
 review

Cell Cycle 11:6, 1090-1096; March 15, 2012; © 2012 Landes Bioscience

1090	 Cell Cycle	V olume 11 Issue 6

YAP is a WW Domain Transcriptional Coactivator 
Inhibited by the Hippo Kinase Cascade

The Yes-associated protein, YAP65 or YAP1, was discovered as 
a proline-rich phosphoprotein that bound to the SH3 domain 
of the c-Yes protein tyrosine kinase.1 Analyses of YAP sequences 
from multiple species led to the identification of a novel 38–40 
amino acid domain, the WW domain,2 which was shown to bind 
the PPXY proline-rich motif present in the activation domains 
of many transcription factors.3 YAP has multiple alternatively 
spliced isoforms, with the predominant isoform containing the 
WW domain as well as a C-terminal PDZ binding motif l.4 A 
two-hybrid screen with the transcription activation domain of 
Runx1 (CBFA/AML1/PEBP2alpha) retrieved YAP through its 
WW domain, enabling the identification of YAP1 as a coactiva-
tor.5 YAP was subsequently retrieved in complex with the nuclear 
protein TEAD2 and shown to bind and coactivate all four TEAD 
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The transcriptional co-activator YAP is an evolutionarily 
conserved regulator of organ size and progenitor cell 
proliferation. YAP is overexpressed at high frequency in 
many common human cancers and can directly drive cancer 
development in mouse models. YAP abundance and nuclear 
localization are negatively regulated by the Hippo kinase 
cascade, which, in epithelia, is activated by physiological 
cell-cell contact. Recent work in intestinal epithelium has 
established that YAP is constitutively inhibited by the Hippo 
pathway and entirely dispensable for normal development 
and homeostasis. YAP serves only in a standby capacity; should 
cell-cell contact be abrogated, as after intestinal damage, the 
loss of Hippo input permits increased YAP abundance and 
nuclear residence. In turn, YAP cooperates with β-catenin 
to transactivate genes that promote stem cell expansion for 
epithelial repair. This interplay between overexpressed YAP 
and β-catenin also drives proliferation of colon cancer cells. 
The dispensability of YAP in normal intestine makes YAP’s 
expression or outputs attractive targets for cancer therapy.
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transcription factors through a conserved N-terminal YAP 
domain together with the WW domains.6 Despite its nuclear 
function, the bulk of YAP polypeptide was found in the cyto-
plasm, associated with the phosphoserine binding protein 14-3-3.

The logic of a transcriptional coactivator residing predomi-
nantly in the cytoplasm was uncovered in 2005, when yorkie, 
the Drosophila ortholog of YAP, was identified as the crucial 
downstream target of the growth inhibitory Hippo pathway.7 
The core of the Hippo pathway consists of two protein (ser/thr) 
kinases, Hippo and Warts/Lats, which share a common scaffold, 
the protein Salvador. Hippo phosphorylates Warts and a small 
Mob1-like protein, Mats; phospho-Mats binds to the Hippo-
phosphorylated Warts, promoting Warts autophosphorylation 
and activation. Elimination of any of these four components 
inactivates the pathway, resulting in a dramatic increase in organ 
size due to increased cellular proliferation and resistance to devel-
opmentally programmed apoptosis.8,9 Seeking targets of Warts, 
a two-hybrid screen with the N-terminal noncatalytic segment 
of Warts/Lats retrieved yorkie, whose WW domain bound to 
a Warts PPXY motif. Overexpression of yorkie reproduced the 
proliferative/antiapoptotic phenotypes seen with loss of function 
of the core Hippo components; conversely, inactivation of yorkie 
expression completely suppressed the overgrowth phenotypes of 
Hippo, Warts, Mats and Salvador loss of function.7 Thus, the 
critical function of the Drosophila Hippo pathway is the nega-
tive regulation of yorkie coactivation of the TEAD transcription 
factor, Scalloped.10-12

