
Non-Overlapping Progesterone Receptor Cistromes
Contribute to Cell-Specific Transcriptional Outcomes
Christine L. Clarke, J. Dinny Graham*

Westmead Institute for Cancer Research, Sydney Medical School –Westmead, University of Sydney at the Westmead Millennium Institute, Westmead Hospital, Westmead,

New South Wales, Australia

Abstract

The transcriptional effects of the ovarian hormone progesterone are pleiotropic, and binding to DNA of the nuclear
progesterone receptor (PR), a ligand-activated transcription factor, results in diverse outcomes in a range of target tissues.
To determine whether distinct patterns of genomic interaction of PR contribute to the cell specificity of the PR
transcriptome, we have compared the genomic binding sites for PR in breast cancer cells and immortalized normal breast
cells. PR binding was correlated with transcriptional outcome in both cell lines, with 60% of progestin-regulated genes
associated with one or more PR binding regions. There was a remarkably low overlap between the PR cistromes of the two
cell lines, and a similarly low overlap in transcriptional targets. A conserved PR binding element was identified in PR binding
regions from both cell lines, but there were distinct patterns of enrichment of known cofactor binding motifs, with FOXA1
sites over-represented in breast cancer cell binding regions and NF1 and AP-1 motifs uniquely enriched in the immortalized
normal line. Downstream analyses suggested that differential cofactor availability may generate these distinct PR cistromes,
indicating that cofactor levels may modulate PR specificity. Taken together these data suggest that cell-specificity of PR
binding is determined by the coordinated effects of key binding cofactors.
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Introduction

Considerable effort has been applied over several decades to

understanding the molecular mechanisms of progesterone signal-

ling in target tissues such as the breast and endometrium. From

comprehensive in vitro studies a detailed picture has emerged.

Progesterone regulates transcription via its nuclear receptor (PR),

which associates with specific target sites on chromatin. The

consensus DNA sequence to which PR binds (progesterone

response element (PRE)) consists of a six base pair inverted repeat

sequence: RGNACAnnnTGTNCY [1,2,3]. DNA-bound PR

recruits transcriptional coactivators and associated cofactors,

which modify the local chromatin structure and facilitate

transcriptional activation, resulting in activation or repression of

PR target genes [4,5,6,7]. In addition to coregulators and

cofactors, which associate with the PR regulatory complex by

protein-protein interaction, PR recruits chromatin remodelling

factors, which modify local DNA architecture to enhance PR

interaction and transcriptional activation [8]. Factors known to be

involved in chromatin remodelling at progestin-regulated sites

include the SWI/SNF chromatin remodelling complex [8,9] and

transcription factor NF1, which cooperates with PR for binding

and activation of MMTV [10,11]. For other nuclear receptors

including estrogen (ER) and androgen receptor (AR), pioneer

factors such as FOXA1, which interact with condensed chromatin,

are required for nuclear receptor activation of transcriptional

targets [12,13,14,15,16,17]. In addition to direct interaction with

DNA at PREs, PR has been reported to associate with target genes

via tethering to other transcription factors, including AP-1, SP1

and Stat3 [18,19,20,21,22].

Although the critical determinants governing the transcriptional

activity of PR have been described in vitro, the molecular basis for

the strikingly pleiomorphic roles for this hormone in vivo are poorly

understood. Progesterone is critical for normal reproductive tissue

function [23] and in the uterus supports differentiation, and

inhibits proliferation [24]. By contrast, in the breast progesterone

is associated with increased proliferation, ductal side-branching

and lobuloalveolar development [25]. Consistent with the distinct

effects of progesterone in these two tissues, there are distinct

transcriptional responses to progesterone in breast and endome-

trium [23,26,27,28,29,30].

Exposure to exogenous progestins in hormone replacement

therapy is associated with increased breast cancer risk

[31,32,33,34]. Interestingly, progestins regulate different tran-

scriptomes in breast cancer cells compared with normal breast

[35], so it is plausible that the effect of progestins on breast cancer

risk may be mediated by altered specificity of progestin action in

the cancerous breast. If altered cell-specificity of PR underlies the

deleterious effect of progestins on breast cancer risk, the

determinants of cell-specificity of progestin action require

elucidation.

The DNA sequence of the response elements to which PR

binds, the availability of transcriptional cofactors, and the

chromatin architecture of the target cell are likely to have a

combined effect on the specificity of the PR transcriptome. To
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determine the contribution of these variables to the cell-specificity

of PR in normal breast and breast cancer cells, we used genome-

wide PR chromatin immunoprecipitation, coupled with high-

throughput sequencing to compare PR interaction on genomic

DNA in two cell lines: T-47D cells and in MCF-10A immortalized

normal breast cells stably expressing both PR isoforms. We report

here on the discovery and characterisation of strikingly different

PR cistromes in these two cell lines.

Results

Generation of genome-wide PR interaction profiles
PR genomic interactions were mapped in T-47D breast cancer

cells and in the AB32 cell line: a stable PR expressing clone of the

MCF-10A immortalized normal breast cell line. Cells were treated

with the progestin ORG2058 (10 nM, 45 minutes), followed by

PR-chromatin immunoprecipitation (ChIP) and Illumina sequenc-

ing. Sequences were aligned to the human genome and genomic

regions enriched in the alignments were identified using the

Bowtie [36] and ERANGE [37] software tools (false discovery rate

0.27%).

In T-47D cells, 6312 peaks of PR binding were identified and in

AB32 cells 8117 binding regions were detected (Table 1). Most PR

binding regions (88% in T-47D and 73% in AB32) were within

100 kb of the nearest gene, with 57% of binding regions in T-47D

and 54% in AB32 within 50 kb. However, few binding regions

(21% in T-47D and 20% in AB32) fell within 10 kb of a gene TSS

(Table 1). The distribution of distances from the nearest gene

transcription start site (TSS) for each of the PR binding regions in

T-47D and AB32 cells is shown in Figure 1A and 1B, respectively.

PR binding regions were detected on all chromosomes and the

number of binding sites per chromosome reflected chromosome

size and number of genes, although some variability was observed.

Linear regression analysis of binding regions against gene number

per chromosome in T-47D (Figure 1C) and AB32 (Figure 1D) cells

revealed a stronger correlation to gene number in the AB32 cells

(R2 = 0.76 in AB32 compared to R2 = 0.58 in T-47D). Overall

there was a correlation between numbers of binding regions per

chromosome between the two cell lines (R2 = 0.66, Figure S1),

however some exceptions were noted. Binding regions on

chromosomes 2 and 8 were under-represented in the T-47D

dataset compared to AB32, whereas regions on chromosome 11

were over-represented. The karyotype of T-47D cells [38] shows

significant rearrangement and duplication compared to AB32 cells

and this may partly explain the binding differences observed since

T-47D cells contain 4 rather than 2 copies of chromosome 11.

However, chromosome 2 is normal in T-47D cells, yet binding to

regions on this chromosome were half as frequent as were detected

in AB32 cells. Functional annotation of regulated genes on

chromosome 2 that were bound by PR in AB32 revealed

enrichment in genes involved in metabolism (Table S1), suggesting

an altered or attenuated metabolic response to progestins in the

cancer cell line.

Relationship between PR genomic interaction and
transcriptional response

Gene expression profiling conducted in parallel with ChIP-seq

revealed that PR binding regions were concentrated around

regulated genes. The density of PR binding regions per gene was

higher for regulated genes (density of binding regions per regulated

gene: 2.23 in T-47D cells, 2.19 in AB32 cells; Table 1) than the

overall PR binding region density (0.73 per gene for all genes in T-

47D cells, 0.74 in AB32 cells; Table 1). In addition, PR binding

peaks were more likely to be within 50 kb of the gene transcription

start site in regulated genes (74% and 69% of regulated genes in T-

47D and AB32 cells), compared with the proportion of PR binding

regions within 50 kb of all genes (57% of PR binding regions

within 50 kb of TSSs in T-47D cells, 54% in AB32 cells, Table 1).

