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Abstract

Hepatocellular carcinoma (HCC) is a leading cause of global cancer mortality. However, little is known about the precise
molecular mechanisms involved in tumor formation and pathogenesis. The primary goal of this study was to elucidate
genome-wide molecular networks involved in development of HCC with multiple etiologies by exploring high quality
microarray data. We undertook a comparative network analysis across 264 human microarray profiles monitoring transcript
changes in healthy liver, liver cirrhosis, and HCC with viral and alcoholic etiologies. Gene co-expression profiling was used to
derive a consensus gene relevance network of HCC progression that consisted of 798 genes and 2,012 links. The HCC
interactome was further confirmed to be phenotype-specific and non-random. Additionally, we confirmed that co-
expressed genes are more likely to share biological function, but not sub-cellular localization. Analysis of individual HCC
genes revealed that they are topologically central in a human protein-protein interaction network. We used quantitative RT-
PCR in a cohort of normal liver tissue (n = 8), hepatitis C virus (HCV)-induced chronic liver disease (n = 9), and HCC (n = 7) to
validate co-expressions of several well-connected genes, namely ASPM, CDKN3, NEK2, RACGAP1, and TOP2A. We show that
HCC is a heterogeneous disorder, underpinned by complex cross talk between immune response, cell cycle, and mRNA
translation pathways. Our work provides a systems-wide resource for deeper understanding of molecular mechanisms in
HCC progression and may be used further to define novel targets for efficient treatment or diagnosis of this disease.
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Introduction

Hepatocellular carcinoma (HCC) is the third most common

cause of cancer-related death worldwide [1]. Annually, more than

620000 new patients are diagnosed with this disease and 1-year

survival rates remain less than 50% [2]. In 70–90% of cases, HCC

develops on a background of chronic liver disease, such as chronic

inflammation or cirrhosis [3]. Worldwide, the main risk factor for

HCC is viral hepatitis, which accounts for 75% of all cases and

results in a 20-fold HCC risk increase in affected patients with

cirrhosis [4]. In the Western world, additional factors such as

alcohol abuse or metabolic disorders (e.g. long-lasting diabetes

mellitus) contribute to increasing incidence rates [5,6]. A precise

molecular understanding of pathological transformations in the

liver remains the key to successful management of this disease.

The advent of high-throughput technologies (e.g. transcript/

protein chips, semi-automated yeast two-hybrid screens) has

allowed simultaneous interrogation of multiple molecular compo-

nents at any given time. Advances in gene expression profiling

have been used to identify key differentially expressed genes and

their pathways in HCC. For example, a high-density cDNA array

was used to correlate overexpression of vimentin (VIM) with

metastatic spread [7]. Additionally, integration of chromosome

aberrations with microarray and proteomic studies has also led to

the development of the first oncogenic HCC database [8]. While

these studies have improved our molecular understanding of

HCC, it is becoming increasingly clear that a single function can

only rarely be attributed to a particular gene or protein [9,10].

Thus, a deeper understanding of multifactorial mechanisms in

HCC progression may be achieved using a systems-wide

approach. This shift in paradigm is attracting substantial interest

and has been applied successfully to define signaling cascades in

cardiac hypertrophy [11], mechanisms of gastric cancer progres-

sion [12], and fundamental organizational properties of metabolic

networks [13]. More recently, integration of HCC gene expression

with topological features of human protein interaction networks

resulted in enhanced diagnosis of HCC [14], while network

analysis of hepatitis C virus (HCV)-induced HCC elucidated

dysfunctional interactions among proteins and aberrant relation-

ships between transcription factors and their target genes [15].

In this study, we expand on the current network-based

interpretation of HCC pathogenesis and undertake a computa-
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tional approach to explore functional and topological properties of

key genes and pathways in HCC gene relevance networks derived

from 264 human microarray experiments monitoring normal liver

tissue, liver cirrhosis, and HCC. Our gene co-expression analysis

resulted in a consensus disease network that consisted of 798 genes

and 2012 links. Network clustering approach based on gene co-

expression patterns identified gene clusters involved in immune

response, cell cycle, and mRNA translation pathways. Subsequent

analysis using RT-PCR validated co-expressions of several well-

connected genes localized to the cell cycle cluster, ASPM (asp

[abnormal spindle] homolog, microcephaly associated [Drosoph-

ila]), CDKN3 (cyclin-dependent kinase inhibitor 3), NEK2 (NIMA

[never in mitosis gene a]-related kinase 2), RACGAP1 (Rac

GTPase activating protein 1), and TOP2A (topoisomerase [DNA]

II alpha 170 kDa). Taken together, our results present a resource

for further identification and validation of potential target genes

implicated in HCC pathogenesis.

Results

Inference of gene co-expression networks
We investigated gene expression profiles of normal liver tissue,

hepatitis B/C- (HBV, HCV) and alcohol-induced cirrhosis, and

HCC tumors at various stages of disease and heterogeneous

backgrounds (HCV/HBV, alcohol) (Table 1). To establish

phenotype specificity, we also studied gene expression in breast,

colon, and prostate cancers, as well as normal human tissue,

obtained from the Genome Novartis Foundation’s SymAtlas [16],

which contains 79 different normal human tissues (such as liver,

brain, and heart) and cell types with 2 replicates per tissue/cell

type.

These additional microarray datasets were selected for the

following reasons: 1) breast, colon, and prostate cancers are among

the most common global cancer-related malignancies [17]; 2) due

to the viral or alcoholic etiology and liver-specificity of HCC

tumors, non-liver cancers may be suitable to confirm phenotype-

specificity; 3) all microarray datasets represent highly comprehen-

sive normal and cancerous tissue gene expression profiles that are

available to the scientific community.

For each dataset, genes whose expression correlated above a

predefined Pearson correlation coefficient (PCC) threshold were

represented as nodes in an undirected and unweighted network,

while their co-expressions formed network edges. To select an

appropriate PCC threshold, we compared clustering coefficients of

real and random networks for 0.50#PCC#1.0 [18] (see

Methods, Suppl. Figure S1). Gene co-expression networks

were constructed from HCC datasets (HCC-Net, HCV-Net,

Progression-Net), cancer datasets (Breast-Net, Colon-Net, Pros-

tate-Net), and normal human tissue (Normal-Net) (see Methods,

Table 2). Although, a high confidence normal tissue gene co-

expression network already exists [19], we did not use it for

comparison to tumor networks to preserve consistency in network

reconstruction for all datasets. On average, all networks had large

clustering coefficients than what was expected by chance (Suppl.
Figure S1, mean = 0.45, standard deviation = 0.06), network

diameters (mean = 15, standard deviation = 2.9), and assortativities

(mean = 0.24, standard deviation = 0.05) (Table 2).

