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The various studies on tyrosinase have recently gained the attention of researchers due to their potential application values and
the biological functions. In this study, we predicted the 3D structure of human tyrosinase and simulated the protein-protein
interactions between tyrosinase and three binding partners, four and half LIM domains 2 (FHL2), cytochrome b-245 alpha
polypeptide (CYBA), and RNA-binding motif protein 9 (RBM9). Our interaction simulations showed significant binding energy
scores of −595.3 kcal/mol for FHL2, −859.1 kcal/mol for CYBA, and −821.3 kcal/mol for RBM9. We also investigated the residues
of each protein facing toward the predicted site of interaction with tyrosinase. Our computational predictions will be useful for
elucidating the protein-protein interactions of tyrosinase and studying its binding mechanisms.

1. Introduction

Tyrosinase (EC 1.14.18.1) is ubiquitously distributed in or-
ganisms and is a critical enzyme involved in melanin pro-
duction, with multiple catalytic functions in pigment pro-
duction [1–3]. Tyrosinase mutations are directly linked to
pigmentation disorders in mammals [4, 5] and can cause
a browning effect in vegetables [6, 7]. In addition, tyro-
sinase participates in cuticle formation in insects [8, 9]. In
mammals, tyrosinase is a bifunctional enzyme that first con-
verts tyrosine to DOPA and then to DOPA quinone, which is
further cyclized and oxidized to produce melanin pigments
[10]. The human tyrosinase protein contains two Cu2+-bind-
ing sites, two cysteine rich regions, a signal peptide region,
a transmembrane anchor domain, and an EGF motif [11].
Two Cu2+ ions in the active site of tyrosinase are coordinated
by three histidine residues each and are essential for the en-
zyme’s catalytic activity [12]. Furthermore, the presence
of Cu2+ in the active site of tyrosinase is observed across

numerous organisms [13]. Therefore, chelation of tyrosinase
Cu2+ by synthetic compounds or agents from natural sources
has been targeted as a way to block tyrosinase catalysis for
medicinal purposes, darkening problems in agricultural pro-
ducts, and cosmetic interests [14, 15].

As the crystallographic structure of tyrosinase has been
gradually elucidated, insights into its catalytic mechanisms
and active site have also been revealed [16–18]. However,
while the catalytic mechanism of tyrosinase-mediated mel-
anin pigment production has been well studied, the rela-
tionship between tyrosinase enzyme activity and protein
interactions has not been fully elucidated, despite several
reports of interacting proteins for tyrosinase [19–22].

Loss of tyrosinase activity causes oculocutaneous albi-
nism type 1 (OCA 1) in humans [23]. Specifically, studies
have identified over 100 different missense, nonsense, inser-
tion, or deletion nucleotide mutations dispersed rather even-
ly over the entire tyrosinase gene [24].
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In the present study, we modeled the 3D structure of
tyrosinase and simulated its protein-protein interactions
to understand the structural mechanisms of the binding
between tyrosinase and its partners. We deduced the bind-
ing sites between tyrosinase and three known interaction
partners, four and half LIM domains 2 (FHL2), cytochrome
b-245 alpha polypeptide (CYBA), and RNA-binding motif
protein 9 (RBM9) and describe their potential regulatory
effects with respect to substrate accessibility at the active site
of tyrosinase.

2. Materials and Methods

2.1. 3D Structure Homology Modeling of Human Tyrosinase.
A three-dimensional model of tyrosinase consisting of 377
aminoacids was constructed using SWISS-MODEL [25, 26]
based on homology modeling. The program automatically
provides an all-atom model using alignments between the
query sequence and known homologous structures. We
retrieved known homologous structures of tyrosinase from
the Protein Data Bank (PDB) (http://www.pdb.org/) and
identified a partially homologous protein (PDB entry: 3NM8
chain B, 32% sequence identity) to serve as a structural tem-
plate for tyrosinase. Based on the sequence alignment, the
3D structure of tyrosinase was constructed with a high level
of confidence.

2.2. Homology Modeling of 3D Structures for FHL2, RBM9,
and CYBA. Using the same method described for modeling
the structure of tyrosinase, we retrieved known homologous
structures from the PDB as follows: 1X4L chain 1 for
FHL2 and 2CQ3 chain 1 for RBM9. Structural template se-
quence identities for FHL2 and RBM9 were 100% and 98%,
respectively. In the case of CYBA, there was an available 3D
structure in the PDB as 1WLP chain A (identity 100%).