PR binding regions in T-47D cells were on average closer to up-

regulated gene TSSs than regions near down-regulated genes. In

T-47D cells the median distance of PR binding to up-regulated

genes was 44 kb, whereas median distance to down-regulated

genes was 75 kb (Figure 1E). This was reflected in a statistically

significant overall difference in the cumulative frequency distribu-

tions of binding region distances to up-regulated and down-

regulated genes in this cell line (Figure 1E, p = 0.001, Kolmo-

gorov-Smirnov two-sample test). In contrast, no significant

difference was seen in binding region distribution with respect to

up- and down-regulated genes in AB32 cells (Figure 1F, p = 0.305).

In addition to PR binding regions being closer to up-regulated

genes, there were more PR binding regions near up-regulated

genes, with an average 2.3 binding regions per up-regulated gene

compared with 1.5 per down-regulated gene in T-47D cells and

2.4 and 1.9 average regions per up- and down-regulated gene,

respectively, in AB32 cells (Table 1). Moreover, a higher

proportion of up-regulated genes (509/786 - 65% of up-regulated

genes in T-47D and 439/546 - 80% of up-regulated genes in

AB32) were associated with PR binding regions than down-

regulated genes (50/98 - 51% of down-regulated genes in T-47D

and 325/621 - 52% of down-regulated genes in AB32, Table 1).

PR binding is associated with transcriptional regulation
The majority of regulated genes in both cell lines (559/950 in T-

47D (59%) and 749/1249 (60%) in AB32, Figure 2A and B,

Table 1) had one or more PR binding region within 100 kb. There

was a stronger association between PR binding and transcriptional

regulation at earlier time points after ORG treatment, suggesting

that genes that are directly regulated by PR are more likely to be

detected early at the transcriptional level than those that are

indirect targets (Figure S2). This relationship was strongest in T-

47D cells, and in AB32 cells was true only for binding regions that

were relatively near the TSS of regulated genes, as shown by the

higher representation of promoter proximal PR binding regions

(59UTR and up to 10 kb upstream) at earlier times in both cell

lines (Figure 2C and D). The overall distribution of PR binding

regions with respect to intragenic and intergenic regions was

similar in both cell lines (Figure S3): the greatest proportion of PR

binding regions was observed upstream and in the 59UTR of

regulated genes, representing 43–45% of regions associated with

regulated genes.

Self-organizing map (SOM) clustering of progestin-regulated

transcripts associated with PR binding regions in T-47D cells

(Figure 2E) and analysis of corresponding binding regions showed

that PR binding regions were significantly closer to the TSSs of

rapidly up-regulated genes, than to TSSs of down-regulated genes,

or genes regulated at a later time point (Kruskal-Wallis one-way

analysis of variance, p value,0.001, Figure 2F - compare clusters

0–5 with 6–8). Self-organizing map clustering of all progestin

regulated transcripts revealed a pattern of regulation that was

overall similar to that observed with the subset of genes associated

with PR binding (Figure S4). However, a cluster of 26 transcripts

was detected in the larger dataset representing transcripts that

were decreased at all time points, but showed some recovery at

24 h. Although 12 transcripts in this cluster were also present in

the set of transcripts associated with PR binding, 14 were found

only in the full progestin regulated transcriptome, and represented

transcripts that were regulated early but largely recovered by 24 h,

Context Dependence of PR Genomic Interaction
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suggesting that transcriptional silencing mediated by direct PR

binding may be more sustained than indirect regulation.

In AB32 cells more transcripts were decreased than increased

(Figure S5) and there was no significant difference in mean binding

region to TSS distance observed between regulation clusters

(Kruskal-Wallis p value = 0.209, not shown).

Distinct patterns of PR binding between cell lines reflects
divergent transcriptional response

Of the 6312 regions bound by PR in T-47D and 8117 in AB32,

just 1824 binding regions (14% of the combined total) were

common to both cell lines, representing 29% of binding regions in

T-47D and 22% of AB32 binding regions (Figure 3). The binding

regions common to both cell lines were not more likely to be

associated with regulated genes: of the 1824 binding regions found

in both AB32 and T-47D, 431 (24%) were associated with

progestin regulation in AB32 and 345 (19%) in T-47D - similar to

the association of all binding regions with regulated genes shown

in Table 1. Just 157 (9%) binding regions were associated with

regulated genes in both cell lines (data not shown). Examples of

binding peaks detected exclusively in one cell line or common to

both are shown in Figure S6. Directed ChIP confirmed the

differential patterns of PR binding to genes regulated in AB32, T-

47D or both cell lines (Figure S7). Moreover, direct examination of

the overlap between PR binding in T-47D and AB32 cells with

another PR cistrome in T-47D cells [39] revealed a markedly

higher overlap in binding regions between the two T-47D data sets

than to the AB32 PR data set (Figure S8).

The lack of overlap in binding sites between the two cell lines

was reflected in a similarly low overlap in transcriptional profiles at

2, 6 and 24 h of progestin treatment (Figure 3C–E). The small

overlap in progestin targets in the two cell lines was similar at all

time points examined (Figure 3E). This lack of overlap was

confirmed in two additional cell lines, ZR-75-1 breast cancer cells

and an additional PR+MCF-10A clone, AB9, which revealed a

similarly low overlap of progestin response when compared

directly with each other (Figure S9) or with the T-47D or AB32

cells.

Figure 1. Genomic distribution of PR binding sites in T-47D and AB32 cells. Progestin-dependent PR bound DNA fragments identified by
ChIP-seq were aligned to the genome using Bowtie and peaks of binding were identified using ERANGE, with 0.27% FDR. (A and B) Location of PR
binding regions relative to transcription start sites of RefSeq genes in (A) T-47D and (B) AB32 cells was determined using CisGenome. (C and D) PR
binding region distribution by chromosome, ranked by gene number in (C) T-47D and (D) AB32 cells. (E and F) Percentage of progestin regulated
genes with PR binding regions within a given distance from the TSS in (E) T-47D and (F) AB32 cells. Solid line - binding regions associated with up-
regulated genes, dashed line - binding regions associated with down regulated genes. The median distances of up- and down-regulated genes to
nearest TSSs are indicated.
doi:10.1371/journal.pone.0035859.g001
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Conserved PRE identified in PR binding regions in T-47D
and AB32 cells

De novo motif enrichment analysis of PR binding regions

associated with regulated genes identified highly significant

enrichment of a conserved PR binding motif (Figure 4A) consistent

with previously predicted progesterone response elements (PREs).

Both the MEME-ChIP and Homer motif analysis tools identified a

consensus PR binding motif consisting of a 6 bp inverted repeat

sequence RGNACA separated by three non-specific bases, in

agreement with classical biochemical studies of PR binding

elements [2,3] and similar to the element briefly described recently

[39]. In addition, de novo analysis in Homer identified a highly

enriched shorter element, representing the central core of the

inverted repeat sequence (Figure 4A), suggesting that this more

strongly conserved part of the PRE is most critical for PR binding.

