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Abstract

Modified gangliosides may be overexpressed in certain types of cancer, thus, they are considered a valuable target in cancer
immunotherapy. Structural knowledge of their interaction with antibodies is currently limited, due to the large size and high
flexibility of these ligands. In this study, we apply our previously developed site mapping technique to investigate the
recognition of cancer-related gangliosides by anti-ganglioside antibodies. The results reveal a potential ganglioside-binding
motif in the four antibodies studied, suggesting the possibility of structural convergence in the anti-ganglioside immune
response. The structural basis of the recognition of ganglioside-mimetic peptides is also investigated using site mapping
and compared to ganglioside recognition. The peptides are shown to act as structural mimics of gangliosides by interacting
with many of the same binding site residues as the cognate carbohydrate epitopes. These studies provide important clues
as to the structural basis of immunological mimicry of carbohydrates.
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Introduction

Gangliosides are glycosphingolipids which feature one or more

sialic acid residues. They are most often associated with nervous

system function, where they play a crucial role in maintaining the

stability of myelin and axons [1]. Alterations in ganglioside

expression levels have been associated with several neurodegen-

erative conditions, including Alzheimer’s disease, Parkinson’s

disease, Huntington’s disease and HIV-associated dementia [2].

The production of anti-ganglioside antibodies is one of the key

biochemical features of Guillain-Barré syndrome, an autoimmune

neuropathy [3]. While the specific cause of the syndrome is

unknown in the majority of cases, it is commonly preceded by

infection with Campylobacter jejuni [4,5].

Gangliosides have been identified as tumor-associated carbo-

hydrate antigens (TACAs), a group which includes Lewis Y, Lewis

X, Thomsen-Friedenreich and Thomsen-nouvelle [6]. The

gangliosides most often found in the nervous system are GM1,

GD1a, GD1b and GT1b [1], however, the gangliosides considered

for vaccine and antibody-based targeting are generally biosyn-

thetic intermediates of these, such as GM2, GM3, GD2 and GD3

[7,8,9,10] (Figure 1). While found in low amounts in the nervous

system, they often appear in high densities on a variety of tumor

cell types [11,12,13]; thus, they are attractive targets for cancer

immunotherapy. In addition to these, gangliosides terminating in

N-glycolylneuraminic acid (Neu5Gc), such as N-glycolyl GM3

(Neu5Gc-GM3), are also useful targets for cancer treatment

[14,15]. Unlike N-acetylneuraminic acid, Neu5Gc cannot be

synthesized by humans, due to the lack of a functional sialic acid

hydroxylase [16]. The appearance of Neu5Gc on human cells is

thought to come about through enzymatic incorporation from diet

[17]. Since Neu5Gc expression is largely restricted to cancer cells

in humans, targeting Neu5Gc-terminating gangliosides is likely to

achieve a highly selective therapeutic outcome.

Carbohydrates are normally considered T cell-independent

antigens, typically incapable of inducing a strong immune

response [18,19]. One way to address this issue is through the

development of carbohydrate mimetics, capable of inducing an

anti-carbohydrate immune response. Peptides have been consid-

ered for this purpose against a wide range of targets [20]. Peptide

mimics of the GD2 [21,22,23] and GD3 [24,25] gangliosides have

been identified, typically by phage display against anti-ganglioside

antibodies. Some of these have been found to induce anti-

ganglioside immune responses [23,25,26]. Peptide mimics of anti-

Neu5Gc-GM3 antibodies are not currently known, however, anti-

idiotypic antibodies against these antibodies have been identified

[27,28].

Although prior structural studies into the recognition of

gangliosides and their mimics by antibodies have been performed

[21,29,30,31], these have generally utilized simple molecular

docking methodologies. We have previously developed the site

mapping technique, which we have demonstrated to be effective
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for studying carbohydrate-antibody [32,33] and carbohydrate-

lectin recognition [34], as well as peptide-antibody recognition

[35,36,37,38]. Here, we evaluate a range of molecular docking

programs for their ability to predict the binding modes of acidic

sugars to antibodies and apply our site mapping technique to study

antibody recognition of acidic sugars (Table 1). The computational

approach most suitable for the validation cases is then utilized to

investigate recognition of carbohydrate epitopes of gangliosides by

four anti-ganglioside antibodies: R24, ME36.1, chP3 and 14F7

(Table 2). While there are experimentally solved native structures

of all of the antibodies of interest available, the structure of one of

these antibodies, chP3, is missing a short segment of the key

HCDR3 loop. We have thus extended the site mapping technique

to consider multiple protein conformers, in a process termed

‘‘dynamic site mapping’’. Finally, the site mapping technique is

used to investigate antibody recognition of ganglioside-mimetic

peptides, which is compared to recognition of the carbohydrate

determinants of gangliosides.

Methods

Validation and test systems
For method validation, high resolution complexes (,2.5 Å) of

the antichlamydial antibodies S25-2, S73-2 and S25-39 with poly-

Kdo (ketodeoxyoctulosonic acid) antigens were obtained from the

Protein Data Bank (PDB) (Table 1). The test systems examined

(anti-ganglioside antibodies and their ligands) are summarized in

Table 2. Antibodies were numbered and CDRs defined following

the IMGT unique numbering scheme [39].

Molecular docking
Glide 5.6 [40,41], GOLD 4.1.1 [42], AutoDock 4.2 [43] and

DOCK 6.4 [44] were evaluated for their ability to reproduce the

crystallographic binding mode in each of the validation systems.

The settings used for these programs are detailed elsewhere

[34,45]. Briefly, the ligands were treated flexibly by each docking

program, with the exception of the pyranose rings, which were

kept in chair conformations. In the validation cases, all

crystallographic waters and buffer molecules, as well as ions, were

removed from the structures. The Protein Preparation Wizard in

Maestro 9.2 [46] was used to add hydrogens and determine the

most likely protonation states of titratable protein residues in all

cases.