Since it is likely that inter- and intra-cellular connectivity

patterns of genes and their products may yield distinct phenotypes

[20,21], we investigated whether phenotypes associated with each

gene co-expression network may be distinguished through their

respective node degree distributions. To test this hypothesis, node

degrees of 762 genes that were common to all gene co-expression

networks (HCC-Net, HCV-Net, Progression-Net, Breast-Net,

Colon-Net, Prostate-Net, Normal-Net) were projected onto two

principal components (PCs). This analysis demonstrated that the

HCC interactomes clustered together and were clearly separated

from other cancers as well as the normal human interactome, in

terms of their node connectivity properties, suggesting phenotype-

specificity captured by distinct co-expression patterns (Figure 1A).

Conserved co-expression network in hepatocellular
carcinoma

It was previously established that the conservation of gene co-

expressions across multiple microarray experiments would im-

prove reliability of network inference [12]. Thus, recurrence of a

co-expression link in all three HCC networks was evaluated. The

HCC-Net and HCV-Net shared 1164 genes and 3184 links, the

HCC-Net and Progression-Net shared 1808 genes and 7221 links,

and the HCV-Net and Progression-Net shared 2507 genes and

10411 links (Figure 1B). There were 798 genes and 2012 links

that were common to all three networks – termed the ‘‘Conserved-

Net’’ hereafter (Figure 1B, Suppl. Table S1, Suppl. Table
S2).

To test if the node degree distribution of the Conserved-Net

follows a power-law, p(x),x2alpha, we applied maximum-likelihood

fitting methods with goodness-of-fit tests based on the Kolmo-

gorov-Smirnov statistic and likelihood ratios, described previously

[22]. The alpha value of the power-law fit was estimated to be 1.67,

while the lower cut-off, xmin, for the scaling region was 1. The p-

Table 1. Summary of microarray datasets.

Microarray
Dataset Name Experimental Conditions Platform

Number of
Probes

Number of Probes
after preprocessing

ArrayExpress
Accession Number

HCC Dataset [82] Normal Liver, HBV/HCV/Alcoholic Cirrhosis,
HCC N = 65

HG-U133A 22283 13149 E-TABM-36

HCV Dataset [66] Normal Liver, HCV-HCC N = 124 HG-U133A_2 22277 13149 E-GEOD-14323

Progression Dataset [44] Normal Liver, HCV-Cirrhosis, 4 stages of HCV-
HCC N = 75

HG-U133A Plus 2 54675 21358 E-GEOD-6764

Breast Dataset [68] Normal, breast tumor N = 86 HG-U133A 22283 13149 E-GEOD-15852

Colon Dataset [69] Normal, colon cancer N = 47 HG-U133A 22283 13149 E-MTAB-57

Prostate Dataset [70] Normal, prostate cancer N = 154 HG-U133 Plus 2 54675 21359 E-GEOD-17951

Normal Dataset [16] Normal tissue and cell lines N = 158 HG-U133A 22283 13149 E-TABM-145

HCC = Hepatocellular Carcinoma; HBV = Hepatitis B Virus, HCV = Hepatitis C Virus.
doi:10.1371/journal.pone.0035510.t001

Gene Relevance Network of Hepatocellular Carcinoma
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value for the fit to the power-law model between node degree

distributions and the power-law was calculated using the approach

described in [22]. If the resulting p-value is greater than 0.1, the

power-law is a plausible hypothesis for the data, otherwise it is

rejected. For the Conserved-Net, the p-value for the power-law fit

was 0. Thus, there is a no support for the power-law node degree

distribution in the Conserved-Net (Figure 1C).

To ensure that the Conserved-Net intersections are statistically

significant, we randomized the HCV-Net, HCC-Net, and

Progression-Net by shuffling the edges of each network 538940,

83900, and 2197996 times respectively, while preserving the

original node degrees of all nodes (Maslov-Sneppen [MS] model

[23]). This procedure was repeated 200 times (see Methods),

while calculating the number of common genes and links between

the randomized networks for all iterations. On average, intersec-

tions of randomized HCC networks contained 7.9 genes (standard

deviation = 3.9) and 4.1 links (standard deviation = 2.1). Thus,

identification of 798 genes and 2012 links in the Conserved-Net

was significantly non-random (z-score = 198, Figure 1D).

Next, the coverage of Conserved-Net, in terms of the number of

oncogenes present, was estimated by searching for genes with

known somatic mutations implicated in carcinogenesis. We used

Table 2. Measures of graph structure and topology across various tumor and normal networks.

Network
PCC
cutoff Nodes Edges

Average
degree

Clustering
coefficient Diameter

Fraction of nodes
in giant
component Assortativity

HCC-Net 0.76 3155 20975 13.1 0.38 19 0.78 0.31

HCV-Net 0.73 6661 134735 40.5 0.44 16 0.96 0.15

Progression-Net 0.65 13801 549499 79.6 0.40 14 0.98 0.23

Breast-Net 0.66 8918 351819 78.9 0.44 12 0.99 0.25

Colon-Net 0.75 7889 265520 67.3 0.41 15 0.98 0.20

Prostate-Net 0.59 16955 2703937 318.9 0.54 11 0.99 0.23

Normal-Net 0.77 5483 114126 41.6 0.52 18 0.93 0.28

Conserved-Net NA 798 2012 5.0 0.32 10 0.28 0.49

HCC = Hepatocellular Carcinoma; HBV = Hepatitis B Virus, HCV = Hepatitis C Virus, PCC = Pearson correlation coefficient.
doi:10.1371/journal.pone.0035510.t002

Figure 1. Properties of gene co-expression networks. A) Principal component analysis (PCA) of connectivity patterns in HCC datasets and
breast, colon, and prostate cancers as well as the normal human tissue. B) Venn diagram of conserved genes and links in three HCC datasets with
different etiologies. C) The cumulative distribution function P(x) and the maximum likelihood power-law fit for the node degree distribution in the
Conserved-Net. The alpha parameter represents the scaling exponent in the power-law fit, p(x),x2alpha, while xmin represents the lower cut-off for
the scaling region. The corresponding p and goodness-of-fit (g.o.f.) values were computed according to the method described in [22]. The red line
represents visualization of a power-law distribution of the form p(x),x2alpha for x$xmin. D) Comparison of Conserved-Net to intersections of
randomly generated networks.
doi:10.1371/journal.pone.0035510.g001

Gene Relevance Network of Hepatocellular Carcinoma
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the Catalogue of Somatic Mutations in Cancer (COSMIC) [24] as

reference and determined that of the 798 genes in the Conserved-

Net, 410 (51%) had documented roles in tumorigenesis.