In T-47D cells 782/1239 PR binding regions (63%) associated

with regulated genes contained one or more full-length or core

PRE motifs (Figure S10A) and in 33% of binding regions this

included at least one highly conserved full-length PRE. In AB32

cells 62% of regulation-associated PR binding regions contained

PREs (Figure S10B). A substantial proportion of PR binding was

likely to be mediated by a direct genomic interaction with these

motifs, as there was a normal distribution of PREs about the

centre of binding regions in both T-47D and AB32 cells (Figure

S11, and one sample Kolmogorov-Smirnov test). A number of

binding regions in both cell lines contained more than one PRE,

although number of PREs was not correlated with peak height

(Pearson regression R-squared = 0.0048), suggesting that PRE

number was not correlated with binding strength. The position

specific probability matrix for the full-length PREs defined by de

novo motif mapping in the two cell lines was used to classify PRE

strength in all PR binding regions. PRE strength did not predict a

transcriptional outcome, since the same proportion of regulation

associated and non-associated PR binding regions contained

strong PREs (data not shown). Regulation-associated PR binding

regions were grouped based on PRE p value (Figure 4B–C, strong

(+++) - p,161025, moderate (++) - p = 161025–161023, weak/

absent (+) - p.161023). By these criteria 77% regulation-

associated binding regions in T-47D cells and 76% in AB32

contained one or more moderate or strong PRE (p,0.001). The

majority of PR binding regions did not contain a strong PRE,

suggesting broad flexibility in PR binding site selection and also

implying that PR binding strength is not just determined by basic

sequence and is likely influenced by secondary structure and other

DNA binding PR cofactors. PR binding peak height was positively

correlated with transcriptional outcome, suggesting that it is a

measure of binding strength. In both T-47D and AB32 cells, the

average peak height of binding regions that were within 50 kb of

an up-regulated gene was significantly greater than those that were

distant from any regulated gene (Figure 4D–E, unpaired t test, T-

47D p = 2.8961028, AB32 p = 3.861026). When PRE strength

was compared directly with peak height, no correlation was

observed, demonstrating that PRE quality alone does not

determine PR binding strength (Figure S12). This finding was

supported by directed ChIP validation of the top PR binding

regions by peak height in T-47D and AB32 cells. Analysis of these

regions revealed just two regions containing strong PREs in T-47D

and three regions in AB32 cells. Most regions in the top ten

contained moderate strength PREs, and binding of PR was

confirmed in all but one binding region in each cell line (Table S2).

Table 1. PR binding characteristics in T-47D and AB32 cells.

T-47D AB32

n % n %

Regions total 6312 100 8117 100

Regions within 100 kb of a TSS 5548 87.9 5907 72.8

Regions within 50 kb of a TSS 3582 56.7 4385 54.0

Regions within 10 kb of a TSS 1308 20.7 1612 19.9

Regions near to regulated genes total 1239 19.6 1639 20.2

Regulated genes with regions within
100 kb of gene

559/950 59 749/1249 60

Regulated genes with region within
50 kb of TSS

414/559 74.1 517/749 69.0

Regulated genes with region within
10 kb of TSS

194/559 34.7 229/749 30.6

Regulated genes with region within
1 kb of TSS

46/559 8.2 56/749 7.5

Region to gene density overall 5548/7559 (0.73) 73.4 5907/7970 (0.74) 74.1

Region to regulated gene density 1239/559 (2.23) 223 1639/749 (2.19) 219

Region to up-regulated gene density 1169/509 (2.3) 230 1066/439 (2.43) 243

Region to down-regulated gene density 75/50 (1.5) 150.0 628/325 (1.93) 193

Regions near regulated genes that
contain PREs

782 63.1 1010 61.6

Up-regulated genes associated with
PR binding/total up-regulation

509/786 64.8 439/546 80.4

Down-regulated genes associated with
PR binding/total down-regulation

50/98 51.0 325/621 52.3

doi:10.1371/journal.pone.0035859.t001

Context Dependence of PR Genomic Interaction

PLoS ONE | www.plosone.org 4 April 2012 | Volume 7 | Issue 4 | e35859



Binding regions in T-47D and AB32 have distinct motif
enrichment

We analysed the sequences up to 400 bp from each binding

peak for the presence of other enriched motifs. Binding regions in

T-47D cells were significantly enriched with motifs for the pioneer

factor FOXA1 (Figure 4F), whereas there was no significant

enrichment for this factor in PR binding regions from AB32 cells.

FOXA1 binding motifs were identified in 548/1239 (44%) of

regulation-associated PR binding regions in T-47D cells (Figure

S10A). In binding regions in AB32 cells there was strong

enrichment of binding sites for the AP-1 complex and for the

DNA binding PR cofactor NF1. AP-1 binding motifs were present

in 454/1639 (28%) and NF1 sites were identified in 380/1639

(23%) of regulation-associated PR binding regions in AB32 cells

(Figure S10B). Relatively few binding regions in these cells (74/

1639, 4.5%) contained binding motifs for both factors. There was

no difference in the prevalence of any of the transcription factor

motifs in binding regions near genes that were up- or down-

regulated by progestin (t test, p.0.05). Moreover, separate motif

analysis of up-regulation associated binding regions and of those

associated with down-regulation did not reveal enrichment of

different transcription factor motifs (not shown).

The pioneer factor FOXA1 alters PR transcriptional
response

FOXA1 transcripts were abundantly expressed in T-47D and

ZR-75-1 cells relative to AB32 and AB9 cells (Figure S13),

suggesting that endogenous levels of FOXA1 may play a role in

regulating the PR transcriptional response. Accordingly, AB32

cells lacking endogenous levels of FOXA1 were infected with

lentiviral-delivered FOXA1 (Figure 5). This resulted in a profound

alteration in the progestin-regulated transcriptome at 6 h and 24 h

(Figure 5A). FOXA1 transduction resulted in progestin regulation

of 303 transcripts that were not regulated in cells transduced only

with the control pCDH virus (Figure 5C). Almost half of these

targets (146/303, 48%) were detected as a distinct cassette of genes

Figure 2. PR binding associated with progestin responsive
genes. Gene expression profiles in T-47D and AB32 cells were
determined at 2, 6 and 24 h after treatment with 10 nM ORG2058.
Transcripts that were significantly differentially expressed at 2, 6 and/or
24 h, compared to untreated controls, were considered progestin
regulated and were compared with the list of PR binding regions in the
same cell line. (A and B) Overlap between PR binding regions and
progestin regulated genes in (A) T-47D and (B) AB32 cells. (C and D) PR
binding regions within 10 kb or in the 59-UTR of genes regulated at 2, 6
and 24 h in (C) T-47D and (D) AB32 cells. (E) Genes with patterns of
progestin regulation in T-47D cells that grouped together were
identified by SOM cluster analysis using Gene Pattern. Patterns of
regulation are plotted as the mean log fold change relative to the
untreated control. Error bars represent the standard error of the mean.
(F) Mean distance to TSS of PR binding regions associated with each
SOM cluster shown in (E).
doi:10.1371/journal.pone.0035859.g002

Figure 3. Differential PR binding and transcriptional regulation
in T-47D and AB32. (A) PR binding regions that were common
between T-47D and AB32 cells were identified using the IntersectBed
function in Bed Tools. The number and percentage of regions that were
unique to T-47D or AB32 cells or common to both cell lines are shown.
(B) T-47D and AB32 cells were treated with 10 nM ORG2058 (ORG) or
vehicle for 2, 6 and 24 h. Transcript expression was measured by whole
genome microarray. Genes that were differentially expressed in ORG-
treated samples relative to the untreated control at one or more time
point in T-47D or AB32 cells were compared by unsupervised
hierarchical cluster analysis. Red - increased expression, green -
decreased expression relative to vehicle treated control. (C) Overlap
between transcripts regulated by progestins in T-47D and AB32 cells at
2, 6 or 24 h. The numbers and percentage of transcripts that were
uniquely regulated by progestins in T-47D or AB32 and regulation that
was common to both cell lines are shown. (D) Numbers of progestin
regulated transcripts in T-47D and AB32 at individual treatment times.
The number of transcripts uniquely regulated in T-47D or AB32 cells or
regulated in both at a specific time point is shown.
doi:10.1371/journal.pone.0035859.g003