As regards the mechanism for yorkie inhibition, active 
Warts/Lats catalyzes the phosphorylation of yorkie at multi-
ple HXRXXS motifs, enabling the binding of 14-3-3, which 
induces yorkie nuclear exit.7,13,14 Mutation of certain of these 
yorkie phosphorylation sites, especially Ser168 (=Ser127 
in human, Ser112 in mouse YAP) causes yorkie (or YAP) to 
become constitutively nuclear and permanently activated. 
Each of the core elements of the Drosophila Hippo pathway 
is conserved in mammals and present as multiple homologs 
(except for Salvador = WW45; Hippo = Mst1/Mst2; Mats1A/
Mob1B; Warts = Lats1/Lats2; yorkie = YAP/TAZ; Scalloped = 
TEAD1–4). These mammalian Hippo components function 
redundantly in an analogous manner to the Drosophila path-
way in some tissues and in vitro settings, although it is clear 
that there is additional complexity and context specificity of 
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amplicon is usually quite large and contains many genes, includ-
ing the BIRC family members 5 and 6; however, the ability of 
YAP overexpression in nontumorigenic breast cells to promote 
proliferation and induce epithelial-mesenchymal transformation 
provided strong evidence for YAP’s oncogenic potential. Initial 
surveys of primary human tumors by immunohistochemistry26,32 
showed that YAP staining, which was low or undetectable in the 
majority of normal tissues, was markedly increased in nearly all 
breast, ovarian, lung, colorectal, pancreatic and prostate tumors, 
with high nuclear expression in nearly half. Yap is also overex-
presed in approximately 60% of human liver cancers (usually 
intranuclear) as compared with the adjacent, nontumorous liver. 
When detectable in normal tissues, YAP was seen in the prolif-
erative and/or regenerative compartments, e.g., colonic crypts, 
type II pneumocytes; in skin, YAP is abundant and intranuclear 
in the proliferative basal layer of keratinocytes. Normal breast 
exhibits strong cytoplasmic YAP staining in ductular epithelium 
and detectable cytoplasmic and nuclear YAP in the myoepithelial 
cells.32 The biologic importance of YAP overexpression in cancer 
is indicated by its association with poorer outcomes; a correla-
tion between YAP overexpression and decreased progression-free 
survival is reported with ovarian cancers33 and with shortened 
survival in HCC,34 non-small cell lung cancer35 and esophageal 
squamous cell carcinomas.36 Thus, overexpression of the YAP 
oncogene is a very frequent occurrence in many common human 
cancers and is associated with resistance to chemotherapy30 and 
poorer survival. It has been consistently observed that deple-
tion of YAP from cancer-derived cell lines of diverse origins that 
exhibit YAP overexpression radically reduces cell proliferation 
in vitro and often also engenders substantial apoptosis. This 
apparent dependence on YAP, when overexpressed, for viability 
and growth together with the ubiquity of YAP overexpression in 
human cancers suggests that interference with YAP expression 
or its outputs may have broad application in cancer therapy.

YAP Overexpression is Necessary to Drive Intestinal 
Proliferation. YAP at Physiologic Abundance  

is Not Sufficient, Even if Nuclear

Several recent observations in the intestinal epithelial compart-
ment suggest that YAP may be an especially attractive therapeu-
tic target. As noted above, YAP expression in mouse intestine 
is detected in crypts, the location of the stem cell compartment 
responsible for the renewal of the intestinal epithelium, which 
turns over completely every 4–5 d.37 Conditional inactivation of 
the genes encoding the core Hippo components WW45 or Mst1 
and Mst2 results in a drop in YAP phosphorylation, an increase 
in YAP abundance and an expansion of the crypt compartment. 
These responses are especially pronounced with Mst1/2 dele-
tion;38 there, YAP shows a marked increase in total and intra-
nuclear abundance, accompanied by robust overproliferation 
of a stem cell-like population, and interruption of differentia-
tion with the loss of all secretory cells. The Mst1/2-null colons 
develop polypoid lesions by 13 weeks age, by which time the mice 
are runted, and half have expired. The mice lacking intestinal 
expression of Salavador/WW4539 also exhibit increased YAP 