Topological properties of the Conserved-Net
To evaluate topological organization of the Conserved-Net

further, we assessed network betweenness, clustering coefficients,

assortativity, diameter, and modularity. These parameters were

also measured in 200 random networks obtained using the MS

model (see Methods). Real node degrees and network diameters

were not significantly different from random networks. This was

expected since the MS algorithm preserves original node degree

distribution of the original network. Nevertheless, betweenness,

clustering coefficients, assortativity, and modularity of the

Conserved-Net were significantly different to those observed in

random models (Figure 2 A–E).

Interestingly, the Conserved-Net was characterized by a

substantially smaller average node degree compared to individual

HCC networks (Conserved-Net [average degree = 5.0] vs. HCC-

Net [average degree = 13.1], HCV-Net [average degree = 40.5],

Progression-Net [average degree = 79.6], Table 2), which may

indicate a greater degree of fragmentation in the consensus

network. Network fragmentation was previously assessed by

calculating the fraction of nodes that belong to the largest

connected component of a network [25,26]. Smaller connected

components indicate more fragmented networks. The fraction of

nodes that formed the largest connected component of the

Conserved-Net was 0.28, compared to 0.78, 0.96, and 0.98 for

HCV-Net, HCC-Net, and Progression-Net respectively (Table 2),

supporting the notion that the Conserved-Net is fragmented.

Given that biologically essential genes may encode proteins that

localize centrally in a protein-protein interaction network (PPIN)

[27], we mapped 798 Conserved-Net genes (HCC genes) onto a

high-confidence human PPIN (see Methods) consisting of 57228

interactions among 11203 proteins. We then calculated node

degrees, betweenness centralities, and clustering coefficients of 468

(59%) genes that could be mapped into the PPIN. All topological

values of mapped HCC genes were significantly larger than

remaining genes in the PPIN (Figure 3A–C), while cyclin-

dependent kinase 1 (CDKN1) was the only hub node in both the

Conserved-Net (node degree = 26) and network of PPIs (node

degree = 86). Of note, while 468 HCC genes could be mapped to

the PPIN, 216 (46%) of these contained 446 direct protein-protein

interactions and could be enriched for GO-Fat terms ‘Transla-

tion’, ‘Wound healing’, ‘Immune response’, ‘Cell cycle’, and

‘Negative regulation of apoptosis’.

Biological interpretation of the Conserved-Net
To provide insight into molecular pathways that are reflected by

the 798 genes in the Conserved-Net, we used the DAVID

functional enrichment tool to identify over-represented Biocarta,

KEGG, and Reactome pathways (see Methods). The most

abundant pathways were Reactome pathways that include ‘Cell

Cycle, Mitotic’ (n = 37 genes, p = 1.3861024), ‘Metabolism of

proteins’ (n = 36 genes, p = 1.3661027), and ‘Signaling in Immune

system’ (n = 30 genes, p = 0.0072) (Table 3). Other pathways

largely represented genes involved in immune response, transla-

tion, and remodeling of the extracellular matrix.

An important characteristic of most biological networks is that

they tend to naturally organize into modules [28]. We tested

whether genes that localized to the same module in the

Conserved-Net share biological function. We calculated the

number of common functional terms (GO-BP, GO-CC, Reactome

pathways) between co-expressed genes in clusters identified by

either MCL or Louvain clustering algorithms and compared them

to randomly generated clusters with identical number of genes and

links. Two independent clustering algorithms were chosen to

ensure validity of our observations and functional similarity

between all genes was expressed using the Jaccard coefficient

(see Methods).

The MCL algorithm partitioned the Conserved-Net into 247

clusters (modularity = 0.53). The largest cluster contained 30

Figure 2. Topological properties of the Conserved-Net. Average betweennes, clustering coefficient, as well as assortativity, diameter, and
modularity of the Conserved-Net compared to 200 Markov-Sneppen (MS) random graphs (A–E). Real node degrees were not significantly different
from random networks. Betweenness centrality, clustering coefficients, assortativity, and modularity of the Conserved-Net were significantly different
to those observed in random models (z-scores = 40.5, 98.9, 22.9, 75.5, respectively).
doi:10.1371/journal.pone.0035510.g002

Gene Relevance Network of Hepatocellular Carcinoma
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Figure 3. Topological properties of 798 genes of the Conserved-Net in the high-confidence human protein-protein interaction (PPI)
network. A–C) Average node degree, betweenness centrality, and clustering coefficient of HCC-associated genes derived from the Conserved-Net
compared to other genes in the human PPIN. Error bars indicate standard error of the mean (SEM). Statistical significance was calculated using
Wilcoxon rank sum test.
doi:10.1371/journal.pone.0035510.g003

Table 3. Functional enrichment of the 798 genes in the Conserved-Net for Reactome, KEGG, and Biocarta pathways.

Category Term Count P-value Benjamini

Reactome Pathway REACT_152:Cell Cycle, Mitotic 37 1.3861024 0.0027

Reactome Pathway REACT_17015:Metabolism of proteins 36 1.3661027 8.0461026

Reactome Pathway REACT_6900:Signaling in Immune system 30 0.0072 0.082

Reactome Pathway REACT_1762:39 -UTR-mediated translational regulation 23 6.5561027 1.9361025

Reactome Pathway REACT_6167:Influenza Infection 23 3.1061024 0.0046

KEGG Pathway hsa04060:Cytokine-cytokine receptor interaction 22 0.020 0.33

KEGG Pathway hsa03010:Ribosome 21 4.8661029 6.91E27

KEGG Pathway hsa04062:Chemokine signaling pathway 19 0.0051 0.11

KEGG Pathway hsa04510:Focal adhesion 18 0.022 0.32

KEGG Pathway hsa05322:Systemic lupus erythematosus 17 2.4061025 0.0011

KEGG Pathway hsa04110:Cell cycle 17 4.1261024 0.012

KEGG Pathway hsa04610:Complement and coagulation cascades 16 9.4661027 6.7261025

KEGG Pathway hsa04512:ECM-receptor interaction 15 5.5161025 0.0020

Reactome Pathway REACT_1538:Cell Cycle Checkpoints 15 0.011 0.10

Reactome Pathway REACT_13552:Integrin cell surface interactions 11 0.032 0.21

Reactome Pathway REACT_16888:Signaling by PDGF 10 0.019 0.15

KEGG Pathway hsa04540:Gap junction 10 0.032 0.34

KEGG Pathway hsa05130:Pathogenic Escherichia coli infection 8 0.022 0.29

KEGG Pathway hsa04672:Intestinal immune network for IgA production 7 0.0332 0.33

BIOCARTA h_tcytotoxicPathway:T Cytotoxic Cell Surface Molecules 6 4.1061024 0.057