Context Dependence of PR Genomic Interaction
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that clustered together (Figure 5A, red bar). Functional analysis

revealed that genes that gained progestin regulation after FOXA1

expression were involved in blood vessel morphogenesis and

regulation of cell motility (Table S3 and data not shown). These

categories included genes such as transforming growth factor b3,

CD44 and basic fibroblast growth factor, suggesting a broader

developmental function. Surprisingly, a large proportion of

transcripts that were regulated when FOXA1 was not present

(1333 transcripts regulated at 6 h, 24 h or both, in absence of

FOXA1, Figure 5C), lost regulation upon expression of the

pioneer factor and were evident in multiple clusters (Figure 5A,

blue bars). Functional analysis revealed a major impact of FOXA1

expression on genes involved in negative regulation of apoptosis:

these had been increased by progestins in absence of FOXA1, but

lost progestin responsiveness when FOXA1 was expressed (Table

S3 and data not shown). Genes in this category that were

decreased by progestin were unchanged by FOXA1 expression,

suggesting that the net effect of FOXA1 was to promote apoptosis

in response to progestin. The dampening effect of FOXA1

expression on progestin regulation suggested that the pioneer

factor may play a dual role in PR action, similar to its role in

androgen receptor signalling where it acts as an activator on a

subset of androgen targets and a corepressor on others [40]. The

progestin regulation of just 168 transcripts was unaffected by

changed FOXA1 levels (Figure 5C). Functional analysis of these

genes revealed progestin-mediated increases in genes involved in

cell cycle progression, suggesting that the proliferative effects of

progestin may not require FOXA1.

As FOXA1 appeared to have an effect on PR transcription

distinct from that observed for ER, we compared the density of

FOXA1 ChIP-seq interactions [41] around PR binding regions in

T-47D cells, with those observed at FOXA1 or ER binding

Figure 4. Motif enrichment in PR binding regions. (A) Full length and core PREs identified in binding regions in T-47D and AB32 cells.
Regulation-associated PR binding region sequences were analysed for statistical enrichment of conserved sequence motifs using MEME-ChIP and
Homer. Full and core PR binding elements were discovered in both cell lines. The full length PRE identified by MEME-ChIP and core element identified
in Homer are shown. (B and C) PRE strength by p value in (B) T-47D and (C) AB32 cells. PREs were classified as strong (+++, p,161025), moderate (++,
p = 161025 to 161023) or weak/absent(+, p.161023). (D and E) PR peak height in regulation and non-regulation associated PR binding regions in
(D) T-47D and (E) AB32 cells. (F) Top transcription factor binding motif enrichment in T-47D and AB32 cells.
doi:10.1371/journal.pone.0035859.g004

Context Dependence of PR Genomic Interaction

PLoS ONE | www.plosone.org 6 April 2012 | Volume 7 | Issue 4 | e35859



regions (Figure 5D). Binding of FOXA1 around ER binding

regions was very high, confirming the absolute requirement for

this factor in estrogen signalling. In contrast, although a peak of

FOXA1 interaction was seen near PR binding regions, sequence

enrichment was significantly lower (Figure 5D) suggesting that

while FOXA1 may be involved in PR binding at some regions, this

may represent a subset of binding events. This was supported by

the finding that FOXA1 binding was much stronger at PR binding

regions in which a FOXA1 motif had been predicted, than in

regions where no motif was found, and was similar to the density

of binding observed overall in ER binding regions (Figure S14). In

order to test whether PR binding site numbers were different near

genes that gained progestin-regulation upon FOXA1 expression,

we compared the number of PR binding peaks in FOXA1

negative AB32 cells that were near to genes that lost, gained or

retained progestin regulation when FOXA1 was expressed.

Although there were slightly fewer PR binding regions near genes

that gained regulation (Figure 5E), the difference was not

significant. This suggested that the capacity of FOXA1 to

influence PR binding and transcriptional regulation of target

genes was not inherently related to PR binding site density; PR

may form weak associations near to the ‘‘gained’’ subset of genes,

but FOXA1 was required for the interaction to become

productive. We also examined the level of enrichment of motifs

for NF1 and AP-1 in PR binding regions associated with genes

that lost, gained or conserved progestin regulation when FOXA1

was expressed and found no difference between the groups (not

shown).

FOXA1 influences transcription factor activity via its DNA

bending activity [42,43,44]. We speculated that PR binding

regions that require FOXA1 to affect transcription may be further

from the target gene than those that do not, and that binding of

FOXA1 near those regions results in DNA bending, which brings

the PR transcriptional complex closer to the target gene.

Examination of the distance from PR binding regions to genes

that gained regulation by FOXA1 revealed that this was the case

and that this subset of regions was significantly further from the

Figure 5. Introduction of FOXA1 into AB32 cells alters progestin response. (A) Unsupervised cluster analysis of transcriptional profiles in
response to progestin in AB32 cells in the presence and absence of FOXA1. AB32 cells were transduced for 24 h with viral particles comprising the
pCDH-FOXA1 construct or empty pCDH control. The cells were treated 6 and 24 h with 10 nM ORG2058 (ORG) or vehicle. Gene expression was
measured by whole genome microarray. Genes that were differentially expressed at any time point in ORG-treated cells compared to control were
analysed by unsupervised hierarchical cluster analysis. Red - increased log fold expression, green - decreased log fold expression. (B) FOXA1 protein
expression in AB32 cells and parent MCF-10A cells before and after viral transduction, compared with endogenous expression in T-47D cells. (C)
Numbers of progestin regulated transcripts in AB32 cells in the presence and absence of FOXA1. (D) Comparison of FOXA1 binding strength at PR, ER
and FOXA1 binding sites. (E) Ratio of PR binding regions to regulated genes in AB32 cells for genes that lost, gained or retained progestin regulation
with FOXA1 expression. (F) Distance from PR binding regions in AB32 to genes that lost, gained or retained progestin regulation with FOXA1
expression. Error bars represent standard error of the mean.
doi:10.1371/journal.pone.0035859.g005

Context Dependence of PR Genomic Interaction

PLoS ONE | www.plosone.org 7 April 2012 | Volume 7 | Issue 4 | e35859



regulated gene than binding regions near genes regulated in the

absence of FOXA1 (Figure 5F, p = 0.003, unpaired t test).

In summary, ChIP-seq profiling in two different cell lines has

revealed remarkably distinct patterns of PR binding. These distinct

cistromes are reflected in marked differences in transcriptional

response to progestins. PR binding in the two cell lines is mediated

by highly similar PREs, suggesting a similar mode of DNA

interaction, but key differences in cofactor binding site enrich-

ment, particularly FOXA1, suggest that the expression levels of

these cofactors have potential to determine cell-specific binding

and ligand response.

Discussion

This first detailed genome-wide survey of PR genomic

interaction has identified non-overlapping PR binding sites in

immortalized normal and malignant breast cells; shown that PR

interactions occurred distal to proximal promoters, supporting the

view that PR effects are mediated over a longer distance than has

previously been expected for direct cis-acting transcription factors;

and demonstrated that transcriptional cofactors are important

contributors to cell-specific PR activity.

PR binding regions are distant from TSS
Most PR binding regions were located more than 10 kb from

the TSS of regulated genes, with less than 35% of regulated genes

in both cell lines having PR binding regions within 10 kb of the

TSS, and less than 4% of regulated genes having binding regions

within 1 kb of the TSS. In both breast cell types, binding was

correlated with gene regulation, with most progestin-regulated

genes having one or more PR binding regions within 50 kb, and

genes increased by progestin being more likely to be associated

with PR binding sites than genes that were decreased. These

findings are consistent with observations for other nuclear

receptors in comparable experimental systems. Reddy et al

identified 4392 glucocorticoid receptor (GR) binding sites (2%

FDR) by ChIP-seq in dexamethasone-treated A549 cells [45].

