Table 4. Univariable analysis of non-meteorological covariates with time to infection of premises in the largest cluster (n = 3153), northwest of Sydney, during the 2007 equine influenza outbreak in Australia.
Factor | Category | No. | Hazard ratio | (95% CI) | P-valuea |
Premises attributes | |||||
Area (acres) | >15.2 | 788 | 0.99 | (0.85, 1.15) | <0.001 |
5.1–15.2 | 788 | 1.94 | (1.69, 2.23) | ||
4.8–5.1 | 789 | 2.09 | (1.83, 2.40) | ||
<4.8 | 788 | 1.00 | |||
Horse density | >1.00 | 776 | 1.50 | (1.29, 1.74) | <0.001 |
(horses acre−1) | 0.40–1.00 | 799 | 2.51 | (2.18, 2.89) | |
0.20–0.40 | 787 | 1.85 | (1.63, 2.17) | ||
<0.20 | 791 | 1.00 | |||
Number of horses | >5 | 662 | 3.28 | (2.82, 3.82) | <0.001 |
3–5 | 902 | 2.48 | (2.14, 2.88) | ||
2 | 787 | 2.08 | (1.79, 2.43) | ||
1 | 802 | 1.00 | |||
Length of shared fence | >300 | 742 | 1.45 | (1.29, 1.63) | <0.001 |
with other horse | 1–300 | 725 | 1.64 | (1.47, 1.84) | |
premises (m) | 0 | 1686 | 1.00 | ||
Vaccination statusb | Yes | 490 | 0.28 | (0.04, 2.13) | 0.137 |
No | 2663 | 1.00 | |||
Spatial covariates | |||||
Elevation (m) | >115 | 785 | 0.72 | (0.63, 0.82) | <0.001 |
45–115 | 777 | 0.66 | (0.58, 0.76) | ||
25–45 | 786 | 1.02 | (0.90, 1.15) | ||
<25 | 805 | 1.00 | |||
Human population | >500 | 1059 | 1.05 | (0.94, 1.18) | <0.001 |
density (people km−2) | 1–500 | 954 | 1.29 | (1.48, 1.44) | |
0 | 1140 | 1.00 | |||
Distance to nearest | >2.2 | 787 | 1.23 | (1.08, 1.41) | 0.021 |
main road (km) | 1.1–2.2 | 789 | 1.14 | (1.00, 1.31) | |
0.4–1.0 | 788 | 1.11 | (0.97, 1.27) | ||
<0.4 | 786 | 1.00 |
P-values derived from likelihood ratio (LRT) tests comparing univariable to null Cox regression models.
Time-changing covariate.