KEGG Pathway hsa05020:Prion diseases 6 0.028 0.33

BIOCARTA h_extrinsicPathway:Extrinsic Prothrombin Activation Pathway 5 0.0030 0.19

BIOCARTA h_thelperPathway:T Helper Cell Surface Molecules 5 0.0043 0.18

BIOCARTA h_amiPathway:Acute Myocardial Infarction 5 0.0059 0.19

BIOCARTA h_stathminPathway:Stathmin and breast cancer resistance to
antimicrotubule agents

5 0.0059 0.19

BIOCARTA h_Ccr5Pathway:Pertussis toxin-insensitive CCR5 Signaling in
Macrophage

5 0.0079 0.21

BIOCARTA h_LairPathway:Cells and Molecules involved in local acute
inflammatory response

5 0.013 0.27

BIOCARTA h_fibrinolysisPathway:Fibrinolysis Pathway 4 0.025 0.40

BIOCARTA h_classicPathway:Classical Complement Pathway 4 0.032 0.44

Terms are sorted by the number of representative genes (Count). Enrichment p-values (P-value) which were then adjusted using Benjamini-Hochberg multiple testing
correction.
doi:10.1371/journal.pone.0035510.t003

Gene Relevance Network of Hepatocellular Carcinoma
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genes, while the smallest contained 2 genes. Conversely, the

Louvain algorithm partitioned the Conserved-Net into 139

clusters (modularity = 0.85) with 89 and 2 genes in the largest

and smallest clusters respectively. Both clustering algorithms

produced high functional similarity values for GO-BP (12.3 times

greater Jaccard coefficient [MCL vs. Random], 10.9 times greater

Jaccard coefficient [Louvain vs. Random]) and Reactome (18.2

times greater Jaccard coefficient [MCL vs. Random], 7.7 times

greater Jaccard coefficient [Louvain vs. Random]) terms

(Figure 4A) compared to respective random partitions. Interest-

ingly, GO-CC similarities were not substantially higher in real

modules compared to random (2.3 times greater Jaccard

coefficient [MCL vs. Random], 2.4 times greater Jaccard

Coefficient [Louvain vs. Random]).

Next, due to high functional similarities within partitions,

parameter-independent clustering results, and high modularity of

identified clusters we selected results produced by the Louvain

algorithm for further functional exploration of the Conserved-Net

(Figure 4B). Enrichment for over-represented GO-BP terms in

gene clusters with .10 genes, revealed presence of processes

involving ‘Cell cycle’ (p = 6.80610229, Cluster 5), ‘Translation

elongation’ (p = 2.10610216, Cluster 3), and ‘Extracellular matrix

organization’ (p = 1.2361029, Cluster 1) processes (Table 4).

Contribution of the normal liver to the Conserved-Net
It was of interest to investigate to what extent gene co-

expression modules in the Conserved-Net were contributed by the

normal liver tissue. Results may reveal conserved gene clusters that

could represent important oncogenic pathways.

To identify conserved gene modules, we repeated gene co-

expression analysis of the HCC datasets in the absence of the

normal liver profiles. Co-expression networks were constructed by

selecting the appropriate PCC cutoff (Suppl. Figure S2), as

described in the previous sections, and retaining genes and co-

expressions conserved in all three HCC microarray datasets. The

resulting consensus network of gene co-expressions in malignant

samples (tConserved-Net) contained 499 genes and 1256 links. Of

these, 377 genes (47%) and 792 links (40%) were shared with the

Conserved-Net, while 300 genes and 464 links were specific only

to the tConserved-Net (Figure 5A). Overall, 407/499 (82%) genes

of tConserved-Net were also present in the Conserved-Net, while

92/499 (18%) were specific to the tConserved-Net.

The Louvain algorithm partitioned the tConserved-Net into 96

clusters (modularity = 0.79), with the largest cluster containing 66

genes. Subsequently, we used the Jaccard coefficient to measure

the overlap between gene sets assigned to either Conserved-Net or

tConserved-Net clusters (Figure 5B). Among the cluster with

more than 10 genes, clusters 5 (‘Cell cycle’, Jaccard coeffi-

cient = 0.72), 6 (‘Immune response’, Jaccard coefficient = 0.93),

and 8 (‘Cell surface receptor linked signal transduction’, Jaccard

coefficient = 0.50) of the Conserved-Net were preserved the most

in the tConserved-Net. Conversely, clusters 4 (‘Regulation of

transcription, DNA-dependent’), 7 (‘Sensory perception of smell’),

9 (‘Metabolic process’), and 11 (‘Antigen processing and

presentation of peptide antigen via MHC class I’) were eliminated

in the tConserved-Net.

RT-PCR validation
Following the computational analyses of HCC-relevant gene

network topologies, we used quantitative RT-PCR in a cohort of

normal liver tissue (elevated transaminases but without underlying

liver disease or structural changes of the tissue, n = 8), HCV-

induced chronic liver disease (n = 9), and HCC (n = 7) to identify

transcripts and validate co-expressions of five well-connected

genes, namely ASPM (node degree = 6), CDKN3 (node de-

gree = 21), NEK2 (node degree = 14), RACGAP1 (node de-

gree = 11), and TOP2A (node degree = 31) in the ‘Cell cycle’

cluster of Conserved-Net.

At the transcript expression level, statistical significance was

noted for RACGAP1, NEK2, and TOP2A (Figure 6A). RAC-

GAP1 transcript levels were elevated only slightly (p = 0.059) in

HCC tissue compared with normal liver, whereas the difference

was significant (p = 0.046) in fibrotic tissue compared to normal

liver. NEK2 expression levels were significantly elevated in fibrotic

tissue of Hepatitis C patients compared to both normal controls

(p = 0.002) and HCC (p,0.001). Finally, TOP2A was significantly

upregulated in HCC compared to normal liver (p = 0.05).

Figure 4. Functional enrichment of the Conserved-Net. A) Jaccard functional similarity coefficient between co-expressed greater in MCL and
Louvain partitions compared to random partitions with identical numbers of nodes and edges. B) Visualization of the Conserved-Net where each
node corresponds to a gene and links correspond to conserved co-expressions. Node colors illustrate cluster assignments produced by the Louvain
algorithm and node sizes are proportional to node degree.
doi:10.1371/journal.pone.0035510.g004

Gene Relevance Network of Hepatocellular Carcinoma
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At the transcript co-expression level, statistically significant

confirmation of links in the Conserved-Net was achieved for all

genes with the exception of NEK2 and RACGAP1 (Figure 6B,
6C). The highest PCCs were observed between ASPM and

TOP2A (PCC = 0.86, p = 1.461028) and CDKN3 and TOP2A

(PCC = 0.68, p,0.001). Unexpected correlation was noted

between NEK2 and RACGAP1 (PCC = 0.57, p = 0.004). Overall,

although some transcript expression differences between normal

and HCV/HCC tissues were not statistically significant, presence

of 3/6 co-expressions and absence of 3/3 co-expressions were

validated by RT-PCR. As such our study offers a preliminary

resource for potential gene regulatory patterns that may be

validated further in larger patient cohorts.