Welboren et al identified between 7713 and 10205 estrogen-

dependent ER binding sites, depending on the peak-calling

algorithm used, in MCF-7 cells [46]. Both ER and GR

demonstrate a correlation between binding and gene regulation,

and in line with the findings of this study, a relatively low

proportion of promoter proximal binding is reported [14,45,46].

The stronger correlation between binding and transcriptional up-

regulation than down-regulation has also been described for ER

[14] and GR [45].

The number of PR binding sites discovered markedly exceeded

the number of progestin-regulated transcriptional targets and

many PR binding sites were not associated with active transcrip-

tion, as only 20% of PR binding regions were associated with

transcriptional regulation in each cell line. This has been found for

other nuclear receptors [14,17,45,46]. A number of potential

explanations are proposed [47]. Some binding events may regulate

transcription at a level below the detection threshold of genome-

wide expression profiling. Moreover, a subset of binding sites may

represent weaker associations or binding occurring in only a subset

of cells such that transcriptional regulation does not occur at a

significant level. Our data support this possibility, since PR

binding peak signal strength was significantly higher near

regulated genes compared to non-regulation associated binding

regions. It has also been suggested that binding events that are not

associated with transcriptional regulation may be at cell type

specific sites requiring the co-operation of binding cofactors that

are available only in a subset of contexts [47,48,49]. It must also be

assumed that a proportion of binding regions represent non-

specific interactions, although the finding that PREs are similarly

prevalent in regulation-associated and non-associated binding

regions would argue that non-specific interaction explains a small

component of overall binding.

PREs in PR binding regions
PR binding regions were significantly enriched for a binding

element with a sequence consistent with previously described

progesterone response elements [2,3]. The relative conservation at

specific base positions in the 15 bp palindromic response elements

was variable, and was consistent with the pattern of conservation

seen for GR [45,49] and AR [50]. A shorter motif, representing

the core highly conserved elements (CA/t nnn TGTnC,

Figure 4A), was also detected, demonstrating the particular

importance of these positions in the PR binding element. There

was a high degree of variability of PRE sequences, as indicated by

the consensus sequence allowing for marked variation at several

positions, and many binding regions contained weak sequences

that diverged considerably from the ideal. Moreover, a proportion

of PR binding regions totally lacked a consensus PRE, raising the

question of whether these were directly binding PR. To address

this, we sought motif enrichment just in those regions, and did

identify a PRE-like motif at a lower level of significance (not

shown). This suggests that many binding regions lacking consensus

PREs do contain sequences consistent with a PRE. A similar

finding was reported for GR [45].

Although there was variability in the presence and strength of

PREs identified in PR binding regions, this was not a determinant

of whether a particular region was associated with transcriptional

activity, as PRE strength was not correlated either with PR

binding peak strength or with transcriptional outcome. This

suggests that PRE strength is not the sole determinant of whether

PR will interact with a particular binding region and regulate gene

expression, and that other sequence features and the influence of

DNA binding cofactors are likely to be important determinants.

This is supported by the identification of FOXA1, AP-1 and NF1

as potential cell type-specific binding cofactors for PR in the two

cell lines examined.

The PR cistromes in T-47D and AB32 cells are non-
overlapping

There was a relatively small overlap in PR binding regions in T-

47D and AB32 cells. This was consistent with the observation that

the transcriptional response to progestin was also non-overlapping

between the two cell lines. Moreover, binding regions that were

common to both cell lines were not more likely to be associated

with a transcriptional outcome. Expression profiling in two

additional cell lines, ZR-75-1 breast cancer cells and an

independent PR positive MCF-10A clone (AB9), revealed a

similarly low overlap in transcriptional regulation by progestins. It

is important to note that the difference in PR cistromes observed

in T-47D and AB32 cells may be contributed by lineage

differences between these cells. MCF-10A cells (from which

AB32 are derived) are considered to be myoepithelial in character,

whereas T-47D cells have luminal characteristics. It is therefore

possible that myoepithelial cells may respond differently to

progesterone than luminal cells, even when PR is ectopically

expressed, although confirmation of this possibility would require

direct comparison of ectopic expression of PR into normal and

malignant luminal or myoepithelial cells. Comparison of ER

binding patterns in MCF-7 breast cancer cells and ER expressing

U2OS osteosarcoma cells revealed a similarly low overlap in

binding sites and transcriptomes [48]. In that study, differential
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promoter methylation was proposed to underlie this difference.

However, global inhibition of DNA methylation in AB32 cells,

while enhancing existing transcriptional targets, did not signifi-

cantly alter the progestin-responsive transcriptome (data not

shown). In support of our findings, Yin and colleagues have

recently reported a similarly low overlap in PR genomic

interactions in T-47D cells and uterine leiomyoma cells on

exposure to the antagonist RU486 [51]. Cofactor motif enrich-

ment was also found to be different between the two cell lines,

however, some care should be taken in the interpretation of these

data as no negative control or biological replicates for ChIP-seq

were included in the study. Comparison of our T-47D and AB32

PR cistromes with a publicly available dataset revealed a markedly

greater overlap between the two T-47D datasets (51% reported T-

47D PR binding sites were also found in T-47D in our study) than

with binding in AB32 cells (28%), supporting the validity of the

observation of distinct binding patterns. The level of overlap in PR

binding sites in T-47D cells from the two different studies was

possibly influenced by a number of factors. The use of different

ligands would influence the detection of PR binding sites. In the

published study T-47D cells were treated with progesterone, which

has a similar pharmacokinetic profile to ORG2058, but dissociates

from PR more rapidly than the synthetic analogue. Moreover, the

mobility of PR at genomic DNA has been shown to be ligand

specific [52] and may differ when bound to ORG2058 compared

to progesterone. Secondlly, PR binding was detected by different

methods: in this study ChIP-seq was used, whereas the published

data are derived from ChIP-chip. ChIP-seq surveys binding in an

unbiased genome-wide fashion. ChIP-chip is dependent on the

sequences present on the arrays used and can be affected by

hybridization bias. A similar overlap was observed in ER binding

sites detected in MCF-7 cells by ChIP-seq and ChIP-chip [46].

Lastly, the analysis methods used to generate the published data

were likely different than used in our study. This information is not

currently available for the published data.

Role of chromatin structure and the pioneer factor
FOXA1

Pioneer factors such as FOXA1 are able to bind to tightly

packed heterochromatin, opening DNA structure to allow binding

and regulation by nuclear receptors, including ER, GR and AR

[12,14,15,17,40,53]. The level of requirement for FOXA1 and the

role that it plays in receptor signalling differs between the

receptors. Expression of FOXA1 is critical for transcriptional

activation by ER, although the specific gene targets may differ

between cell lines. In a recent study, Hurtado and colleagues

mapped ER and FOXA1 binding in three breast cancer cell lines,

MCF-7, T-47D and ZR-75-1, and determined that positioning of

the silencing factor CTCF was different between the three cell

lines and defined which ER targets were transcriptionally

enhanced by FOXA1 binding. In these cell lines FOXA1 was

critical for ER action [15].