Site mapping
The site mapping procedure was applied to the test systems as

described previously [32]. Briefly, the interactions taking place in

the top 100 ranked poses obtained from molecular docking are

tallied according to the protein residue with which they occurred

and the type of interaction taking place (i.e., hydrogen bond or van

der Waals interaction). The tallies are normalized by dividing the

number of interactions observed with a particular residue by the

total number of interactions observed. Normalization is performed

separately for hydrogen bonding and van der Waals interactions.

Figure 1. Carbohydrate determinants of gangliosides com-
monly found in the central nervous system and cancer cells.
CNS gangliosides: A. GT1b. B. GD1a. C. GD1b. D. GM1. Cancer-related
gangliosides: E. GD2. F. GD3. G. GM3. H. Neu5Gc-GM3. Since each
structure is differentiated by the removal of one or more residues from
GT1b, the glycosidic linkages specified on GT1b apply to all of the
structures, including Neu5Gc-GM3. Carbohydrate symbols follow the
nomenclature of the Consortium for Functional Glycomics [63]: N-
acetylneuraminic acid – purple diamond; galactose – yellow circle; N-
acetylgalactosamine – yellow square; glucose – blue circle; N-
glycolylneuraminic acid – light blue diamond.
doi:10.1371/journal.pone.0035457.g001

Table 1. Validation systems.

PDB ID Carbohydrate Antibody Resolution Reference

1Q9Q Kdoa(2R8)Kdoa(2R4)Kdoa(2-OAll) S25-2 1.49 [50]

1Q9T Kdoa(2R8)Kdoa(2-OAll) S25-2 1.74 [50]

3HZK Kdoa(2R4)Kdoa(2-OAll) S73-2 2.15 [51]

3HZV Kdoa(2R8)Kdoa(2R4)Kdoa(2-OAll) S73-2 1.90 [51]

3HZY Kdoa(2R4)Kdoa(2R4)Kdoa(2-OAll) S73-2 2.10 [51]

3OKK Kdoa(2R4)Kdoa(2-OAll) S25-39 1.95 [52]

3OKL Kdoa(2R8)Kdoa(2-OAll) S25-39 1.80 [52]

3OKN Kdoa(2R4)Kdoa(2R4)Kdoa(2-OAll) S25-39 2.15 [52]

3OKO Kdoa(2R8)Kdoa(2R4)Kdoa(2-OAll) S25-39 2.45 [52]

doi:10.1371/journal.pone.0035457.t001

Ligand Recognition by Anti-Ganglioside Antibodies
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The normalized tallies are sorted from greatest to least

contribution, and the cumulative sum is calculated. All residues

which occur above a given cumulative sum cutoff are deemed

important for recognition.

The metrics of reproduction and correctness were used in the

assessment of site map quality. Reproduction is calculated as the

number of crystallographic interactions identified by the site map

divided by the number of crystallographic interactions observed.

Correctness is calculated as the number of crystallographic

interactions identified by the site map divided by the total number

of mapped interactions. Reproduction and correctness values close

to one indicate that the generated site maps accurately identify the

crystallographic interactions, without the inclusion of erroneous

contacts. The product of reproduction and correctness was used to

assess the quality of mapping; larger values indicate optimal

reproduction and correctness. The cumulative sum cutoff was

optimized for the validation systems by assessing the average

product of reproduction and correctness at 10% cutoff intervals

from 0–100%. The cutoff which provided the greatest average

product for the series of validation cases (Table 1) was applied to

investigate the recognition of gangliosides and ganglioside-mimetic

peptides by the selected anti-ganglioside antibodies (Table 2).

Dynamic site mapping
Three residues of the HCDR3 loop are missing from the

structure of chP3 (PDB 3IU4) [30]. The missing portion was

manually built, and low energy conformers of this portion, as well

as the residue adjacent to each side of the missing portion (making

a total of five residues), were generated using the loop refinement

tool in Prime [47]. The site mapping procedure (see above) was

performed on the ten lowest energy conformers. The most likely

conformer from the set was selected on the basis of its similarity to

the ensemble average of the hydrogen bonding and van der Waals

site maps. The ensemble average maps were calculated by

averaging the interaction contributions of each mapped residue

across the set of ten conformers. The similarity of each

conformer’s site maps to the ensemble average was determined

using the following expression:

Similarity~
a|r2

HBzb|r2
vdW

azb

where a is the cutoff for selection of important hydrogen bonding

contacts (as a fraction), b is the cutoff for selection of important van

der Waals contacts (as a fraction), r2HB is the correlation coefficient

calculated between a particular conformer and the ensemble

average for hydrogen bonding contacts, and r2vdW is the

correlation coefficient calculated between a particular conformer

and the ensemble average for van der Waals contacts. The

conformer exhibiting the highest similarity to the ensemble

average maps was selected as the most likely conformer.

Peptide mimicry of gangliosides
Ganglioside-mimetic peptides were separated into overlapping

hexapeptide fragments and docked to the antibody targets using

GOLD. The site mapping technique (see above) was applied to the

resulting ensembles of poses. The interaction data for the set of

hexapeptides was pooled to give one set of site maps for the

complete peptides, as described earlier [36].

Comparison of ganglioside and mimic recognition
To compare the recognition of gangliosides and their peptide-

based mimics, scatter plots comparing the interaction contribu-

tions of antibody residues in ganglioside recognition and mimic

recognition were generated. The distance between each point and

the line representing equivalence of ganglioside and mimic

recognition (d) was computed as described previously [36]. Positive

d values indicate a greater number of interactions by that residue

with the mimic, while negative d values indicate more interactions

with the ganglioside. Residues with d greater than an absolute

value of 3.00 were considered to vary significantly from the

equivalence line.