mammalian Hippo signaling. In this regard, it is worth noting 
that while this review will concentrate on YAP, emerging data 
have indicated that its closest homolog, TAZ, is under compa-
rable regulation by the Hippo pathway,15 and there are common 
themes in the control of progenitor cell proliferation16,17 by both 
of these transcriptional co-activators.

YAP is an Oncogene that is Frequently 
Overexpressed in Common Human Cancers

The identification of yorkie as a proproliferative anti-apoptotic 
effector appeared to conflict with earlier reports attributing to 
YAP proapoptotic activity to stabilization and coactivation of the 
p73 transcription factor, a member of the p53 family. DNA dam-
age results in the association of YAP with p73, which, together 
with PML and the p300 acetylase, can be found on the promoter 
of the proapoptotic gene p53AIP1.18,19 YAP association with p73 
appears to involve YAP tyrosine phosphorylation by cAbl kinase, 
and YAP contributes to cAbl-induced apoptosis consequent to 
DNA damage.20 YAP tyrosine phosphorylation, putatively by Src 
family kinases, also enables YAP binding to Runx2, resulting in 
suppression of Runx2 transcriptional activity toward p21 cdki21 
while promoting transformation.22 Thus, YAP is capable of being 
regulated by diverse upstream inputs that appear to elicit distinct 
and even opposing outputs, e.g., as an oncogene23 or a tumor 
suppressor.24 What then are YAP’s physiologic functions in vari-
ous contexts; what are the relevant upstream inputs, and by what 
mechanisms are each of these functions regulated? Key propro-
liferative antiapoptotic functions of nuclear YAP have been iden-
tified in stem cells, in development and in the regeneration of 
damaged tissues in the adult organism; each depends on YAP’s 
function as a transcriptional regulator, and control of YAP func-
tion by regulation of its nuclear residence is a recurrent theme.

In 2007, it was shown that global transgenic overexpression 
of YAP(Ser127Ala) in mice leads to expansion of progenitor 
cells in multiple organs.25 Inducible overexpression specifically 
in mouse liver produces overgrowth of adult hepatocytes that is 
reversible upon YAP withdrawal, but if sustained, this is followed 
by hepatocellular carcinoma (HCC).26 Additional evidence of 
YAP’s oncogenic capacity was the finding that the YAP gene is 
spontaneously amplified (together with cIAP1) in an experimen-
tal model of murine HCC.27 Double elimination of the Hippo 
orthologs Mst1 and Mst2 from mouse liver results in an abrupt 
loss of YAP(Ser127) phosphorylation and enhanced YAP nuclear 
abundance accompanied by the immediate onset of hepato-
cyte proliferation, resistance to FAS-induced apoptosis and the 
subsequent emergence of multifocal HCCs and mixed HCC/
cholangiocarcinomas.28-31 Depletion of YAP from cells cultured 
from the Mst1/2-null HCCs results in an immediate cessation of 
growth and massive apoptosis.28 Thus YAP is certainly an onco-
gene in murine liver.

Ample evidence has now established YAP as a human onco-
gene. Early on, a screen for gene copy number changes in cancers 
arising in Brca1-null mouse breast identified an amplicon that 
contained only YAP and is syntenic with the 11q22 amplicon 
frequently amplified in a variety of human tumors.23 The 11q22 
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YAP’s ability to incite proliferative drive, and this is why deple-
tion of YAP from those cancer cell lines that overexpress YAP is 
so effective in inhibiting proliferation.