2.3. In Silico Protein-Protein Interactions between Tyrosinase
and FHL2, RBM9, and CYBA. There are many tools available
for in silico protein-protein docking. In the present study,
we used the HEX program [27] because of its success in
the CAPRI (Critical Assessment of Predicted Interactions;
http://capri.ebi.ac.uk/) competition with respect to propos-
ing good docking solutions. HEX determines the steric
shape, electrostatic potential, and charge density of each pro-
tein as expansions of spherical polar Fourier basis functions.
The protein surface shapes are calculated to determine the
match potential of two proteins. Then, candidate-docking
solutions are refined using a “soft” molecular mechanics en-
ergy minimization procedure, and the list of docking solu-
tions is clustered to assist in identifying distinct orientations.

3. Results and Discussion

3.1. Computational Prediction of 3D Tyrosinase Structure.
The accuracy of structure prediction during homology mod-
eling depends strongly on sequence identity between a query
sequence and template structures. In order to simulate
tyrosinase 3D structure, we selected a template structure

from PDB entry as 3NM8 chain B. The sequence identity
was 32%, as shown in Figure 1(a). In the predicted structure
of tyrosinase, the binding pocket was located close to two
Cu2+ ions (Figure 1(b)). Since the crystallographic structure
of human tyrosinase has not been elucidated, it is unclear
which residues are glycosylated in the tyrosinase structure. A
previous report revealed that human tyrosinase was highly
glycosylated [28–30], and it is associated with the cor-
rect folding to form the active enzyme. The Cu2+-binding
site exists in the tyrosinase active site pocket, and it will be
interesting to further study the role of Cu2+ on the con-
formation stability in addition to the catalytic role.

3.2. Computational Predictions of 3D Structures of FHL2,
RBM9, and CYBA. The 3D structure of FHL2 was construc-
ted with 100% sequence identity compared to the template
1X4L chain 1 (Figure 2). In the same way, RBM9 was also
constructed with 98% sequence identity compared to the
template 2CQ3 chain 1 (Figure 3(a)). As a result of align-
ment, RBM9 was predicted to contain two helical structures
and four beta sheet structures (Figure 3(b)). Meanwhile, the
3D structure of CYBA was modeled with 100% sequence
identity template structure (1WLP chain A) (Figure 4).

3.3. Docking Simulation between Tyrosinase and FHL2. The
docking between tyrosinase and FHL2 was successful, with
significant scores (Eshape score: −543.4 kcal/mol; Eforce
score: −51.9 kcal/mol; total score: −595.3 kcal/mol) shown
in Figure 5. When searching for binding residues on the
surface of tyrosinase facing toward FHL2, we detected
LEU58, PHE60, CYS78, THR79, HIS80, GLY81, ASP173,
PRO174, SER175, PHE176, LYS177, PRO178, TYR179,
GLY180, ASP181, PHE182, ALA183, TRP185, HIS234,
GLY235, ILE236, SER237, ASP238, ASP239, GLN240,
VAL254, TYR258, LYS260, ILE261, GLU262, ASP266,
HIS267, PRO268, PHE269, PHE270, ARG306, ASP307, and
GLY308. For FLH2, we found that ASN2, PRO3, ILE4, SER5,
GLY6, THR10, LYS11, TYR12, ILE13, TRP20, HIS21, ASN22,
ASP23, CYS24, PHE25, ASN26, LYS29, CYS30, SER31,
LEU32, SER33, LEU34, VAL35, GLY36, ARG37, GLY38,
CYS48, PRO49, ASP50, CYS51, LYS53, and ASP54 were im-
portant for the interaction with tyrosinase. Interestingly, sev-
eral of these residues are known to interact with some inhi-
bitors of tyrosinase [31–35] and are located near the binding
sites of FHL2, suggesting that FHL2 may alter the activity of
tyrosinase during catalysis.

3.4. Docking Simulation between Tyrosinase and RBM9. As
with the case of FHL2, the docking between tyrosinase and
RBM9 was successful with significant scores (Eshape score:
−609.8 kcal/mol; Eforce score: −211.5 kcal/mol; total score:
−821.3 kcal/mol), as shown in Figure 6. When searching
for binding residues on the surface of tyrosinase fac-
ing toward RBM9, we detected LEU58, PHE60, LYS74,
ALA75, GLY76, ILE172, PRO174, SER175, PHE176, LYS177,
PRO178, TYR179, GLY180, ASP181, PHE182, ALA183,
THR184, TRP185, ARG186, THR187, ARG194, ASN195,
ARG196, ARG197, HIS234, GLY235, ILE236, SER237,
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Figure 1: (a) Alignment of the human tyrosinase target and template structure (3NM8). (b) Illustration of the predicted tyrosinase structure
modeled by SWISS-MODEL; the spheres represent Cu2+.
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Figure 2: (a) Alignment of the FHL2 target and its template structure (1X4L). (b) Illustration of the predicted target structure modeled by
SWISS-MODEL.