Results

Molecular docking evaluation
Several molecular docking programs were evaluated for their

ability to predict the crystallographic binding mode of a series of

antichlamydial antibodies in complex with poly-Kdo antigens

(Table 1). The results of molecular docking evaluation demon-

strate that most programs are generally unsuccessful in accurately

ranking the crystallographic binding mode (Table 3). However, all

of the programs were able to identify the correct binding mode

(i.e., less than 2.0 Å rmsd between pose and crystallographic

binding mode) for at least one case, regardless of ranking. The

exception to this is GOLD, which was able to both accurately

identify and rank, as the top pose, the correct binding mode in four

cases, these being all of the S73-2 complexes (PDB codes 3HZK,

3HZV and 3HZY), and the complex of S25-39 with

Kdoa(2R4)Kdoa(2-OAll) (PDB 3OKK). Two of these successful

cases are shown in Figure 2. In general, increasing the size and

flexibility of the carbohydrate determinant being examined led to

reduced quality predictions. Furthermore, the binding site

topography may also impact on the quality of predictions, as

observed previously [45], however, too few appropriate model

complexes are available to confirm this.

Optimization of site mapping for antibody recognition of
acidic sugars

Since GOLD produced the most accurate poses, irrespective of

the ability to rank those poses, it was used to provide the pose

ensemble input for site mapping. A cumulative sum cutoff of 80%

for both hydrogen bonding and van der Waals interactions has

Table 2. Test systems.

PDB ID Antibody Carbohydrate Mimica Resolution (Å) Reference

1BZ7 R24 GD3 RHAYRSMAEWGFLYS 2.50 [66]

1PSK ME36.1 GD2 LDVVLAWRDGLSGAS 2.80 [67]

1RIH 14F7 Neu5Gc-GM3 mAb 4G9 2.50 [29]

3IU4 chP3 Neu5Gc-GM3 mAb 1E10 1.75 [30]

aOnly peptide-based inhibitors are examined in the current study. Anti-idiotypic antibodies are included for reference.
doi:10.1371/journal.pone.0035457.t002

Ligand Recognition by Anti-Ganglioside Antibodies
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been shown to be optimal when site mapping anti-carbohydrate

antibodies, where shorter, less flexible and less functionally diverse

carbohydrates were considered [32]. This cutoff has also been

successfully applied to peptide-recognizing antibodies and carbo-

hydrate-lectin interactions [34,36]. In order to determine whether

this cutoff was appropriate for studying antibody recognition of

acidic sugars with highly flexible linkages (i.e., (1R6) or (2R8)

linkages), a range of cutoff values was investigated (Table S1). The

90% cutoff was found to be most consistent, affording a lower

standard deviation in the product data (i.e., reproduction6correct-

ness) obtained for the set of cases (S.D. = 0.05). The 80% cutoff

afforded an identical mean to the 90% cutoff across the set of

studied cases, but was slightly less consistent than the 90% cutoff

(S.D. = 0.08). However, the use of the 90% cutoff resulted in

relatively poor map correctness (,0.5–0.6) compared to previous

cases [32,34,36]. This low level of map correctness can be

attributed to the inclusion of many erroneous van der Waals

contacts.

In order to optimize the selection of interacting residues,

hydrogen bonds and van der Waals contacts were considered with

separate cutoffs, instead of the same cutoff for each interaction

type as previously used [32,34,36]. When hydrogen bonding was

considered alone, the 90% cutoff was found to be optimal for the

range of test systems (Table S2) and gave superior results to

considering both hydrogen bonding and van der Waals with the

same cutoff. Consideration of some van der Waals contacts is

needed to identify interactions with non-polar sidechains. It was

found that a 40% cutoff for van der Waals contacts, in

combination with a 90% cutoff for hydrogen bonding interactions,

provided the optimal prediction of crystallographic contacts (Table

S3).

Using this optimized cutoff, it was demonstrated that site

mapping and the top pose obtained from molecular docking

performed comparably at the prediction of interacting residues

(Figure 3, Table 4). Furthermore, this optimized cutoff affords site

map quality comparable in reproduction and correctness to

previously studied antibody- and lectin-carbohydrate systems

[32,34].

Dynamic site mapping of chP3
The structure of chP3 (PDB 31U4) is missing three residues

from the HCDR3 loop [30]. It is known that residues from this

loop are important for antigen recognition by chP3. In order to

identify the most appropriate conformation of this loop,

‘‘dynamic’’ site mapping of chP3, whereby site mapping of

multiple chP3 conformers – varying only in the conformation of

the missing portion of the HCDR3 loop – was carried out. Since

less than ten poses were obtained when docking Neu5Gc-GM3 to

the fourth-lowest energy conformer of the chP3 HCDR3, site

mapping could not be carried out on this structure. The eleventh-

lowest energy conformer was used instead, to make a set of ten

structures.

From site-directed mutagenesis studies, it is known that

Arg111.2H (Arg100AH in Kabat numbering) is critical for

ganglioside recognition [30]. It would therefore be expected that

this residue is heavily involved in antigen interactions. When the

site mapping procedure was carried out on the lowest energy chP3

HCDR3 conformer, Arg111.2H accounted for only 5.31% of all

observed hydrogen bonds, while other residues accounted for a

significantly greater number of hydrogen bonds (Table S4). Thus,

the top scoring conformer is potentially not the most representa-

tive of the biologically relevant state. Similar site maps to this were

observed for the fifth- and ninth-lowest energy chP3 structures.

