Skip to main content
. 2012 Apr 20;7(4):e35284. doi: 10.1371/journal.pone.0035284

Table 4. Univariable analysis of non-meteorological covariates with time to infection of premises in the largest cluster (n = 3153), northwest of Sydney, during the 2007 equine influenza outbreak in Australia.

Factor Category No. Hazard ratio (95% CI) P-valuea
Premises attributes
Area (acres) >15.2 788 0.99 (0.85, 1.15) <0.001
5.1–15.2 788 1.94 (1.69, 2.23)
4.8–5.1 789 2.09 (1.83, 2.40)
<4.8 788 1.00
Horse density >1.00 776 1.50 (1.29, 1.74) <0.001
(horses acre−1) 0.40–1.00 799 2.51 (2.18, 2.89)
0.20–0.40 787 1.85 (1.63, 2.17)
<0.20 791 1.00
Number of horses >5 662 3.28 (2.82, 3.82) <0.001
3–5 902 2.48 (2.14, 2.88)
2 787 2.08 (1.79, 2.43)
1 802 1.00
Length of shared fence >300 742 1.45 (1.29, 1.63) <0.001
with other horse 1–300 725 1.64 (1.47, 1.84)
premises (m) 0 1686 1.00
Vaccination statusb Yes 490 0.28 (0.04, 2.13) 0.137
No 2663 1.00
Spatial covariates
Elevation (m) >115 785 0.72 (0.63, 0.82) <0.001
45–115 777 0.66 (0.58, 0.76)
25–45 786 1.02 (0.90, 1.15)
<25 805 1.00
Human population >500 1059 1.05 (0.94, 1.18) <0.001
density (people km−2) 1–500 954 1.29 (1.48, 1.44)
0 1140 1.00
Distance to nearest >2.2 787 1.23 (1.08, 1.41) 0.021
main road (km) 1.1–2.2 789 1.14 (1.00, 1.31)
0.4–1.0 788 1.11 (0.97, 1.27)
<0.4 786 1.00
a

P-values derived from likelihood ratio (LRT) tests comparing univariable to null Cox regression models.

b

Time-changing covariate.