ASP238, ASP250, GLU262, GLY263, HIS264, ASP266,
HIS267, PRO268, PHE269, PHE270, ARG306, ASP307,
and GLY308. For RBM9, numerous residues including
THR1, PRO2, ARG4, VAL7, SER8, ASN9, ILE10, PRO11,
PHE12, ARG13, PHE14, ARG15, ASP16, PRO17, ASP18,
LEU19, ARG20, GLN21, MET22, PHE23, GLY24, GLN25,
GLY27, LYS28, ILE29, LEU30, ASP31, VAL32, GLU33, ILE34,
PHE36, GLY43, PHE44, GLY45, PHE46, VAL47, THR48,
GLU50, ILE72, ARG80, VAL81, MET82, and ASN84 were
predicted to interact with tyrosinase. By comparing these
results with those of FHL2, we found that most of the
predicted residues on tyrosinase were common with that of
RBM9, implying that the regulatory effect of RBM9 on the
activity of tyrosinase might be similar to that of FHL2, as they
both dock close to the active site of tyrosinase.

3.5. Docking Simulation Between Tyrosinase and CYBA. The
docking between tyrosinase and CYBA was successful with
significant scores (Eshape score: −402.1 kcal/mol; Eforce
score: −457.0 kcal/mol; total score: −859.1 kcal/mol), as
shown in Figure 7. The docking scores for FHL2, RBM9, and
CYBA were all similar, suggesting that these three binding
proteins have similar affinities with respect to tyrosinase
binding. When searching for binding residues on the surface
of tyrosinase facing toward CYBA, we detected LEU58,

PHE60, TYR73, LYS74, ALA75, GLY76, ILE172, ASP173,
PRO174, SER175, PHE176, LYS177, PRO178, TYR179,
GLY180, ASP181, PHE182, ALA183, THR184, TRP185,
VAL189, ASN195, ARG196, ARG197, ILE236, SER237,
ASP238, ASP250, ASP251, HIS253, VAL254, MET255,
GLY257, TYR258, LYS260, ILE261, GLU262, GLY263,
HIS264, MET265, ASP266, HIS267, PRO268, PHE269,
PHE270, ARG306, ASP307, GLY308, and THR309. For
CYBA, the binding residues were predicted as LYS6, GLN7,
PRO8, PRO9, SER10, ASN11, PRO12, PRO13, PRO14,
ARG15, PRO16, PRO17, ALA18, GLU19, ALA20, ARG21,
LYS22, and LYS23. Comparing the results of Figures 5 to
7, we identified common tyrosinase-binding residues for
FHL2, RBM9, and CYBA, namely, LEU58, PHE60, PRO174,
SER175, PHE176, LYS177, PRO178, TYR179, GLY180,
ASP181, PHE182, ALA183, TRP185, ILE236, SER237,
ASP238, GLU262, ASP266, HIS267, PRO268, PHE269,
PHE270, ARG306, ASP307, and GLY308. These results sug-
gest that the three proteins share a common binding site with
tyrosinase as well as docking behaviors. All binding residues
described above were obtained within 5 Å of each protein.

In this study, we identified three binding proteins that
interact with tyrosinase, with binding sites near the active
site of tyrosinase where the two Cu2+ ions are located. Since
these two Cu2+ ions are necessary for the catalytic activity of
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Figure 3: (a) Alignment of the RBM9 target and its template structure (2CQ3). (b) Illustration of the predicted target structure modeled by
SWISS-MODEL.

Figure 4: Predicted CYBA structure modeled by SWISS-MODEL based on a template structure (PDB ID: 1WLP).
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Figure 5: Docking between tyrosinase (white) and FHL2 (magenta). The active site of tyrosinase near two the Cu2+ ions (blue spheres) is
colored in yellow. The two proteins are depicted as illustrations.

Figure 6: The docking between tyrosinase (white) and RBM9 (magenta). The active site of tyrosinase near two the Cu2+ ions (blue spheres)
is colored in yellow. The two proteins are depicted as illustrations.

Figure 7: The docking between tyrosinase (white) and CYBA (magenta). The active site of tyrosinase near two the Cu2+ ions (blue spheres)
is colored in yellow. The two proteins are depicted as illustrations.

tyrosinase toward substrates such as L-tyrosine and L-DOPA,
tyrosinase activity could be regulated by FHL2, RBM9, and
CYBA. However, this supposition should be confirmed by
future studies employing biochemical analyses. With respect
to the flexible nature of the active site, Matoba et al. [36]
recently suggested that the active tyrosinase center formed by

dinuclear Cu2+ is flexible during catalysis. Our data suggests
modulation of tyrosinase activity via the binding of protein
partners. Especially, as these proteins dock near the flexible
active site of tyrosinase, conformational changes at the active
site after binding could be directly related to substrate
accessibility. Therefore, FHL2, RBM9, and CYBA could
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downregulate the activity of human tyrosinase that might
be directly related to the reduction of pigmentation produc-
tion.
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