In contrast, FOXA1 appears to play a dual role in androgen

signalling, where it promotes androgen responsiveness of some AR

targets and acts as a repressor of others. This is supported by a

recent study in LNCaP prostate cancer cells where depletion of

FOXA1 caused significant remodelling of AR binding patterns

and a marked increase in androgen regulated transcripts [40]. In

this context FOXA1 is a critical determinant of binding site

selection and acts both as a facilitator and a repressor of AR

binding depending on the target site. Our data suggest that

FOXA1 may play a similar role in PR signalling as with AR, since

FOXA1 was not absolutely required for progestin response and

over-expression of FOXA1 in AB32 cells, which lacked endoge-

nous FOXA1, caused a marked decrease in the number of

progestin-regulated genes in those cells. In T-47D cells where

FOXA1 is abundantly expressed, binding motifs for the pioneer

factor were statistically enriched in PR binding regions. The role

of FOXA1 in PR signaling through regions containing FOXA1

motifs was supported by the finding that FOXA1 binding levels at

these sites in T-47D cells was greater than interactions at PR

binding regions that did not contain a predicted FOXA1 motif.

However, a comparison of average FOXA1 binding around all PR

binding regions in T-47D cells with those at ER interaction sites

revealed significantly lower overall enrichment of FOXA1 binding

near PR than ER, suggesting that FOXA1 is not required for all

PR interactions. Taken together, our data suggest that FOXA1

may act as an enhancer of PR transcriptional activation of many of

the targets identified in T-47D, whereas in AB32 cells the lack of

FOXA1 expression allows binding of PR targets that may

normally be repressed by FOXA1.

The overlap between progestin regulation in T-47D and

FOXA1 transduced AB32 cells was low, suggesting that FOXA1

expression did not cause AB32 cells to become more like T-47D

cells in their progestin response. This is consistent with our

observation that FOXA1 may not be absolutely required for all

PR binding events in T-47D cells. It also suggests that, although

FOXA1 may affect PR binding, other cell specific factors or

characteristics are important in determining PR binding, which

may not be identifiable by ChIP. Both ER and AR have been

shown to associate with histone modifying factors in a cell-type

and promoter-specific fashion [54,55], which are recruited to

enhancers as part of a large coregulatory complex and would not

be identifiable through motif analysis. The nature of the GR

cistrome has been shown to be highly dependent on chromatin

accessibility [56], which is also cell type specific. It is likely that the

same factors influence PR binding in a cell type specific fashion.

AP-1 and NF-1
Nuclear receptors, including PR, have been shown to associate

with DNA independently of hormone response elements, by

tethering to AP-1 [18,19,20]. In the case of ER, this mechanism

was reported to mediate transcriptional repression of target

transcripts by estrogen [14]. These findings suggest that AP-1

binding sites may be more common in binding regions that lack

PREs and could be associated with down-regulated genes. AP-1

sites were present in 27% of regions that contained PREs and 29%

of regions lacking PREs in AB32 binding regions. This proportion

was higher overall than in T-47D cells where AP-1 site enrichment

was not observed (12% regions with PREs and 10.7% regions

lacking PREs contained AP-1 sites in T-47D), however it was not

different between the two subsets of binding regions. There was

also no evidence that AP1 sites were more prevalent in down-

regulated than up-regulated genes (data not shown). These data

suggest that, while AP-1 may co-operate with PR on a subset of

binding sites in AB32 cells, its role in progesterone signaling may

be more minor than for estrogen.

Binding of the transcriptional cofactor NF1 to DNA requires co-

association by PR, and NF1 and PR have synergistic effects on

gene expression [11], demonstrating the potential for co-

expression of these transcription factors to result in enhanced

transcriptional outcomes. In the mammary gland, the coordinated

expression of NF1 isoforms is involved in controlling lactation and

involution [57]. NF1 action in the mammary gland is context-

specific, and is induced when mammary epithelial cells are

maintained in contact with laminin-rich extracellular matrix [58].

The development-specific and context-specific actions of NF1 in

the mammary gland suggest that its interplay with PR may be
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regulated by both NF1 and PR levels, and that these may be

susceptible to modulation under physiological circumstances that

include carcinogenesis. Enrichment of NF1 binding motifs in PR

binding regions in AB32 cells, but not breast cancer cells, supports

this view and suggests that NF1 is a cell type-restricted PR

cofactor.

Our data suggest that a combination of chromatin remodelling

cofactors is important for progesterone response in the breast and

that the relative expression and coordinated action of these

cofactors determines the PR cistrome. Progesterone has a diverse

range of effects in normal and malignant target tissues and the

results of this study demonstrate that the interplay between key

cofactors and PR on the progesterone regulated cistrome

contributes to context specificity of progesterone action, and

may play a central role in aberrant progestin effects in breast

cancer.

Methods

Cell culture
T-47D and ZR-75-1 breast cancer cell lines were obtained from

the E.G. and G. Mason Research Institute (Worcester, MA).

MCF-10A immortalized normal breast cells and HEK293T

kidney cells were obtained from the American Type Culture

Collection (atcc.org, Manassas, VA). T-47D and ZR-75-1 cells

were maintained in RPMI1640 medium containing 10% fetal calf

serum and 0.25 units/ml insulin. HEK293T were maintained in

Dulbecco’s Modified Eagle’s Medium, supplemented with 10%

fetal calf serum. The AB32 and AB9 cell lines were generated by

co-introduction of PRA and PRB from viral vectors into the MCF-

10A cell line and clonal selection using puromycin. Clones were

characterised by dual immunofluorescent analysis and by western

blotting for expression of PRA and PRB. A western blot

comparing PR expression in AB32 and AB9 with PR levels in

T-47D cells is shown in Figure S15. The cells were maintained in

1:1 DMEM:Hams-F12 medium supplemented with cholera toxin

(0.1 mg/ml), insulin (0.28 iu/ml), hydrocortisone (0.5 mg/ml),

epidermal growth factor (0.02 mg/ml), and 5% horse serum. The

synthetic progestin ORG2058 was obtained from Amersham

Biosciences (GE Healthcare, Rydalmere, Australia). TSA and

5AdC were obtained from Sigma-Aldrich (Castle Hill, Australia).

Chromatin immunoprecipitation
Cells were cultured to 80% confluency in 15 cm tissue culture

dishes, then treated for 45 minutes with 10 nM ORG or vehicle.

Chromatin was subsequently cross-linked by the addition of

formaldehyde to the culture medium to a final concentration of

1% and incubation for 10 minutes at 37uC. Media were

immediately removed and the cells were washed with cold

phosphate buffered saline and harvested by scraping. Cells were

collected by centrifugation and pellets were lysed 10 minutes at

4uC in SDS buffer (1% SDS; 10 mM EDTA; 50 mM Tris-HCl,

pH 8). The lysates were sonicated at 4uC with a Branson 450

sonicator, using seven one minute bursts at 40% amplitude and

60% duty, each separated by a rest of at least one minute. Lysates

were centrifuged at 13,0006 g at 4uC for 15 minutes to remove

debris. Genomic DNA was isolated from an aliquot of lysate and

checked by gel electrophoresis to confirm that sonication had

resulted in fragmented DNA with an average size of 200 to

400 bp. Supernatants were diluted 1:10 with IP buffer (0.5% NP-

40; 50 mM Tris, pH 8; 120 mM NaCl; 0.5 mM PMSF; Complete

protease inhibitor cocktail, Roche, Ryde, Australia) and pre-

cleared using washed Dynabeads M-280 sheep anti-mouse IgG

magnetic beads (Invitrogen, Mulgrave, Australia), with gentle

rotation at 4uC for at least 2 h. Genomic DNA fragments that

were bound to PR were isolated by rotation overnight at 4uC with

in-house hPRa6 and hPRa7 mouse monoclonal anti-PR antibod-

ies [59] and fresh sheep anti-mouse IgG magnetic beads (40 ul per

1.4 ml diluted lysate). Beads were washed sequentially with IP

buffer, high salt wash buffer (0.5% NP-40, 50 mM Tris, pH 8,

500 mM NaCl, 0.5 mM PMSF), lithium wash buffer (250 mM

LiCl, 0.5% NP-40, 1% sodium deoxycholate, 1 mM EDTA,

pH 8, 10 mM Tris-HCl, pH 8) and TE (10 mM Tris, pH 8,

1 mM EDTA). Isolated DNA fragments were eluted twice for

15 minutes at room temperature using elution buffer (1% SDS,

0.1 M NaHCO3). Cross-links were reversed by addition of NaCl

to 0.25 M and heating to 65uC for at least 6 h. DNA fragments

were purified using Qiagen PCR purification columns (Qiagen,

Doncaster, Australia). DNA fragments isolated by PR chromatin

immunoprecipitation from ORG-treated cells were sequenced on

an Illumina GA-IIx sequencer at the Ramaciotti Centre for Gene

Function Analysis (University of New South Wales, Australia) and

GeneWorks (Hindmarsh, Australia). Input DNA isolated from the

pre-cleared ORG-treated samples were sequenced as a baseline

control.