Overexpressed YAP Synergizes with Beta Catenin to 
Drive Intestinal Stem and Tumor Cell Proliferation

As regards the identity of the proliferative driver engaged by 
high levels of YAP, in the case of the intestine, available evi-
dence points to β-catenin.38 The proliferation of intestinal 
stem cells during normal turnover is dependent on the classi-
cal Wnt pathway and β catenin transcriptional activity acting 
synergistically with Notch,37,45 whereas Notch, independently of 
Wnt, negatively regulates epithelial differentiation.46 The abil-
ity of transgenic overexpressed YAP(Ser127Ala) to expand the 
intestinal stem cell compartment and inhibit differentiation is 
greatly attenuated if YAP(Ser127Ala) is induced in the presence 
of γ-secretase inhibitors.25 Mst1/2 deletion in the intestine38 
is accompanied by a small increase in the active dephosphory-
lated form of β catenin but a much stronger upregulation of the 
expression of the β catenin targets Lgr5 and Ascl2. Mst1/Mst2 
deletion also activates Notch signaling, reflected by increased 
levels of the cleaved Notch intracellular domain (NICD) and 
of a variety of Notch target gene products. Notch activation 
is driven in part by increased expression of the Notch ligand 
Jagged, a β catenin target. A similar dependence of β catenin 
and Notch signaling on YAP is evident in colon cancer cell 
lines that overexpress YAP. Depletion of YAP from SW480 cells 
reduces β catenin-dependent transcriptional activity by over 
80% and, in HCT116 cells, greatly decreases NICD levels and 
Notch transcriptional outputs, in both cases without affecting 
the level of nuclear β catenin. Thus YAP overexpression, both in 
the intestine and in colon cancers, drives β catenin and Notch 
signaling to promote proliferation of stem-like cells. Whether 
the ability of high levels of intranuclear YAP to enhance the 
β-catenin transcriptional efficacy is due to YAP binding to and 
coactivation of β-catenin/TCF transcriptional sites or to more 
indirect effects, e.g., via TEAD-mediated transcriptional out-
puts, is not known; however, in the developing mouse heart, 
YAP and β-catenin can be coprecipitated at regulatory sites in 
the sox2 and snail homolog 2 genes.47

YAP Polypeptide Degradation is Regulated  
by the Hippo Pathway

Given the link between upregulated expression of YAP and both 
tumorigenesis and epithelial regeneration, there is considerable 
interest in defining the mechanisms controlling YAP abundance 
under normal and pathologic conditions. Little information is 
available concerning YAP gene transcription (possible regulation 
by Sonic Hedgehog48), YAP mRNA translation and turnover; 
however, it is clear that the Hippo pathway is the major regulator 
of YAP polypeptide degradation. Hippo signaling mediates phos-
phorylation of YAP HXRXXS(381), a site not conserved in yor-
kie, creating a binding motif for casein kinase1δ/ε that catalyzes 
a processive phosphorylation, which creates a recognition site for 