Discussion

This study provides an overview of the structure and function of

gene co-expression networks across relevant microarray experi-

ments monitoring gene expression in normal liver, liver cirrhosis,

and HCC. The primary goal of this work was to describe network

topology and identify genome-wide biological mechanisms asso-

ciated with pathogenesis of HCC. Importantly, results of our work

offer a phenotype-specific genomic resource that may be used for

further validation in a laboratory setting.

Since threshold selection is a critical aspect in network inference

studies, we systematically compared topology of real and random

networks to identify an appropriate cut off [18]. This approach is

particularly useful when multiple microarray experiments were

carried out on different platforms. At each PCC threshold, all

microarray networks exhibited a high (0.45) clustering coefficient,

a typical characteristic of structured graphs, that is also consistent

with general behavior of biological networks [29] and topologies

detected in protein-protein interaction collections such as

STRING [30] and IntAct [31].

Using principal component analysis (PCA), we confirm that

connectivity patterns of all HCC networks are phenotype-specific

and differ substantially from breast, colon, and prostate cancers as

well as the normal human interactome (Figure 1A). This

Table 4. Functional enrichment of clusters with at least 10 genes for over-represented Gene Ontology (GO)-Biological Process (BP)
terms.

GO-BP terms Cluster P-value

Extracellular matrix organization 1 1.2361029

Antigen processing and presentation of peptide or polysaccharide antigen via MHC class II 2 1.8561028

Translational elongation 3 2.10610216

Regulation of transcription, DNA-dependent 4 1.6861023

Cell cycle 5 6.80610229

Immune response 6 2.4561023

Sensory perception of smell 7 2.2161023

Cell surface receptor linked signal transduction 8 3.0061025

Metabolic process 9 2.9561023

Transcription initiation from RNA polymerase II promoter 10 8.7061024

Antigen processing and presentation of peptide antigen via MHC class I 11 1.5361029

doi:10.1371/journal.pone.0035510.t004

Figure 5. Comparison of Conserved-Net with consensus co-expression network generated by exclusion on normal liver tissue from
HCC datasets (tConserved-Net). A) Venn diagram visualizing intersection and differences of Conserved-Net and t-Conserved-Net. B) Bar graph of
Jaccard coefficients that reflect the overlap between gene sets assigned to either Conserved-Net or tConserved-Net clusters by the Louvain
algorithm. Only gene clusters with more than 10 genes were used in the analysis. Higher Jaccard coefficient value is indicative of a greater
conservation of a cluster between Conserved-Net and tConserved-Net. Red arrows indicate gene clusters that were lost in the absence of normal liver
tissue.
doi:10.1371/journal.pone.0035510.g005
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projection of network connectivities to uncorrelated PCs was

hypothesized to illustrate global topological patterns and differen-

tial gene cross-talk which may be indicative of a unique

phenotype. Fundamentally, this approach is different to evaluation

of gene expression alone, which does not take into account

complex relationships between genes within a biological system.

Previously, phenotype-specificity was established at the gene

expression level [32]. However, such approaches rely on temporal

behavior of a single gene across tissues and do not consider systems

level relationships between genes. We also note that all cancer

networks shared 158 genes and 157 links, suggesting that there

may be a general ‘‘onco-’’ signature that may be explored in future

studies.

Due to the high-throughput nature of microarray technology

and a large number of co-expression links (.700000), it is possible

that some of these links are false positives or features of a specific

microarray platform. Thus, evaluation of conserved co-expression

links across three HCC networks has a number of additional

strengths compared to conventional statistical approaches. First,

we used an automated method for selection of PCC thresholds, as

an objective filtering process to select significant co-expressions

that eliminates the necessity to apply a stringent statistical cut off,

such as a p-value or a fold change [18]. Second, the data was

combined at the level of correlation matrices, rather than gene

expression levels, which facilitates between-study comparisons [33]

and improves functional relevance of co-expressed genes [12].

Finally, reproducible co-expressions are less likely to be false-

positives and may reflect a biologically relevant link [34]. For

example, in a meta-analysis of .300 tissue samples of gastric

cancer, this hypothesis helped to identify a functional link between

prognostic marker PLA2G2A and the EphB2 receptor [12].

Due to a heterogeneous etiology of HCC datasets, conserved

co-expressions provide an overview of common mechanism in

tumors with HCV, HBV, and alcoholic backgrounds. We identify

798 genes and 2012 conserved co-expressions that formed

Conserved-Net. This interactome was confirmed to be non-

random. Interestingly, of the 798 genes in the Conserved-Net, 331

(41%) had known roles in tumorigenesis. In addition, automated

PubMed search for 798 genes in the context of ‘Hepatocellular

Carcinoma’, ‘Cancer’, ‘Hepatitis B’, ‘Hepatitis C’, ‘Alcohol’, or

‘Cirrhosis’ identified that 507/798 (64%) genes had at least one

matching abstract (data not shown), suggesting that the Con-

served-Net provides acceptable coverage of the current molecular

knowledge in HCC and may contain some novel tumor-associated

genes.

Network topology analysis of the Conserved-Net was undertak-

en to characterize importance of individual genes within the

established interactome. Such systems modeling approaches may

be used to define putative drug targets in HCC and improve

efficacy of current therapies [35,36]. First, it was confirmed that

the topological properties (betweeneess, clustering coefficients,

assortativity, diameter, and modularity) of the Conserved-Net are

Figure 6. RT-PCR validation of co-expression links among topologically central genes in the ‘Cell cycle’ cluster of the Conserved-
Net. A) Expression of ASPM, CDKN3, NEK2, RACGAP1, and TOP2A. Illustrated P-values are based on pairwise comparisons by Mann-Whitney U tests, if
global Kruskal-Wallis test revealed significant differences (p,0.05). B) Heatmaps visualizing comparison of average gene co-expressions in HCC
microarray datasets with respective transcript co-expressions assessed using RT-PCR. Numbers on each heatmap represent Pearson Correlation
Coefficients (PCC). Only statistically significant PCCs were reported for RT-PCR transcripts. P,0.05 was considered significant.
doi:10.1371/journal.pone.0035510.g006
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significantly non-random, thus more likely to reflect biological

node importance [37].

The Conserved-Net exhibited a small average node degree

compared to individual HCC networks (Table 2), likely reflecting

fragmentation of the network into disconnected components.