The second-lowest energy chP3 HCDR3 conformer featured

almost no interactions with Arg111.2H (0.90% of hydrogen bonds

and 1.34% of van der Waals interactions), suggesting that the loop

is also likely to be in a biologically irrelevant conformation. Upon

inspection of this structure, the side-chain of Arg111.2H stacks

with the side-chain of Trp57H, and thus cannot easily interact

with the ligand (Figure 4). In the third-lowest energy structure, the

most hydrogen bonds were observed with Arg111.2H – just over

20% of all hydrogen bonds. Therefore, this structure is likely to be

representative of the biologically relevant state. Other key contacts

in this structure included Ala112.1H, His107L and Tyr108L. The

sixth-lowest energy structure featured Arg111.2H and Ala112.1H

as key contacts, but does not prominently feature the two residues

from the light chain, identified as important for interactions in the

third-lowest energy structure. Instead, Ser38H was identified as a

Table 3. Molecular docking of validation systems.

rmsd values (Å)

Glide GOLD Autodock DOCK

PDB code topa bestb top best top best top best

1Q9Q 6.5 3.7 (15) 6.8 4.3 (2) 6.3 3.7 (27) 9.8 5.7 (7)

1Q9T 4.8 1.5 (7) 3.4 1.0 (5) 7.3 1.9 (3) 5.0 2.0 (4)

3HZK 4.9 1.3 (12) 1.6 1.5 (7) 3.5 3.4 (10) 4.6 1.3 (11)

3HZV 5.0 3.0 (4) 1.1 1.1 (1) 6.6 3.1 (81) -c -c

3HZY 8.4 1.2 (11) 1.5 1.2 (4) 8.6 3.2 (48) 8.1 6.3 (3)

3OKK 6.6 1.0 (11) 1.2 1.2 (1) 1.9 1.9 (1) 5.5 3.6 (11)

3OKL 5.8 3.3 (15) 6.6 0.8 (2) 3.6 1.5 (2) 5.5 4.6 (6)

3OKN 8.2 1.7 (11) 3.0 1.3 (8) 7.5 4.1 (30) 6.4 6.4 (1)

3OKO 7.1 2.1 (62) 6.2 3.5 (58) 4.5 3.8 (46) -c -c

Mean6S.D. 6.461.4 2.161.0 3.562.4 1.861.2 5.562.2 3.060.9 6.461.9 4.362.1

aPose ranked first by molecular docking program.
bPose which gave the best RMSD value compared to the crystallographic binding mode. The docking rank is shown in parentheses.
cNo ligand poses were obtained following the docking procedure.
doi:10.1371/journal.pone.0035457.t003
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key contact. The eighth-lowest energy structure was similar to this,

with slightly greater emphasis on interactions with His107L and

Tyr108L. In the seventh-lowest energy structure, Arg111.2H

dominated the hydrogen bonding interactions, accounting for

almost one third of all hydrogen bonds observed with that

structure. However, Ala112.1H, Gln112H, His107L and Tyr108L

each accounted for ,10% of all hydrogen bonds. The tenth- and

eleventh-lowest energy structures afforded similar site maps to one

another, with hydrogen bonds fairly evenly distributed between

Arg112.2H, Ala112.1H, Gln112H, Ala113H, His107L and

Tyr108L.

In all cases, van der Waals contacts were dominated by Trp57H

and Trp116L (Table S5). The HCDR3 residues – Arg111.2H,

Ala112.1H and Gln112H – were also important for van der Waals

contacts. Their importance is usually in line with their importance

for hydrogen bonding (i.e., residues that are strongly important for

hydrogen bonding are typically strongly important for van der

Waals contacts).

In analyzing the generated site maps, it was determined that the

chP3 conformer most representative of the average state was the

tenth-ranked conformer (Figure 4, Table 5). This conformer

features significant hydrogen bonding with Arg111.2H, known to

be important for recognition from site-directed mutagenesis

studies, but also suggests the importance of nearby HCDR3

residues (Ala112.1H, Gln112H, Ala113H) and the LCDR3

residues His107L and Tyr108L. The van der Waals interactions

largely occur with tryptophan residues at positions 57H and 116L.

This residue utilization is similar to other anti-carbohydrate

antibodies [32].

Determination of the likely ganglioside-recognizing motif
We had investigated ganglioside recognition by the four anti-

ganglioside antibodies (Table 2) using identical hydrogen bonding

and van der Waals cutoffs, as per our previous work [20,32,34],

and this identified some of the residues likely to be involved in

ganglioside recognition [48]. To confirm the results of this

preliminary study, these cases have now been re-examined using

the optimized cutoff values. The corresponding carbohydrate

epitopes of the gangliosides were docked to R24, ME36.1 and

14F7, and the optimized cutoffs were applied to identify likely

Figure 2. Evaluation of molecular docking using high resolution crystal structure complexes. A. Comparison of top ranked pose
obtained from molecular docking (yellow) with the crystallographic binding mode (blue) of the Kdoa(2R4)Kdoa(2-OAll):S25-39 complex (PDB 3OKK).
B. Comparison of top ranked pose (yellow) obtained from molecular docking with the crystallographic binding mode (blue) of the
Kdoa(2R8)Kdoa(2R4)Kdoa(2-OAll):S73-2 complex (PDB 3HZV). C. Schematic representation of interactions in the Kdoa(2R4)Kdoa(2-OAll):S25-39
predicted by molecular docking. D. Schematic representation of interactions in the Kdoa(2R8)Kdoa(2R4)Kdoa(2-OAll):S73-2 complex. Molecular
docking carried out using GOLD 4.1.1. Figures 2A and 2B prepared using PyMOL [64]. Figures 2C and 2D prepared using LIGPLOT [65]. Legend to
Figures 2C and 2D: hydrogen bonds – green dashes; hydrophobic interactions – red arcs; carbon – black; oxygen – red; nitrogen – blue; ligand bonds
– purple; protein bonds – orange.
doi:10.1371/journal.pone.0035457.g002
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antibody residues involved in ganglioside recognition. The

generated site maps, as well as that generated by the dynamic

mapping procedure applied to chP3, were used to identify the

presence of a potential ganglioside-binding motif in the anti-

ganglioside antibodies. The key residues involved in ganglioside

recognition are summarized in Table 6.