Analysis
Sequences were aligned to repeat masked human genome hg18

(NCBI build 36) using Bowtie 0.12.0.1 [36]. Up to 2 mismatches

were allowed in the aligned sequences. Multiple alignments were

permitted up to a multiplicity of 10, but only the best ranked

alignment was reported. This strategy resulted in alignment of 42

to 48% of reads. Results in T-47D represent the combined

outcome of three independent biological replicates and two

replicate input controls. AB32 results are from two independent

ChIP and input control samples each. All sequences were at 36 bp

read length except for one ChIP and one matched input control

sample from T-47D cells. These samples were processed with a

64 bp read length, but were trimmed to 36 bp during data

processing to avoid bias in the downstream analysis. Enriched

regions of PR binding were determined using the ERANGE open

source software tool [37]. Peak shift was determined to be 70 bp

using the -shiftLearn function in findall.py. The peak threshold

was set at four-fold background as determined from the control

input DNA sequence. The minimum number of reads (RPM)

within a region was set to 10. Multireads were weighted at a value

of 1/multiplicity. Peaks were called with false discovery rate

0.27%. Regions of PR binding were annotated with respect to

neighbouring genes using CisGenome v1.1 [60] and Homer [61].

Known and de novo enriched binding motifs were identified using

Homer and the MEME suite of motif analysis tools, version 4

[62,63]. Significance of enrichment of binding motifs discovered in

MEME was determined using a Fisher Exact Test. The E-value

for enrichment represents the p-value multiplied by the number of

sequences tested. Motif enrichment was scored in Homer using a

cumulative hypergeometric distribution analysis comparing bind-

ing region sequences with a matched genomic background [61].

The FIMO program in MEME was used to classify full-length

PRE occurrences in PR binding regions in AB32 and T-47D cells,

using the position specific probability matrices discovered by

MEME in the two cell lines. Sequences with a p value,0.01 for

similarity to the consensus PRE were reported and p values ranged

from 0.01 to 1610210. A lower p value signified greater sequence

conservation compared to the consensus PRE and for the purposes

of comparisons, a p value,161025 was considered to represent a

strong PRE. For comparison of PR genomic interaction in T-47D

cells with published ER and FOXA1 interactomes [41], sequence

tag libraries were generated from all three data sets in Homer and
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binding peaks were identified using the same parameters for each

data set. Average FOXA1 tag density was then determined at PR,

ER and FOXA1 peaks using the peak annotation function in

Homer. All raw data generated by ChIP-seq and gene expression

profiling have been deposited on the Gene Expression Omnibus

(www.ncbi.nlm.nih.gov/geo/) and can be accessed through GEO

accession number GSE31130. Gene expression data conform to

MIAME guidelines.

Real-time PCR
Directed ChIP was performed using the same protocol as

described for ChIP-seq. Target templates were quantitated using

Platinum Sybr Green reagents (Invitrogen) in a RotorGene 6000

real-time PCR machine. Directed ChIP was carried out as

described above and purified gDNA fragments were diluted 2 to 5-

fold prior to quantitation by real-time qPCR. Primer sequences

used for specific target validation were: ACSL1 - fwd 59-TGC

AAA GAG CAA GAC AGA AAA G-39, rev - 59-GCG GTC ATA

GAG ACA CAA TTC C-39, DHRS9 - fwd 59-GGC TGT CTG

AGT GAA TCT GTA GTG-39, rev - 59-AGT TAC ATT TGC

CCT TGA TTC C-39, FLRT3 - fwd 59-GGA GAA ACA GAC

TTT ACC TGA CC-39, rev - 59-TGT TGC AGT CAA GGA

GAC AGA G-39, NOTCH 2 - fwd 59-GCC TGT TCC TAT

TAA GTG TCC TG-39, rev - 59-GGC TGT AAA GTT ATT

TGC TAG ATT G-39, PACSIN1 - fwd 59-AAC GTC CTC TTC

CTG CTC TTG-39, rev - 59-GAG CTT TGA TGT AGA CGG

AAT-39 G, PDK4- fwd 59-CG AGC AGC AAT AAC TTT CC-

39, rev - 59-ACG CAA GAA CAC AGT GAG TAG C-39.

Lentiviral transduction
The FOXA1 cDNA was obtained from the PlasmID Dana

Faber/Harvard Cancer Center DNA Resource Core (Boston,

MA). The open reading frame was amplified by high fidelity PCR

and transferred into the multiple cloning site of pCDH-CMV-

MCS-EF1-copGFP. Integrity of the insert was confirmed by

sequencing. Lentiviral particles were generated by cotransfecting

the pCDH-FOXA1-GFP vector and lentiviral packaging con-

structs into HEK293T cells and allowing virus to accumulate in

the medium for 48 h. Viral titre was estimated over a dilution

series in AB32 cells, using a Facs Calibur flow cytometer to

estimate GFP positivity. AB32 cells were infected at a level

predicted to give a 70% infection rate and incubated for 24 h at

37uC to allow expression of FOXA1, followed by treatment for 0,

6 and 24 h with 10 nM ORG. Matched control samples infected

with the parent pCDH-CMV-MCS-EF1-copGFP virus were

included at each time point.

Gene expression microarray
Total RNA was isolated using RNAqueous purification columns

(Invitrogen). Total RNA (500 ng) was amplified and biotin labelled

using Illumina TotalPrep reagents (Invitrogen). The amplified

samples (750 ng) were hybridized to human whole genome HT-12

gene expression bead arrays using the recommended Illumina

reagents and following the manufacturer’s protocol. Raw data

were analysed using Genome Studio software (Illumina). After

background subtraction data and cubic spline normalization,

differential expression p values were determined using the Illumina

custom model of Genome Studio. Data were further analysed

using Microsoft Excel and SPSS statistical software. Hierarchical

clustering and self organizing map clustering were performed

using GenePattern [64].

Protein extract preparation and immunoblotting
Cells to be analysed by protein immunoblot were harvested by

trypsinization, washed with cold phosphate buffered saline solution

and collected into a cell pellet by centrifugation. Whole cell

extracts were prepared by lysis of cells in RIPA buffer (10 mM

NaPO4 (pH 7.0), 150 mM NaCl, 2 mM EDTA, 1% sodium

deoxycholate, 1% NP-40, 0.1% b-mercaptoethanol) containing

10 mM NaMoO4, 1% aprotinin, Complete protease inhibitor

(Roche, Castle Hill, Australia) and 0.5 mM phenylmethylsulfonyl-

fluoride, and rotation 15 min at 4uC. Insoluble debris was

removed by centrifugation at 14,0006 g, 15 min at 4uC. Protein

concentration was estimated using Bradford dye reagent (Bio-Rad,

Regents Park, Australia). Proteins were fractionated by electro-

phoresis through denaturing 7.5% polyacrylamide-SDS gel and

transferred to nitrocellulose membrane as described previously

[65]. For detection of FOXA1 expression T-47D whole cell

extract was loaded at 100 mg per lane and transduced cell extracts

at 10 mg per lane. FOXA1 was detected using a goat anti-human

FOXA1 polyclonal antibody (Abcam ab5089, Sapphire Biosci-

ences, Waterloo, Australia) at 1:800 dilution, and rabbit anti-goat

horseradish peroxidase conjugated secondary antibody (Dako

Cytomation, Kingsgrove, Australia). For detection of PR protein

expression, whole cell extracts were loaded as indicated. PR was

detected using hPRa6 and hPRa7 in-house mouse monoclonal

antibodies (1:100 each) and goat anti-mouse horseradish perox-

idase conjugated secondary antibody (Dako). Protein bands were

visualized by chemiluminescent reaction using ECL reagents

(Quantum Scientific, Murrarie, Australia) and exposure to film or

imaging using a Kodak Image Station (Carestream Health,

Richmond, Australia).