abundance and crypt expansion but to a much milder degree; 
nevertheless, by 13 months of age, the Salvador-deficient colons 
also show an average of 1–2 adenomas. The stem cell expansion, 
loss of differentiation and adenoma development depend on YAP, 
in that the conditional inactivation of a single YAP allele is suf-
ficient to reverse these abnormalities completely. Perhaps more 
surprisingly, the conditional inactivation of both YAP alleles has 
no discernable effect on intestinal morphology;38,39 thus, YAP is 
expressed in the intestinal stem cell compartment, and although 
capable of driving stem cell proliferation, YAP is kept largely or 
entirely inactive through the action of the Hippo pathway and 
is entirely dispensable for normal intestinal epithelial turnover. 
This situation differs from that in ES and iPS cells, where YAP 
is expressed and is required for maintaining pluripotency,40 and 
from early embryogenesis, where YAP knockout results in defects 
in the elongation and cell proliferation of the embryonic axis 
and in development of the yolk sac vasculature and placenta. A 
plausible question, therefore, is why express YAP in the intestinal 
stem cell compartment if only to maintain it in an inactive state 
through the continuing activity of the Hippo pathway? Cai et 
al. suggest that YAP serves there as a ready reserve to support 
epithelial regeneration; they show that during the repair phase 
of a mouse colonic mucosal injury induced by dextran sodium 
sulfate, there occurs a marked increase in the abundance of the 
YAP polypeptide with little change in YAP mRNA. The induc-
tion of such an injury to the YAP-null colon is accompanied by 
a very poor reparative response and a high mortality rate. Thus 
YAP, although dispensable in normal intestinal epithelial turn-
over, is critical for the effective repair and regeneration of the 
injured colon. The role of YAP in other committed stem cell 
compartments is less well-described but may conform with this 
model. Thus YAP overexpression can drive proliferation of chick 
neural stem cells accompanied by increased cyclin D1; however, 
shRNA depletion of YAP in this compartment does not dimin-
ish cyclin D1 expression or BrdU incorporation.41 An alternative 
mechanism of tissue regeneration is that which occurs after 2/3 
hepatectomy in the rodent, where restoration of liver mass occurs 
by recruitment of adult hepatocytes into the cell cycle rather than 
from the putative liver stem cell compartment (i.e., oval cells);42 
the latter presumably contribute to liver regeneration when hepa-
tocytes are injured and unable to proliferate.43 YAP abundance 
increases 2–3 fold following 2/3 hepatectomy;44 however, YAP’s 
contribution in either hepatocyte-mediated or oval cell-mediated 
liver regeneration is not yet defined.

In the Mst1/2-null, YAP heterozygous intestine, YAP poly-
peptide abundance is close to levels seen in the wild-type intes-
tine;38 however, the residual YAP is underphosphorylated and 
predominantly intranuclear; nevertheless, intestinal epithelial 
differentiation and morphology is normalized. This finding indi-
cates that the levels of YAP found in normal intestinal epithelia, 
even if underphosphorylated and intranuclear, are insufficient 
to drive the proliferation and inhibit the differentiation of the 
intestinal stem cell; YAP overexpression in this compartment is 
needed to recruit a proproliferative drive that is not engaged at 
normal YAP abundance. We propose that YAP overexpression in 
colon cancer (and perhaps other malignancies) is also crucial to 
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kinase cassette integrates inputs from different cell-cell and posi-
tional sensors. In addition to regulating yorkie phosphorylation, 
the pathway components expanded57,58 and warts,58 through their 
PPXY motif, and hippo are each able to bind directly and retain 
yorkie in the cytosol in a phosphorylation-independent manner; 
the physiologic relevance of this mode of regulation is unknown, 
and the mammalian Expanded homolog FRMD6/Willin lacks 
the PPXY motif.59

