from SNP datasets, a similar

framework could also be applied for discovering combinations of

other formats of genetic variations such as copy number variations

or epigenetic variations such as DNA methylation, or even more

generally across different types of (epi)genetic variations.

Materials and Methods

Three SNP Datasets and Pre-processing Considerations
We carefully checked the race and gender information in the

three datasets to make sure the high-order combinations are not

due to spurious allelic association as suggested by [75,76].

Specifically, the subjects in the first two datasets are all Caucasian

descendants and the last dataset contains both Caucasian and

African American samples with an 9% imbalance between the

cases and controls. We require the minimum differentiation

between cases and controls to be 15% in all the SNP-combination

search and analysis, in order to avoid the discovery of trivial

difference due to population substructure, and we only consider

SNPs from autosomes to remove the effect of gender imbalance.

As shown in the result section, the comprehensive functional

analysis on the discovered SNP patterns also supports that the

discovered SNP combinations are functionally related to the

disease instead of confounding factors such as gender and race.

SNPs with more than 5% missing values are also removed.

Simulation of a Synthetic Case-control SNP Dataset
We first used Hap-Sample simulator (http://www.hapsample.

org, accessed 2012 Feb 20) to simulate genotype data with the

3404 SNPs from a recent study on multiple myeloma [34] as input,

out of which 2172 SNPs are included in Hap-Sample. The

synthetic dataset contains 70 cases and 70 controls (randomly

generated from the HapMap project [77]). Note that this genotype

dataset by itself does not contain disease-associated loci.

Therefore, as a proof of concept we further embedded four

synthetic high-order SNP combinations of size 3,4,5 and 6

respectively, that are associated with the case-control grouping,

as shown in Figure S2 (with similar description as those shown in

Figure 1). To study the scalability of SMP with respect to sample

size (summarized in Figure S3), we further generated another 6

synthetic datasets with sample size (cases and controls combined)

from 280 to 5600 in seven steps (280, 420, 560, 1400, 2800 and

5600). In each of the additional six datasets, we first use Hap-

Sample simulator to generate SNP genotypes for more samples.

Then, we embedded the same four synthetic patterns as done in

the first data but increasing the number of samples while

maintaining the frequency of each SNP genotype in the cases
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PLoS ONE | www.plosone.org 12 April 2012 | Volume 7 | Issue 4 | e33531



and controls. All the synthetic datasets are available from the

supplementary website.

The Apriori Framework: Efficient Combinatorial Search
with Anti-monotonic Objective Function

The Apriori framework is essentially a bottom-up exhaustive

combinatorial search framework initially designed for association

analysis on binary data. It first searches all the size-2 combinations

and then moves up to size-3 and so on. Different from brute-force

search, the Apriori framework leverages the antimonotonicity of

the objective function for pruning the combinatorial search space.

Specifically, an objective function F is anti-monotonic if the

following equation holds:

Va’5a,F (a)ƒF (a’), ð2Þ

where a is any combination of SNPs with the binary encoding

described in the result section. An anti-monotonic objective

function can be used in the Apriori algorithm to efficiently traverse

the combinatorial search space without the need of visiting all the

nodes in the search space, because as soon as F (a’) is found to be

disqualified with respect to a threshold (t) (i.e. F (a’)ƒt), Apriori

can prune all the supersets of a’ without missing any combination

with an F value greater than t, given that the anti-monotonicity of

F guarantees that F (a)ƒF (a’)ƒt, Va6a’. Further details on the

optimized implementation of the Apriori framework can be found

in [47].

The Anti-monotonic Objective Function SupMaxPair
Given a case-control dataset, the SupMaxPair of a SNP

combination a (with the binary encoding described in the result

section) is defined in [48] as below (assuming the combination is

more frequent in the cases; similarly for the other situation when

the combination is more frequent in the controls):

SupMaxPair(a)~Supcases(a){max i,jf g[a(Supcontrols( i,jf g)) ð3Þ

where Sup(X ) denotes the frequency (in percentage) of a SNP

combination in a set of samples, cases or controls as shown in the

subscript. So, SupMaxPair(a) is defined as the difference between

the frequency of a SNP combination in the cases and the maximal

frequency of its size-2 subsets in the controls. An objective function

defined in this way not only captures the frequency difference of a

SNP combination between the cases and controls, but also has the

antimonotonicity property, because the difference between an

anti-monotonic function (frequency Sup(X )) and a monotonic

function max is anti-monotonic (refer to [48] for the formal proof).

Using SupMaxPair in the Apriori framework guarantees the

discovery of all the SNP combinations that show at least some

frequency differentiation between cases and controls on the size-2

level, as controlled by a threshold on SupMaxPair: Therefore, if a

size-5 combination does not show any differentiation until size-3

(or size-4, size-5) SupMaxPair would miss it. As shown by a recent

theoretical study [51], the possibility that a high-order (size-k)

combination with strong differentiation shows zero differentiation

in all of its subsets decreases dramatically when k increases

(generally become impossible for k greater than 5). Therefore, in

practice, we can use a threshold on SupMaxPair as low as

possible (computationally more and more expensive) as long the

computational time is still acceptable, in order to minimize the

chance of missing interesting high-order interactions.