Biologically this finding implies that HCC tumors with diverse

etiologies (HCV-/HBV-infection, and alcoholic backgrounds)

monitored by individual microarray datasets contain surprisingly

few shared gene co-expression patterns, suggesting molecular

heterogeneity of each etiology [38].

The consensus HCC network was also highly assortative

(assortativity = 0.49), suggesting that genes with similar node

degrees tend to co-express. Additionally, assortativity of the

conserved HCC network was higher compared to individual

HCC networks. These results are unexpected, since previous

studies report that gene co-expression networks are typically

disassortative, i.e. high-degree genes tend to connect to low-degree

genes [37,39]. Recently, increased assortativity was reported to be

associated with highly fragmented networks [40], further support-

ing our observation of fragmentation in the Conserved-Net.

The Conserved-Net was studied at the level of individual genes.

For example, CD53 was the most connected gene (36 co-

expressions) and has been shown to be associated with metastatic

spread in hepatocellular carcinoma [41]. Of interest, ArhGAP15

(Rho GTPase activating protein 15) was noted to be a

‘‘bottleneck’’ gene [27] with the highest betweenness centrality

measure in the Conserved-Net (13551). ArhGAP15 is a member of

the Rho GTPase activating family of proteins, which act to

catalyze the hydrolysis of GTP that is bound to Rho, Rac and/or

Cdc42, thus inactivating regulators of the actin cytoskeleton. This

family of proteins is emerging as a set of attractive tumor

suppressor genes in hepatocellular carcinoma [42,43]. Of note,

there were 6 genes belonging to Rho GTPase family (ArhGAP15,

RHOQ, RAC2, ArhGAP25, ECT2, RACGAP1).

Other topologically important genes were determined to be

CCNB1 (Cyclin B1, node degree = 41), AEBP1 (adipocyte

enhancer binding protein 1, node degree = 26), and TTK

(Phosphotyrosine picked threonine-protein kinase, node de-

gree = 20). CCNB1 has been shown to be upregulated in HCV-

induced HCC [44], while AEBP1 has been demonstrated to

manifest a proinflammatory function by up-regulating NF-kappaB

and suggested as a potential therapeutic target for the treatment of

various chronic inflammatory diseases and cancer [23]. Finally,

TTK is known to be upregulated in anaplastic thyroid carcinoma

[18] and associated with increased risk of breast cancer [23]. Of

interest, Conserved-Net also identified VIM (vimentin, node

degree = 11), a well-characterized marker of epithelial–mesenchy-

mal transition [45], which is also known to be a marker of poor

HCC prognosis [46]. Recently, VIM was reported to be

upregulated in response to alcohol in Caco-2 (colon cancer),

MCF-7 and MDA-MB-231 (breast cancer), and IEC-6 (non-

transformed, normal intestinal) cell lines [47] further suggesting

the presence of alcohol etiology in the Conserved-Net.

Potential functional importance of 798 genes in the Conserved-

NET was explored through mapping them onto a high-confidence

human PPIN. Interestingly, for the 468/798 (59%) genes that

could be mapped to the PPIN, node degree, betweenness

centrality, and clustering coefficients were significantly higher

compared to other genes in the human interactome. These

findings are consistent with the general behavior of tumor genes

[29,48] and indicate that genes inferred by co-expression analysis

may indeed be functionally critical due to their central topologies

in the human PPIN [49]. It was also of interest to note that while

468 HCC genes could be traced on the PPIN, 216 (46%) of these

contained 446 direct protein-protein interactions and could be

enriched for GO-Fat terms ‘Translation’, ‘Wound healing’,

‘Immune response’, ‘Cell cycle’, and ‘Negative regulation of

apoptosis’. Our observations indicate that the above processes may

be disrupted at the protein-interaction level and are likely to

contribute to pathogenesis of HCC.

Delineation of the community structure in interactomes is an

important aspect of network biology that may highlight general

signaling mechanisms associated with disease [50]. We explored

gene cluster architecture of the Conserved-NET using MCL and

Louvain clustering algorithms. We confirmed our hypothesis that

genes with similar biological function tend to co-localize to the

same network module. Interestingly, MCL and Louvain algo-

rithms produced comparable functional homogeneity within

respective partitions, suggesting that both methods are useful for

identification of functionally relevant network modules. Of note,

co-expressed genes tended to have higher GO-BP and Reactome

pathways term similarity. This implies that gene co-expression is

more likely to occur between functionally related genes rather that

between genes with similar subcellular localizations.

Due to high functional similarities within partitions and

parameter-independent clustering results, we selected results

produced by the Louvain algorithm for further functional

exploration of the Conserved-Net. Enrichment of 11 modules

(.10 genes each) for GO-BP terms, demonstrated that HCC is a

heterogeneous disease that relates to processes such as ‘Cell cycle’,

‘Translation elongation’, and ‘Extracellular matrix organization’.

Previously, protein levels and kinase activities of cyclin D1, E,

Cdk4, cyclin A, and Wee1 were demonstrated to increase

proportionally with the development of HCC, especially in the

transition process from chronic hepatitis to HCC [51]. Addition-

ally, 6 genes involved in cell-cycle control and proliferation (BIC,

CPNE1, RBPMS, RFC4, RPSA, TOP2A) were among the most

significantly upregulated genes both in dedifferentiated HCC and

in HCC with loss of chromosomal region 13q [52]. Interestingly,

RFC4 (node degree = 1) and TOP2A (node degree = 31) were

identified in the Conserved-Net and localized to the ‘Cell cycle’

enriched cluster. These results suggest that gene topological

properties may be explored further in a laboratory setting.

Previous studies suggest that premalignant transformations in

extracellular composition play a key role in pathogenesis of HCC

[53]. We support this hypothesis through identifying a cluster of 89

genes and 318 co-expressions enriched for ‘Extracellular matrix

organization’. Among these, we identified several proteins

associated with extracellular remodeling (MMP2 and ADAMTS1),

which were also previously implicated in HCC progression

[54,55]. Finally, identification of genes involved in ‘Translational

elongation’, suggests that the mRNA translation program is

activated in HCC. Indeed, this is consistent with the long-standing

understanding that coordination and specific activation of

translation factor genes might be involved in the process of liver

carcinogenesis [56]. Thus, gene enrichment reflects the biology of

HCC.

To investigate the extent to which gene co-expression clusters in

the Conserved-Net were contributed by the normal liver tissue, we

have repeated network inference using the HCC microarray

datasets in the absence of normal liver tissue. Our findings indicate

that 407/499 (82%) genes in the tConserved-Net were also present

in the Conserved-Net. These conserved genes represented clusters

enriched for ‘Cell cycle’, ‘Immune response’, and ‘Cell surface

receptor linked signal transduction’, reiterating the importance of

these biological processes in the development of HCC [57].