In mammalian cells, cell-cell contact is also a major upstream 
input to YAP phosphorylation and nuclear localization.60 Notably, 
when cultured MEFs reach confluence, LATS1/2 become phos-
phorylated and activated, resulting, in turn, in YAP phosphoryla-
tion and cytoplasmic retention. Similar processes appear operative 
in epithelial cells, and available data points to E-cadherin52/α 
catenin51,61 as an important input, with little direct support thus 
far for other cell surface and polarity complexes. A variety of pro-
teins in addition to WW45/Salvador have been shown to bind the 
kinase components and regulate their activity in a positive or neg-
ative manner, e.g., Mst1/Mst2 (e.g., the Rassf polypeptides62,63) 
and Lats1/Lats2 (e.g., Zyxin,64 Kibra,65-67 ASPP1,68,69 LIM 
domain proteins70). YAP is also found bound to proteins (other 
than the Src family kinases cYes and cSrc) that modify its activ-
ity and localization. In mouse keratinocytes, phospho-YAP com-
plexed with 14-3-3 is bound to α-catenin in the cytoplasm.51,61 
Depletion of α-catenin promotes dephosphorylation of YAP by 
PP2A, enabling YAP nuclear entry. Surprisingly, elimination of 
Mst1/Mst2 and depletion of Lats1/Lats2 from keratinocytes does 
not result in YAP dephosphorylation.51 Angiomotin is another 
peripheral, tight-junction associated cytoplasmic protein that 
encodes a PPXY motif, binds and sequesters YAP (and TAZ).71-73 
Angiomotin also binds Mst1/Mst2 and Lats2, so in addition to 
YAP binding, Angiomotin may serve as a scaffold to promote 
YAP phosphorylation.74 Depletion of Angiomotin in epithelial 
cell culture is accompanied by YAP dephosphorylation and a 
YAP-dependent transformation as well as loss of cell contact. The 
Neurofibromatosis type II (NF2) tumor suppressor encoding the 
mammalian ortholog of Drosophila Merlin also interacts with 
Angiomotin at cell junctions and has been linked to the negative 
regulation of YAP in vitro. However, the precise mechanisms by 
which NF2 may influence YAP activity and the relevance of YAP 
dysregulation for the phenotypes associated with NF2 inactiva-
tion remain under active study.75 Overall, although knowledge 
concerning YAP regulation is enlarging rapidly, many gaps and 
open questions remain. It is clear that there will be considerable 
variation in the tissue-specific composition and organization of 
the regulatory apparatus upstream of YAP as well as context-
dependent operation of the available signaling pathways.

In addition to this incomplete understanding of the processes 
controlling YAP activity in normal cells, the basis for YAP dys-
regulation in human cancers remains to be defined. Whereas 
amplification of the YAP1 locus, and loss-of-function mutations 
of WW45/SAV1 and MOB1 (and of NF2) have been described 
in some cancers, these genetic lesions appear relatively uncom-
mon compared with the observed prevalence of YAP overexpres-
sion across many tumor types. Epigenetic silencing of multiple 
bona fide and putative Hippo pathway components have been 

the ubiquitin ligase SCFβTRCP.49 The loss of these phosphorylations 
is the primary cause of enhanced YAP abundance in the Mst1/
Mst2-deficient mouse intestine, in as much as YAP mRNA levels 
are not altered.39 Diminished YAP degradation together with the 
loss of 14-3-3 mediated YAP nuclear exit, accounts for the mas-
sive increase in YAP action in the intestine and liver that occurs 
with deletion of Mst1/Mst2.28 As regards human colon cancer, 
YAP mRNA levels average about 2-fold higher than those in nor-
mal colon, independent of stage, with the vast majority ranging 
from near normal to approximately 3-fold increased.38 Whether 
this is sufficient to account for the high YAP polypeptide levels 
as assessed by IHC is not known. The state of YAP phosphoryla-
tion in colon cancer is yet to be evaluated; however, an initial 
survey of human hepatocellular carcinomas found evidence of 
diminished YAP phosphorylation, as compared with adjacent 
nontumorous liver, in approximately one-third of tumors as well 
as diminished phosphorylation of the specific Mst1/Mst2 sub-
strate Mob1.25 This points to a loss of the inhibitory upstream 
input from the kinase cascade.