Permutation Tests and Estimation of the False Discovery
Rate (FDR)

Because of the large number of high-order SNP combinations

tested in the search process, correction for multiple hypotheses

testing is needed for a reasonable estimation of the statistical

significance of the discovered SNP combinations. We follow the

widely used empirical permutation-based approach (e.g. as used in

[24]) to estimate false discovery rates (FDRs). Specifically, we first

apply the proposed algorithm to the data with the original case-

control grouping to get a set of discriminative patterns which are

called the real patterns. Next, in each permutation test, we randomly

shuffle the grouping of subjects into cases and controls while

maintaining the original sample-size ratio between cases and

controls, and then use SMP with exactly the same setup as for the

original case-control grouping to discover a set of patterns. If x2
jump

based filtering and gene set-based constraints are used for the

original case-control grouping, the same procedures are also

applied in each permutation in order to have an unbiased

correction of multiple hypothesis testing. We repeat the permu-

tation tests 100 times and get 100 lists of discriminative patterns

which are called the random patterns. For each pattern (both real and

random ones), we compute a x2 statistic. The false discovery rate

(FDR) of a real pattern (with respect to a x2 statistic of c and

of size-k) is then calculated as follows: if there are m real patterns of

size-k with x2 greater than c and there are n random patterns of

size-k with x2 statistic greater than c, then the false discovery rate is

n=(100 �m): Note that, the run with real case-control label and

each of the runs with randomized case-control label test the same

number of hypotheses even though different number of combina-

tions were pruned in the searching process.

Note that, in the above permutation based FDR computation,

the estimation of FDR is specific to the pattern size. The use of

size-specific FDR is motivated by the fact that it is harder and

harder for a combination to provide additional discriminative

power than all of its subsets as size increases. That is, given the

same threshold of x2
jump, it is less likely to discover a larger

combination than to discover a smaller one. This is supported by

the observations made in Figure 2 as well as our recent work in

[51] from a more theoretical perspective. In addition, this is in

accord with the observations made by Ma et al. [33]. Therefore,

we chose to estimate size-specific FDRs to better reflect the

statistical significance of patterns of larger sizes. It is worth noting

that estimating FDRs for combinations of different sizes separately

might also increase the risk of discovering false positives. While

one conservative approach is to do a second round of correction

on multiple hypothesis testing over different combination sizes, we

highlight the potential of discovering novel biological insights from

a hypothesis generation perspective in this study. Indeed, the

independent functional analyses presented in the result section

with the discovered high-order combinations do support that the

genes covered by the discovered combinations have significant

functional relationship compared to the carefully controlled null

distribution. Ma et al. [33] also proposed to include the subsets of

a pattern for estimating its null distribution in addition to the

random patterns discovered in the permutation tests. However in

this paper, we estimate FDRs only with the random patterns

discovered in the permutation tests because we directly enforce the

requirement that a pattern has a sufficiently larger x2
jump than its

subsets.

Applying Gene-set Constraints in DPM
Gene-set constraints have been used in some recent work [38] to

improve computational efficiency and to make the biological

interpretation of results easier. Essentially, a set of SNPs are
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considered for an association test only if the SNPs are located

around the genes that are on a common pathway or interact with

each other. Similar constraints can also be applied with molecular

interaction networks, where the search is limited to a local

subnetwork within a certain diameter. For example, human

protein-protein interaction networks are used in in genome-wide

SNP data analysis to reduce the search space of two-locus

interactions [46]. It is worth noting that gene-set or molecular-

subnetwork constraints also has antimonotonicity (if a set of SNPs

do not belong to any gene set or molecular subnetwork, it is

guaranteed that its supersets are not qualified either). Therefore,

these constraints can be naturally incorporated together with

SupMaxPair in the SMP framework to search for high-order

patterns [48].

Supporting Information

Figure S1 Transforming a toy SNP dataset in categorical

representation to the corresponding binary representation.

(TIF)

Figure S2 Four synthetic discriminative patterns of size-36 that

we embed in the synthetic dataset as described in the method

section, with similar description as Figure 1.

(TIF)

Figure S3 The scalability of SMP with respect to sample size

(cases and controls combined). The computational time of SMP

increases linearly with the sample size (Note that the x-axis is not

linearly spaced).

(TIF)

Table S1 Summary of the three real datasets. The second

column lists the number of SNPs for each dataset after filtering out

the SNPs with more than 5% missing values.

(DOC)

Table S2 The effect of sample sizes on the FDRs of the four

synthetic SNP combinations (shown in Figure S2) embedded in the

synthetic dataset.

(DOC)
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