Ganglioside recognition by the antibodies was generally

dominated by interactions with the heavy chain (Figures 4 and

5). In the cases of mAbs R24 and 14F7, recognition was entirely

dependent on heavy chain residues, while for mAbs ME36.1 and

chP3, approximately one third of all interactions occurred with

light chain residues. These differences in CDR utilization can be

explained in terms of the binding site topographies of each of the

antibodies; the binding cavities of R24 and 14F7 are both

comprised entirely of heavy chain residues, with access to the

LCDRs blocked by HCDR2.

Despite the differences in binding site topographies, there are

key similarities between the antibodies which become apparent

upon structural examination of the site maps. Four residues,

arranged in a relatively similar ‘‘spiral’’ around each antibody

binding site, are largely responsible for hydrogen bonding

interactions with the gangliosides. Proceeding clockwise, the likely

ganglioside-binding motif of the antiganglioside antibodies com-

prises two polar residues (typically Ser, followed by Tyr, Thr or

Asp), an aromatic residue (typically Tyr) and a basic residue (Arg).

Not all of the antibodies strictly conform to this motif; for example,

R24 features a threonine residue where an arginine would be

expected, and chP3 features an alanine residue where a serine

would be expected.

Peptide mimicry of gangliosides
The peptide mimic of GD3 – RHAYRSMAEWGFLYS – could

replicate almost all of the van der Waals interactions made by the

ganglioside with R24, but some marked differences in the

hydrogen bonding profile occurred (Table S6). The maps revealed

Table 4. Comparison of predictive ability of the optimized
site mapping procedure and molecular docking.

Reproductiona Correctnessb

PDB code Site map Top pose Site map Top pose

1Q9Q 0.88 0.88 0.64 0.88

1Q9T 1.00 1.00 0.80 0.80

3HZK 1.00 1.00 0.67 0.73

3HZV 1.00 1.00 0.75 0.90

3HZY 0.80 0.50 0.73 0.71

3OKK 0.86 1.00 0.55 0.88

3OKL 0.78 0.78 0.78 0.78

3OKN 1.00 1.00 0.67 0.80

3OKO 1.00 0.89 0.75 0.88

Mean 6 S.D. 0.9260.09 0.8960.17 0.7060.08 0.8260.07

aComputed as the number of interacting residues correctly identified by the
technique divided by the total number of interacting residues in the
crystallographic complex.
bComputed as the number of interacting residues correctly identified by the
technique, divided by the total number of interacting residues identified by the
technique.
doi:10.1371/journal.pone.0035457.t004

Figure 3. Evaluation of site mapping using high resolution crystal structure complexes. Kdoa(2R4)Kdoa(2R4)Kdoa(2-OAll) binding to
S73-2 (PDB 3HZY) described by hydrogen bonding map (A) and van der Waals interaction map (B). Kdoa(2R8)Kdoa(2R4)Kdoa(2-OAll) binding to
S25-39 (PDB 3OKO) described by hydrogen bonding map (C) and van der Waals interaction map (D). The color depth indicates the level of
involvement of a particular residue in ligand recognition; more strongly illuminated residues are more involved in ligand recognition than weakly
illuminated residues. The crystal structure binding mode is shown in each structure in sticks colored by atom type (C, yellow; O, red). Images rendered
using PyMOL [64].
doi:10.1371/journal.pone.0035457.g003
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that the peptide failed to replicate the number of hydrogen bonds

made between the GD3 trisaccharide and the antibody residues

Gly38H and Ser58H. However, a significant increase in hydrogen

bonds with the HCDR3 residues, Tyr113H and Tyr114H, was

observed. The reduced potential of the peptide to deeply and

consistently penetrate the binding site across the pose ensemble

may explain why fewer interactions were observed with Gly38H

and Ser58H. Tyr113H and Tyr114H may afford more interac-

tions with the peptide, since they are more easily accessible. From

comparison of the ganglioside- and peptide-derived site maps

(Figure 6), the peptide appears to be a partial structural mimic of

GD3 [20]. This partial structural mimicry could account for the

observed immunological mimicry of GD3 by this peptide [25].

The peptide mimic of GD2 could more closely mimic

carbohydrate binding to ME36.1 compared to the peptide mimic

of GD3 binding to R24 (Table S7). Similar to carbohydrate and

peptide binding to R24, the van der Waals interactions of the

carbohydrate were very well replicated by the peptide, while some

minor differences in the hydrogen bonding profile were observed.

A significant increase in hydrogen bonds with Asp55H and

Ser108H was observed, accompanied by a slight drop in hydrogen

bonds with Tyr55L and Ser56L. Despite these differences, the

ganglioside- and peptide-derived site maps for ME36.1 are overall

very similar to one another. Since the peptide is known to be an

immunogenic mimic of GD2 [23], this represents a case of

structural mimicry translating into immunological mimicry

(Figure 7) [20].

Discussion

Carbohydrate-protein recognition is particularly challenging for

molecular docking to predict accurately, due to the multitude of

chemically equivalent hydroxyl groups in carbohydrates and their

potential to form many specific interactions, including CH-p
interactions [45,49]. Evaluation of a variety of molecular docking

approaches against suitable test cases is desirable to ensure the

development of an optimal modeling protocol. We have previously

demonstrated that molecular docking can be an effective tool for

studying antibody recognition of structurally simpler carbohy-

drates [45]. However, gangliosides feature diverse chemical

functionality, including carboxylate groups and flexible hydroxyl-

ated chains. Furthermore, GD2 and GD3 contain a(2R8)

linkages, which feature an additional degree of conformational

freedom compared to, for example, (1R3) and (1R4) linkages,

Table 5. Conformer score for lowest energy conformers of
chP3.