Supporting Information

Figure S1 PR binding region to chromosome distribu-
tion in T-47D and AB32 cells. Total numbers of PR binding

region per chromosome were compared by linear regression

between T-47D and AB32 datasets. Line of fit and 95%

confidence intervals are shown. Labels represent chromosome

number.

(PDF)

Figure S2 Relationship between PR binding and time of
progestin regulation. The proportion of progestin regulated

genes at 2, 6 or 24 h after treatment, which were associated with

one or more PR binding regions was determined in (A) T-47D and

(B) AB32 cells.

(PDF)

Figure S3 Location of PR binding regions. The distribu-

tion of all PR binding regions, with respect to the nearest gene,

was determined using CisGenome v1.1 in (A) T-47D and (B) AB32

cells.

(PDF)

Figure S4 Patterns of transcriptional regulation in T-
47D cells. Transcripts that were significantly differently ex-

pressed in 10 nM ORG2058 treated cells relative to vehicle at 2, 6

and 24 h after treatment were identified by gene expression

profiling on Illumina HT-12 whole genome array. Self-organising

map clustering was performed for all progestin regulated genes,

using Gene Pattern.

(PDF)

Figure S5 Patterns of transcriptional regulation in AB32
cells. Progestin regulated transcripts were identified in AB32 cells

at 2, 6 and 24 h treatment with 10 nM ORG2058 by gene
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expression profiling. Patterns of transcriptional regulation over the

24 h time course were identified by self-organising map clustering

using Gene Pattern.

(PDF)

Figure S6 PR binding regions in T-47D and AB32 cells.
Examples of PR binding regions that were unique to T-47D or

AB32 cells or common to both lines are shown as custom tracks

displayed in the UCSC genome browser.

(PDF)

Figure S7 Validation of cell type-specific PR binding
regions identified in ChIP-seq. PR binding regions identified

in (A) T-47D, (B) AB32 or (C) both cell lines by ChIP-seq were

validated by directed PR-ChIP, using binding region-specific

primers and quantitative real-time PCR. Regions bound near

ACSL1 and PACSIN1, which were regulated in T-47D but not

AB32 produced marked enrichment of bound fragments in T-47D

cells and not AB32. The converse was true with PR target regions

identified in AB32 but not T-47D. FLRT3 and DHRS9, which

are both transcriptional targets only in AB32, were strongly bound

by PR in AB32 but showed a weak association in T-47D cells.

PDK4 and Notch 2, which are progestin regulated in both cell

lines, were bound by PR in both although the association was

stronger in T-47D (85-fold vs42-fold binding enrichment of PDK-

4 and 300-fold vs37-fold enrichment of Notch 2 binding in T-47D

vs AB32).

(PDF)

Figure S8 Overlap of PR binding regions in ORG2058-
treated T-47D and AB32 with binding in T-47D after
progesterone (P4) treatment. Our data are compared with

progesterone-liganded PR binding in T-47D summarized in Tang

et al [39] and available at http://cistrome.dfci.harvard.edu/

NR_Cistrome/.

(PDF)

Figure S9 Progestin regulation of gene expression in
additional breast cell lines. ZR-75-1 breast cancer cells and

AB9 PR-positive transformed normal breast cells were treated for

2, 6 or 24 h with 10 nM ORG2058 or vehicle, then harvested and

total RNA was isolated. Gene expression levels were estimated by

Illumina HT-12 microarray. Data were analysed using Genome

Studio software. Transcripts with levels that were significantly

different in ORG compared to vehicle-treated cells (diff p

value,0.01) and had a fold change of 1.5 or more were

considered progestin regulated. (A) Numbers of progestin

regulated transcripts in ZR-75-1 or AB9 cells or both. (B)

Unsupervised average linkage hierarchical cluster analysis of

arrays (Pearson correlation) and gene expression fold change

(uncentred correlation) was performed on the subset of transcripts

that were progestin regulated in one or both cell lines, using Gene

Pattern. Red - increased expression, green - decreased expression

with ORG, relative to vehicle.

(PDF)

Figure S10 PRE and cofactor motif enrichment in
regulation-associated binding sites in T-47D and AB32
cells. The relative proportions of regulation-associated PR

binding regions containing PREs with or without one or more

of the top enriched transcriptional cofactor binding motifs are

shown. (A) T-47D and (B) AB32 motif distribution.

(PDF)

Figure S11 Distribution of PRE position in PR binding
regions in T-47D and AB32 cells. The positions of PRE

motifs in PR binding regions relative to peak centre is plotted as a

frequency distribution in (A) T-47D and (B) AB32 cells.

(PDF)

Figure S12 PRE strength does not predict PR binding.
PRE motifs were classified in PR binding regions using the FIMO

program in MEME [62]. The strength of the strongest candidate

PRE, as determined by p value, in each binding region was plotted

against peak height, as an indicator of PR binding strength.

Estimated line of fit and Pearson correlation R2 value were

estimated. Data are shown for (A) T-47D and (B) AB32 cells.

(PDF)

Figure S13 FOXA1 transcript expression in cell lines.
FOXA1 transcript expression, measured on Illumina HT-12

arrays, was compared in breast cancer (T-47D, ZR-75-1) and

transformed normal breast (AB9, AB32) cells. FOXA1 levels are

expressed relative to the level in AB32 cells.

(PDF)

Figure S14 FOXA1 binding at PR binding regions with
or without predicted FOXA1 motifs. The presence of

FOXA1 motifs in PR binding regions was predicted using Homer

software. PR binding regions predicted to bind FOXA1 and

regions lacking FOXA1 binding motifs were separately analysed

for actual FOXA1 binding enrichment. Average FOXA1 binding

strength in T-47D from ChIP-seq is shown at PR binding regions

containing FOXA1 motifs (blue line) and in PR binding regions

that lacked any predicted FOXA1 motif (red line).

(PDF)

Figure S15 PR expression in T-47D, AB32 and AB9 cells.
Proteins from whole cell extracts at the loading indicated were

fractionated by denaturing 7.5% polyacrylamide-SDS gel electro-

phoresis and transferred to nitrocellulose membrane. PR protein

bands were visualized as described in Materials and Methods.

(PDF)

Table S1 Summary of gene functional annotation by
chromosome in AB32. Gene ontology term enrichment was

determined for the subset of PR binding region-associated genes in

AB32 cells on chromosomes 2, 8 and 11.

(PDF)

Table S2 Validation of top PR binding regions. PR

binding to selected sites in T-47D and AB32 cells was confirmed

by directed ChIP-PCR. Ten binding regions were selected for

validation in T-47D and nine in AB32 cells.

(PDF)

Table S3 Functional analysis of progestin regulated
gene clusters lost, gained and conserved with expression
of FOXA1. Functional annotation clustering was performed for

the groups of genes that lost, gained and conserved progestin

regulation in AB32 cells after expression of FOXA1.

(PDF)
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