Upstream Regulation of the Hippo Kinase Cascade 
and YAP Nuclear Residence

Control of YAP activity appears to be an important mechanism 
for maintaining appropriate organ size or progenitor cell pools 
in different organs. Thus, YAP regulation would be expected to 
be directly linked to sensors of these cell states. In this regard, 
the identity in mammalian tissues of the components of the 
kinase cascade upstream of YAP, of the major upstream inputs 
to the kinase cascade as well as an understanding of the extent 
to which YAP action is regulated by hippo-pathway phosphor-
ylation as opposed to other inputs are all areas of considerable 
uncertainty. In the fly, Hippo and Warts are the only kinases 
currently recognized to operate upstream of yorkie, although the 
relative strength of hpo and warts LOF phenotypes varies in a 
tissue-dependent manner.50 In the mouse, Mst1/Mst2 are clearly 
upstream components in mouse liver28-30 and intestinal epithelia38 
but are entirely dispensable to YAP phosphorylation in mouse 
embryonal fibroblasts (MEFs),28 mouse keratinocytes51 and in 
the nontumorigenic MCF10A human breast cells.52 In addition, 
preliminary evidence suggests that in mouse liver Lats1/Lats2 
may not be the YAP kinase recruited by Mst1/Mst2.28 As regards 
inputs upstream of the kinase cascade, genetic evidence in the 
fly has identified several cell surface and polarity-related protein 
complexes as regulators of YAP cellular localization, at least in 
part through modulation of the Hippo pathway. These upstream 
regulators include the atypical cadherins Fat and its transmem-
brane ligand, dachsous; the apical-basal polarity complexes 
Crumbs (Crb/PALS1/PATJ) and PAR (PAR3/PAR6/aPKC), 
the lateral Scribble complex (Lethal Giant Larvae/Scribble/Discs 
large) and the intracellular FERM domain proteins, Expanded 
and Merlin, acting independently and together with the WW 
domain protein, Kibra, which can associate directly with 
Salvador.53-56 An important feature of these upstream elements 
is that their individual LOF phenotypes are much weaker than 
those of the kinase elements, suggesting that the activity of the 
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interaction partner is unknown. Nevertheless, because YAP 
transcriptional regulation requires its TEAD association and/
or the WW domains, the latter interacting with PPXY-bearing 
targets, it may be feasible to identify small-molecule inhibitors of 
those interactions with sufficient specificity. Regarding transcrip-
tional targets critical for oncogenic activity downstream of YAP, 
BIRC5/Survivin and the extracellular ligands connective tissue 
growth factor (CTGF)76,77 and Amphiregulin,78 appear relevant 
in certain contexts; however, the full spectrum of YAP targets 
and their contributions to tumorigenesis in vivo remain to be 
defined.

In conclusion, many strategies are being pursued in the effort 
to validate, identify and eradicate colon cancer stem cells.79-81 The 
dispensability of the YAP oncogene for the viability and prolif-
eration of normal hepatocytes and intestinal stem cells, together 
with its frequent overexpression in colonic, liver and other can-
cers, where it serves to drive proliferation and resist apoptosis, 
makes YAP an attractive new target in cancer therapy.
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reported (e.g., LATS1/2, MST1/2, RASSF1, RASSF2, RASSF5/
Nore1); however, their pathologic significance remains uncer-
tain. Overall, an important area for future inquiry will be to 
establish systematically and definitely the relationship between 
genetic and epigenetic alterations in pathway components and 
aberrant YAP activity in human cancers.

Can YAP Overexpression be Exploited for Colon  
or Liver Cancer Therapy?

Regardless of whether the basis for YAP hyperactivation is defined 
in any given malignancy, the current data indicate that multiple 
cancers are dependent on sustained YAP transcriptional activ-
ity for both tumor initiation as well as maintenance, and thus, 
YAP may be a relevant therapeutic target. The most direct thera-
peutic strategy would be to deplete the YAP polypeptide using 
anti-sense RNA or, more likely, RNAi; only partial depletion 
would be required, and overshoot is unlikely to be problematic 
given YAP dispensability in the adult (at least in colon and liver). 
A discussion of RNA therapuetics is beyond the scope of this 
review. Manipulation of YAP’s upstream inputs does not appear 
to offer attractive therapeutic approaches in view of the complex-
ity and additive nature of the upstream inputs to the inhibitory 
kinase cascade and the multiplicity of other determinants of YAP 
nuclear localization. Interference with YAP’s interactions with 
the relevant transcriptional partners also seems daunting, given 
the plethora of candidate YAP interactors, whose identity may 
differ from one cancer to another. Even in colon cancer, where 
β-catenin is clearly a YAP target, the identity of YAP’s direct 
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