Conformer r2
HB r2

VdW Similarity

1 0.69 0.70 0.69

2 0.50 0.59 0.53

3 0.89 0.57 0.79

5 0.66 0.55 0.62

6 0.53 0.40 0.49

7 0.70 0.55 0.65

8 0.72 0.58 0.68

9 0.75 0.79 0.76

10 0.95 0.63 0.85

11 0.87 0.69 0.82

doi:10.1371/journal.pone.0035457.t005

Figure 4. Dynamic mapping of chP3. A. The second-lowest energy
conformer, highlighting the stacking between the side-chains of
Arg111.2H and Trp57H. B. The tenth-lowest energy conformer,
predicted to be most likely to be involved in ligand binding. C.
Hydrogen bonding site map for tenth-lowest energy conformer. D. The
van der Waals map for tenth-lowest energy conformer. Residues
contributing to the proposed ganglioside-binding motif are highlighted
on the hydrogen bonding site maps.
doi:10.1371/journal.pone.0035457.g004
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which we have previously investigated [45]. To our knowledge,

such systems have not been appropriately evaluated with

molecular docking. While high resolution ganglioside-antibody

complexes are not available for use in method evaluation, a series

of high resolution structures of antichlamydial antibodies in

complex with Kdo-containing carbohydrates are available

[50,51,52] (Table 1); these represent the most suitable model

systems for evaluating the likelihood of success in predicting

ganglioside-antibody recognition. Another issue with molecular

docking is the need to consider the potential of multiple ligand

binding modes. Their effect on recognition by proteins may be

important for highly flexible ligands, such as carbohydrates and

peptides [49]. In order to consider the effect of multiple ligand

binding modes on recognition by proteins [53], we developed the

site mapping technique, which we have demonstrated to be

effective for studying carbohydrate-antibody [32] and carbohy-

drate-lectin recognition [34], as well as carbohydrate-peptide

mimicry [36].

In this study, the site mapping methodology is extended to study

the recognition of acidic sugars, particularly gangliosides, by

antibodies. Furthermore, to study ganglioside recognition by chP3,

a ‘‘dynamic’’ version of the site mapping technique was developed,

whereby multiple antibody conformers are considered to select

one with the most likely ligand-binding conformation. Ganglioside

mimicry is investigated by comparing the site maps describing the

recognition of gangliosides and their peptide-based mimics.

All of the antibodies examined in the validation set (Table 1)

prominently feature arginine residues in their binding sites, which

pair with the carboxylate groups of the complexed carbohydrate.

Since these charge-assisted hydrogen bonds are likely to be highly

energetically favorable, it was anticipated that the pairing effect

would lead to good quality predictions of antibody recognition of

Table 6. Ganglioside recognition by test systems.a

R24 ME36.1 14F7 chP3b

Region Position Residue %HB %VdW Residue %HB %VdW Residue %HB %VdW Residue %HB %VdW

HCDR1 35 Thr 5.42 1.31

36 Asn 2.60 2.87 Ser 14.19 16.34

37 Tyr 0.22 3.69 Tyr 4.01 14.71

38 Gly 7.99 3.98 Thr 13.90 7.78 Trp 10.46 10.78

40 His 4.71 3.96 His 3.69 3.42

HCDR2 55c Tyr 10.39 3.98 Asp 4.60 5.67 Met 3.69 6.05

57 Ser 1.60 5.10 Asn 1.01 2.64 Asp 15.50 8.66 Trp 0.78 14.87

58 Ser 18.28 3.18

62 Thr 4.67 3.10

64 Ser 4.90 4.30

66c Asn 2.80 0.48 Asn 4.48 1.72 Asp 2.46 1.05

HCDR3 107 Gly 0.10 11.15 Lys 2.47 6.46 Ser 2.80 0.66

108 Gly 2.80 3.18 Ser 22.20 14.12

109 Thr 13.09 10.35

110 Gly 2.90 1.59 Arg 18.86 10.46

111 Thr 0.60 3.50

111.1 Arg 0.80 6.60

111.2 Arg 6.82 3.76 Arg 15.66 12.11

112.1 Ser 8.79 10.51 Tyr 12.51 11.11 Ala 12.86 8.82

112 Leu 5.49 3.50 Gln 16.11 10.26

113 Tyr 13.59 16.24 Ala 10.07 7.11

114 Tyr 0.30 3.18

LCDR1 38 Asn 3.48 3.69

40c His 2.69 1.85

LCDR2 52 Leu 0.00 6.60

55c Tyr 4.82 12.01

56c Ser 7.06 2.11

LCDR3 107 Arg 15.92 4.88 His 15.55 5.00

108 Tyr 9.17 5.53

114 Tyr 7.06 3.69

116 Trp 0.11 15.39

aPercentage contribution to interactions shown only for residues identified as important for recognition by site mapping.
bResults shown for HCDR3 conformer selected by dynamic site mapping.
cBy definition, these positions occur in CDR-adjacent framework regions.
doi:10.1371/journal.pone.0035457.t006
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acidic sugars. The pairing effect gives rise to good quality

predictions in GOLD for four of the validation cases. However,

increasing both the number of residues as well as the flexibility of

the carbohydrate (i.e., including one or more a(2R8) linkages)

generally results in reduced accuracy. This result is not surprising,

as these factors are known to affect the accuracy of molecular

docking [49]. Furthermore, the carbohydrates in the validation

cases contain multiple carboxylate groups, therefore, it is possible

that the incorrect carboxylate group could be paired against a

specific arginine residue, particularly if the rest of molecule can be

accommodated in the binding site and favorably scored. This is

not an issue for the majority of the test cases (Table 2), which

feature only one carboxylate group. Since only a limited number

of antibodies are available for use as validation cases, the effect of

binding site topography on docking accuracy could not be

effectively studied, as it had been previously [34,45]. However,

the case of 3HZV, which contains a large, highly flexible

carbohydrate, suggests that subtle changes in binding site

topography have a dramatic impact on docking accuracy.