Surprisingly, only 92/499 (18%) genes were specific to the

tConserved-Net, suggesting that only a small fraction of genes is
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gained by the exclusion of normal liver. As such, 391 genes that

are specific to the Conserved-Net were likely contributed by the

inclusion of normal liver in the computational analysis.

To experimentally validate co-expressed genes that belong to

the ‘Cell cycle’ cluster, we measured transcript levels of 5 highly

connected genes in the Cluster 5 - ASPM, CDKN3, NEK2,

RACGAP1, and TOP2A using quantitative RT-PCR. Statistically

significant co-expressions patterns were confirmed in an indepen-

dent tissue set between ASPM, CDKN3, and TOP2A. Addition-

ally, we also reported a statistically significant (p,0.05) overex-

pression of TOP2A in HCC tissue compared to normal liver

samples. In an analysis of 247 tissue samples from HCC, ASPM

was overexpressed in 66% of them, showing an association with

vascular invasion, early recurrence and poor prognosis [58].

Similarly, overexpression of TOP2A was associated with advance

histological grading, vascular invasion, and an early age onset of

HCC [59], while CDKN3 was reported as part of a vascular

invasion signature in HCC [60] and has been implicated in other

malignancies including breast and prostate cancers [61]. These

findings confirm that functionally similar genes tend to co-express

across multiple phenotypic conditions. Thus, the Conserved-Net

may be further used to characterize biological roles of unknown

genes given the functional properties of their co-expressions.

Although we could not validate RACGAP1-TOP2A, NEK2-

TOP2A, and CDKN3-NEK2 co-expressions, we noted a

statistically significant up-regulation of NEK2 and RACGAP1 in

fibrotic/cirrhotic tissue (p = 0.002 and p = 0.046 respectively). A

possible reason for this expression pattern could be an early role of

these genes in tumor initiation. NEK2 and RACGAP1 have been

shown to be involved in oncogenic pathways and oncogene-

regulated processes such as BRCA1- and Wnt-dependent signaling

cascades [62,63,64,65], possibly implicating these pathways in the

development of HCC.

Overall, the five analyzed genes were expressed in different

stages of liver disease, suggesting that consideration of graph

topology as well as differential expression may improve detection

of putative biomarkers in vivo. However, data generated in this

study is a preliminary verification of the computational analysis

rather than an exhaustive biomarker study, and thus a larger,

prospective study is critical.

This report presents a phenotype-specific resource for the study

of HCC with diverse etiology and varying degrees of progression.

With the rapidly increasing availability of comprehensive ‘‘omics’’

datasets in the public domain, it is likely that analytical approaches

described here will be valuable aids to clinicians and researchers

aiming at the elucidation of both the general and specific

mechanisms of tumor formation. Furthermore, expansion or

modification of this methodology may improve sensitivity and

specificity of novel diagnostic and prognostic markers and

contribute to the identification of appropriate strategies for

personalized patient treatment.

Methods

Data Preparation
Three publicly available human HCC microarray datasets were

included in this study, individually referred to as the HCC Dataset,

HCV Dataset, and Progression Dataset (Table 1). These datasets

corresponded to 264 arrays [44,66,67]. In the HCC Dataset,

‘Normal Liver’ refers to 5 pools of non-tumorous liver tissue,

specifically alcoholic cirrhosis, alcoholic noncirrhotic liver, HBV

noncirrhotic liver, HCV cirrhosis, and HBV cirrhosis. In the HCV

Dataset, ‘Normal Liver’ refers to non-tumorous liver tissue

obtained from deceased donors. Finally, in the Progression

Dataset, ‘Normal Liver’ refers to tissue obtained from the healthy

livers of patients undergoing resection for hepatic hemangioma.

Additional datasets, breast [68] (n = 86 arrays), colon [69]

(n = 47 arrays), and prostate [70] (n = 154 arrays), as well as normal

human tissue arrays [16] (n = 158) were obtained to measure

phenotype specificity of HCC datasets (Table 1). For all datasets

raw expression values were downloaded from the ArrayExpress

database [71] and normalized using Robust Multi-array Average

(RMA) [72]. To standardize annotation across microarray

platforms, Affymetrix probe identifiers were mapped to their

corresponding Ensembl gene identifiers [73]. Furthermore, to

facilitate integration of multiple public datasets, in cases where

multiple probesets mapped to a single gene, median intensity

values were retained. In this manuscript, networks from datasets

TABM-36, E-GEOD-14323, E-GEOD-6764, E-GEOD-15852,

E-MTAB-57, E-GEOD-17951, and E-TABM-145 were referred

to as HCC-Net, HCV-Net, Progression-Net, Breast-Net, Colon-

Net, Prostate-Net, and Normal-Net, respectively.

Gene network inference
Pairwise similarity in gene expression vectors was expressed by

the Pearson correlation coefficient (PCC). Gene pairs that

correlated above a predefined PCC threshold were represented

in the form of an undirected unweighted network, where nodes

correspond to genes and links (edges) correspond to co-expression

between genes. To infer the PCC threshold in an unbiased

manner, a systematic procedure was used based on the topological

difference between real and random co-expression networks [18].

This method is especially useful for integration of multiple

microarray studies performed on different platforms.

To confirm non-random behavior of real microarray networks,

we compared them to the Maslov-Sneppen (MS) model [23]. All

MS networks were generated by rewiring edges in the original

networks while preserving the degrees of the respective nodes. The

number of rewiring steps taken for each model was 46 (number of

edges).

Graph analysis
Topological properties examined were node degree, between-

ness centrality, clustering coefficient, assortativity, diameter, and

modularity [74]. Node degree is defined as the total number of

edges that connect to a given node. Betweenness centrality is the

measure of node importance within a graph. Previously,

betweenness centrality was proposed as an indicator of biological

significance of a gene [27]. Clustering coefficient is the probability

that a node’s neighbors are interconnected. Assortativity is the

quantity that measures the tendency for nodes with similar

magnitude of degrees to be connected by an edge. Network

diameter is defined as the largest shortest path between any pair of

nodes in the network. Modularity is the strength of community

structure in graphs [75]. Network analyses were carried out using

the Functional Genomic Assistant (FUGA) toolbox [76]. Statistical

significance of differential topology was assessed using the

Wilcoxon rank sum test. P-values,0.05 were considered signifi-

cant.