In our previous site mapping studies, identical cutoffs of

hydrogen bonding and van der Waals interactions were used to

select residues involved in ligand recognition [32,34,36]. However,

the use of identical cutoffs for both of these interaction types does

not result in an optimal model for gangliosides. A significant bias

towards hydrogen bonding interactions is needed to accurately

represent antibody recognition of acidic sugars. Furthermore,

consideration of van der Waals interactions resulted in only a slight

improvement in the overall accuracy of the site mapping

procedure. This suggests that hydrogen bonding interactions are

significantly more important for antibody recognition of acidic

sugars than van der Waals interactions. Systems previously studied

via site mapping [32,34,36] may benefit from this ‘‘mixed’’

treatment of hydrogen bonding and van der Waals interactions.

The dynamic mapping study of chP3 demonstrates that the site

mapping technique has applications not just in identifying

antibody residues important for ligand interactions, but also in

identifying the likely bioactive conformation of CDR loops,

particularly HCDR3, which is often crucial for antigen recognition

and for which no canonical structures exist [54,55]. Importantly,

the selected protein conformer did not correspond with the lowest

energy state identified, suggesting that, at least in the case of chP3,

conformational change upon antigen binding may be important in

Figure 5. Site maps of anti-ganglioside antibodies. Hydrogen bonding and van der Waals site maps of R24 (A and B), ME36.1 (C and D) and
14F7 (E and F). Residues contributing to the likely ganglioside-binding motif are labeled on the hydrogen bonding site maps.
doi:10.1371/journal.pone.0035457.g005
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recognition. The role of conformational change and induced-fit

mechanisms in antigen binding has been explored earlier by a

number of groups [56,57,58,59,60]. The dynamic mapping study

highlights the potential usefulness of the site mapping technique in

the homology modeling of antibodies and in the structural

elucidation of conformational change upon antigen binding.

Although the four anti-ganglioside antibodies studied have quite

distinct binding site topographies and varying specificities

(Table 2), enough similarities in residue utilization across the set

could be identified to propose a potential ganglioside-binding

motif. This suggests the possibility of structural convergence in the

immune response towards a given antigen class. Structural

convergence has been reported earlier for anti-Lewis Y antibodies

[61]. It is likely that anti-ganglioside antibodies specifically

recognize terminal sialic acid residues, since these are the most

accessible, and thus, antibodies may consistently contain a

particular sialic acid-binding motif. Structural analysis of addi-

tional anti-ganglioside antibodies is required in order to evaluate

this hypothesis. The currently identified motif provides a potential

framework for optimizing existing anti-ganglioside antibodies.

In comparing ganglioside and peptide recognition, we were able

to determine that peptides known to act as immunological mimics

of gangliosides could also act at least as partial structural mimics of

the gangliosides. Therefore, it may be possible to design peptides

which are capable of inducing an anti-ganglioside immune

response using the antibody site maps generated in this study.

Such a ‘‘design by mapping’’ procedure was proposed in our

earlier work in investigating peptide mimicry of aGal-terminating

carbohydrates [36]. Our results for docking anti-idiotypic

antibodies to anti-Neu5Gc-GM3 antibodies indicate that anti-

idiotypic antibodies do not act as structural mimics of gangliosides.

This is most likely due to protein-protein recognition involving a

more extensive interaction network compared with protein-

carbohydrate association.

While the site mapping technique solely evaluates ligand

recognition from the protein’s ‘‘point-of-view’’, it can be combined

with ligand-based mapping techniques to provide the complete

picture of ligand-protein recognition [62]. Thus, this study not

only suggested how gangliosides and their mimics are recognized

by antibodies, but also raised several important new lines of

inquiry relevant to future development of our mapping techniques.

Studies are currently underway to answer these new questions,

which will contribute to the robustness of the mapping techniques

in probing carbohydrate-antibody recognition and to better

understanding such recognition.

To summarize our findings, the anti-ganglioside antibodies

studied here largely utilize a motif of four residues to recognize

gangliosides (Ser, polar, aromatic, Arg). These residues are

arranged within the binding site of each antibody studied here

in a relatively similar fashion. Peptides which bind to anti-

ganglioside antibodies and elicit anti-ganglioside immune respons-

es were found to act as structural mimics of the gangliosides,

providing a case where structural mimicry translates into

immunological mimicry. Our findings provide structural details

invaluable for the future development of ganglioside-targeting

cancer vaccines or optimizing therapeutic antibodies, as well as

demonstrating the potential role of the site mapping technique in

structure-based vaccine design.

Figure 6. Peptide mimicry of GD3 binding to R24. A. Hydrogen bonding site map describing peptide (RHAYRSMAEWGFLYS) recognition by
R24. B. van der Waals interaction site map describing peptide recognition by R24. Site maps generated and rendered using PyMOL [64]. C.
Comparison of hydrogen bonding site maps describing GD3 and peptide recognition. D. Comparison of van der Waals site maps describing GD3 and
peptide recognition. In Figures 6C and 6D, open points indicate residues which deviate significantly from the line representing equivalence of
carbohydrate and peptide interactions (i.e., |d|.3.00). The open point not labeled on Figure 6C corresponds with Tyr114H.
doi:10.1371/journal.pone.0035457.g006
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39. Lefranc M-P, Pommié C, Manuel R, Giudicelli V, Foulquier E, et al. (2003)
IMGT unique numbering for immunoglobulin and T cell receptor variable

domains and Ig superfamily V-like domains. Dev Comp Immunol 27: 55–77.

40. Schrödinger, LLC (2010) Glide, version 5.6. New York, NY.

41. Friesner RA, Banks JL, Murphy RB, Halgren TA, Kilcic JJ, et al. (2004) Glide: a

new approach for rapid, accurate docking and scoring. 1. Method and

assessment of docking accuracy. J Med Chem 2004: 1739–1749.

42. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003)

Improved protein-ligand docking using GOLD. Proteins 52: 609–623.

43. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, et al. (1998)

Automated docking using a Lamarckian genetic algorithm and an empirical

binding free energy function. J Comput Chem 19: 1639–1662.

44. Lang PT, Brozell SR, Mukherjee S, Pettersen EF, Meng EC, et al. (2009)

DOCK 6: combining techniques to model RNA-small molecule complexes.

RNA 15: 1219–1230.

45. Agostino M, Jene C, Boyle T, Ramsland PA, Yuriev E (2009) Molecular docking

of carbohydrate ligands to antibodies: structural validation against crystal

structures. J Chem Inf Model 49: 2749–2760.

46. Schrödinger, LLC (2010) Maestro, version 9.2. New York, NY.

47. Schrödinger, LLC (2010) Prime, version 2.2. New York, NY.

48. Agostino M, Farrugia W, Sandrin MS, Scott AM, Yuriev E, et al. (2012)

Structural glycobiology of antibody recognition in xenotransplantation and

cancer immunotherapy. In: Anticarbohydrate antibodies - from molecular basis

to clinical application P. Kosma, Müller-Loennies S, eds. New York: Springer.

pp 203–228.

49. Yuriev E, Agostino M, Ramsland PA (2011) Challenges and advances in

computational docking: 2009 in review. J Mol Recognit 24: 149–164.

50. Nguyen HP, Seto NOL, MacKenzie CR, Brade L, Kosma P, et al. (2003)

Germline antibody recognition of distinct carbohydrate epitopes. Nat Struct Biol

10: 1019–1025.

51. Brooks CL, Müller-Loennies S, Borisova SN, Brade L, Kosma P, et al. (2010)

Antibodies raised against chlamydial lipopolysaccharide antigens reveal

convergence in germline gene usage and differential epitope recognition.

Biochemistry 49: 570–581.

52. Blackler RJ, Müller-Loennies S, Brooks CL, Evans DW, Brade L, et al. (2011) A

common NH53K single point mutation in the combining site of antibodies

raised against chlamydial LPS glycoconjugates significantly increases avidity.

Biochemistry 50: 3357–3368.

53. Gorelik B, Goldblum A (2008) High quality binding modes in docking ligands to

proteins. Proteins 71: 1373–1386.

54. Al-Lazikani B, Lesk AM, Chothia C (1997) Standard conformations for the

canonical structures of immunoglobulins. J Mol Biol 273: 927–948.

55. Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions

of immunoglobulins. J Mol Biol 196: 901–917.

56. James LC, Roversia P, Tawfik DS (2003) Antibody multispecificity mediated by

conformational diversity. Science 299: 1362–1367.

57. Herron JN, He XM, Ballard DW, Blier PR, Pace PE, et al. (1991) An

autoantibody to single-stranded DNA: comparison of the three-dimensional

structures of the unliganded Fab and a deoxynucleotide-Fab complex. Proteins

11: 159–175.

58. Krishnan L, Sahni G, Kaur KJ, Salunke DM (2008) Role of antibody paratope

conformational flexibility in the manifestation of molecular mimicry. Biophys J

94: 1367–1376.

59. Thielges MC, Zimmermann J, Yu W, Oda M, Romesberg FE (2008) Exploring

the energy landscape of antibody-antigen complexes: protein dynamics,

flexibility, and molecular recognition. Biochemistry 47: 7237–7247.

60. Wilson IA, Stanfield RL (1994) Antibody-antigen interactions: new structures

and new conformational changes. Curr Opin Struct Biol 4: 857–867.

61. Ramsland PA, Farrugia W, Bradford TM, Hogarth PM, Scott AM (2004)

Structural convergence of antibody binding of carbohydrate determinants in

Lewis Y tumor antigens. J Mol Biol 340: 809–818.

62. Agostino M, Sandrin MS, Thompson PE, Yuriev E, Ramsland PA (2010)

Identification of preferred carbohydrate binding modes in xenoreactive

antibodies by combining conformational filters and binding site maps.

Glycobiology 20: 724–735.

63. Nomenclature Committee, Consortium for Functional Glycomics. Symbol and

text nomenclature for representation of glycan structure. Available from: http://

glycomics.scripps.edu/CFGnomenclature.pdf. Accessed 2011 Dec 1.

64. Schrödinger, LLC (2010) The PyMOL Molecular Graphics System, Version

1.4.

65. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: A program to

generate schematic diagrams of protein-ligand interactions. Prot Eng 8:

127–134.

66. Kaminski MJ, MacKenzie CR, Mooibroek MJ, Dahms TE, Hirama T, et al.

(1999) The role of homophilic binding in anti-tumor antibody R24 recognition

of molecular surfaces. Demonstration of an intermolecular b-sheet between

interaction between VH domains. J Biol Chem 274: 5597–5604.

67. Pichla SL, Murali R, Burnett RM (1997) The crystal structure of a Fab fragment

to the melanoma-associated GD2 ganglioside. J Struct Biol 119: 6–16.

Ligand Recognition by Anti-Ganglioside Antibodies

PLoS ONE | www.plosone.org 12 April 2012 | Volume 7 | Issue 4 | e35457