Network partitioning and assessment of functional
similarity

Clusters of genes in a co-expression network were identified by

using either the Louvain method, a fast algorithm for community

detection in graphs using optimization of modularity [77] or the

Markov Cluster Algorithm (MCL), a fast and scalable algorithm

based on simulation of stochastic flow in graphs [78].
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Functional similarity between co-expressed genes that localized

to the same graph partition was measured by the Jaccard similarity

coefficient of overlapping Gene Ontology (GO) Biological Process

(BP), GO Cellular Component (CC), and Reactome pathways

terms. To ensure specificity of annotation within a gene cluster,

functional categories containing ,5 or .50 genes were removed.

For each co-expressed gene pair, the Jaccard coefficient was

expressed as the ratio of the number of common functional terms

to the number of total functional terms.

Functional enrichment
For a cluster with n genes and an a priori defined functional

category with K genes, the hypergeometric test was used to

evaluate the significance of the overlap k between the cluster and a

Gene Ontology term [79]. All genes in a network were used as

reference. Additionally, we used the Database for Annotation,

Visualization and Integrated Discovery (DAVID) [80] for

statistical enrichment of GO-Fat terms. Given the hierarchical

structure of the GO database, GO-Fat terms are manually curated

by the DAVID database and attempt to filter the broadest terms so

that they do not overshadow the more specific terms.

Extraction of total RNA and quantitative Real-time
Polymerase Chain Reaction (RT-PCR)

The study was approved by the Official Ethics Committee of the

Medical Faculty of the Otto-von-Guericke University of Magde-

burg and written informed consent to participate in the study was

obtained from all subjects included. Liver tissue was obtained by

ultrasound-guided fine-needle biopsy from eight patients with

HCC (lesional tissue), nine patients with Hepatitis C induced liver

fibrosis and from eight patients with elevated transaminases but

without underlying liver disease or structural changes of the tissue

architecture. Biopsies were snap frozen in liquid nitrogen upon

extraction and consequently transferred onto a 1.5 ml RNase-free

Eppendorf tube and submerged in 0.5 ml of TRIZOL-reagent

and stored at 280uC until processing.

Total RNA was extracted using a ‘‘two-step’’ protocol as

described previously [25]. Briefly, a single biopsy was homoge-

nized in 500 ml Trizol using disposable probes with tissue raptor

(QIAGEN, Hilden, Germany) on ice. After complete homogeni-

zation 200 ml chloroform was added, the sample was extensively

vortexed and centrifuged in a microcentrifuge (140006g, 4uC) for

15 min. The supernatant mixed with equal volume of isopropanol

in a new tube, vortexed and incubated on ice for 10 min.

Precipitated RNA was obtained by centrifugation (140006g, 4uC,

10 min), and resolved in 100 ml RNase-free water. Subsequently,

the RNA was purified using the RNeasy kit (Qiagen, Hilden,

Germany) according to the manufacturer’s instruction. Finally, the

RNA was eluted in 70 ml RNase-free water. Aliquots of 5 ml each

were used for determination of RNA concentration via UV-

spectroscopy and to evaluate RNA integrity by agarose gel

electrophoresis. In each case, 500 ng of total RNA was transcribed

into cDNA in a 40 ml reaction volume by AMV reverse

transcriptase (Promega, Mannheim, Germany) and random

hexanucleotides (Boehringer, Mannheim, Germany) using stan-

dard protocol as described earlier [81].

Quantitative RT-PCR was performed in an iCycler (BioRad,

Munich, Germany). The 30 ml reaction mixture contained 10 ml

RNase-free water, 15 ml HotStarTaq-Sybr. Green, 0.2 ml of both

primers (50 mM) and 1.2 ml c-DNA. Initial denaturation and

activation of Taq-polymerase at 95uC for 15 min was followed by

40 cycles. The fluorescence intensity of the double-strand specific

SYBR-Green I, reflecting the amount of actually formed PCR-

product, was read real-time at the end of each elongation step.

Transcript amounts were calculated based on the Ct values of each

sample. Arbitrary units reflect the expression of the given gene in

relation to b-actin transcript amount. Primers used and the size of

expected PCR fragments are listed in Table 5.

Statistical analysis
RT-PCR data was analyzed using SPSS 12.0 (SPSS Inc., Chicago,

IL, USA) and graphs were generated using GraphPad Prism 4.0

(GraphPad Software Inc., San Diego, CA, USA). Non-parametric

tests were used for statistical analyses of transcript expression values in

order to account for possibly skewed distributions. First, the Kruskal-

Wallis test was applied to each gene across all groups. In case of a

positive test result, the Mann-Whitney U test was performed to carry

out pairwise group comparisons. All test were two-tailed with a

significance level of p,0.05. Pearson correlation coefficient p-values

for transcript co-expressions were calculated using MATLAB’s

corrcoef function (2009a, The MathWorks, Natick, MA). Statistical

significance of gene network topologies was calculated using

Wilcoxon rank sum test and MATLAB implementation of the

ranksum function in the Statistics toolbox.

Supporting Information

Figure S1 Selection of Pearson correlation coefficient
threshold for gene co-expression network inference.
Clustering coefficients of real (black) and random (blue) networks

with identical node degree distributions were systematically

measured for 0.50#PCC#1.0. Threshold was selected at the first

local maximum of the difference (red) between the real and

random clustering coefficients.

(TIFF)

Figure S2 Selection of Pearson correlation coefficient
threshold for gene co-expression networks of HCC
microarrays without normal liver. Clustering coefficients

of real (black) and random (blue) networks with identical node

degree distributions were systematically measured for

0.50#PCC#1.0. Threshold was selected at the first local

maximum of the difference (red) between the real and random

clustering coefficients.

(TIFF)

Table S1 Gene co-expression network in Hepatocellular
Carcinoma.

(XLS)

Table 5. Primers used for quantitative RT-PCR analysis.

ASPM-a AACCCATTATCGCTGTGGCAC (21)

ASPM-b ACCACCAAGTGAAGCCCTGTTC (22)

CDKN3-a TCACCCATCATCATCCAATCGC (22)

CDKN3-b CTCGCAGGCTGTCTATGGCTTG (22)

NEK2-a CATTGGGCTGCTTGCTGTATG (21)

NEK2-b TTCTGGCTCTCCTAATTGTCGC (22)

RACGAP1-a TCTCAACAGAGGCCAACCATCC (22)

RACGAP1-b ACTGCAGAGCCAATGGAACGAG (22)

TOP2A-a TTTCAGGCCTTGGTGTGGTTGG (22)

TOP2A-b TCGCAGAAGAGAGGGCCAGTTG (22)

ß-actin-a CATGCCATCCTGCGTCTGGACC (22)

ß-actin-b ACATGGTGGTGCCGCCAGACAG (22)

doi:10.1371/journal.pone.0035510.t005
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Table S2 Topological properties of genes in the con-
sensus Hepatocellular Carcinoma network.
(XLS)
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